forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi_demux_simple.sv
633 lines (576 loc) · 25.6 KB
/
axi_demux_simple.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// Copyright (c) 2019 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Michael Rogenmoser <michaero@iis.ee.ethz.ch>
// - Thomas Benz <tbenz@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>
`include "common_cells/assertions.svh"
`include "common_cells/registers.svh"
`include "axi/assign.svh"
`ifdef QUESTA
// Derive `TARGET_VSIM`, which is used for tool-specific workarounds in this file, from `QUESTA`,
// which is automatically set in Questa.
`define TARGET_VSIM
`endif
/// Demultiplex one AXI4+ATOP slave port to multiple AXI4+ATOP master ports.
///
/// The AW and AR slave channels each have a `select` input to determine to which master port the
/// current request is sent. The `select` can, for example, be driven by an address decoding module
/// to map address ranges to different AXI slaves.
///
/// ## Design overview
///
/// ![Block diagram](module.axi_demux.png "Block diagram")
///
/// Beats on the W channel are routed by demultiplexer according to the selection for the
/// corresponding AW beat. This relies on the AXI property that W bursts must be sent in the same
/// order as AW beats and beats from different W bursts may not be interleaved.
///
/// Beats on the B and R channel are multiplexed from the master ports to the slave port with
/// a round-robin arbitration tree.
module axi_demux_simple #(
parameter int unsigned AxiIdWidth = 32'd0,
parameter bit AtopSupport = 1'b1,
parameter type axi_req_t = logic,
parameter type axi_resp_t = logic,
parameter int unsigned NoMstPorts = 32'd0,
parameter int unsigned MaxTrans = 32'd8,
parameter int unsigned AxiLookBits = 32'd3,
parameter bit UniqueIds = 1'b0,
// Dependent parameters, DO NOT OVERRIDE!
parameter int unsigned SelectWidth = (NoMstPorts > 32'd1) ? $clog2(NoMstPorts) : 32'd1,
parameter type select_t = logic [SelectWidth-1:0]
) (
input logic clk_i,
input logic rst_ni,
input logic test_i,
// Slave Port
input axi_req_t slv_req_i,
input select_t slv_aw_select_i,
input select_t slv_ar_select_i,
output axi_resp_t slv_resp_o,
// Master Ports
output axi_req_t [NoMstPorts-1:0] mst_reqs_o,
input axi_resp_t [NoMstPorts-1:0] mst_resps_i
);
localparam int unsigned IdCounterWidth = cf_math_pkg::idx_width(MaxTrans);
typedef logic [IdCounterWidth-1:0] id_cnt_t;
// pass through if only one master port
if (NoMstPorts == 32'h1) begin : gen_no_demux
`AXI_ASSIGN_REQ_STRUCT(mst_reqs_o[0], slv_req_i)
`AXI_ASSIGN_RESP_STRUCT(slv_resp_o, mst_resps_i[0])
end else begin
//--------------------------------------
//--------------------------------------
// Signal Declarations
//--------------------------------------
//--------------------------------------
//--------------------------------------
// Write Transaction
//--------------------------------------
// Register which locks the AW valid signal
logic lock_aw_valid_d, lock_aw_valid_q, load_aw_lock;
logic aw_valid, aw_ready;
// AW ID counter
select_t lookup_aw_select;
logic aw_select_occupied, aw_id_cnt_full;
// Upon an ATOP load, inject IDs from the AW into the AR channel
logic atop_inject;
// W select counter: stores the decision to which master W beats should go
select_t w_select, w_select_q;
logic w_select_valid;
id_cnt_t w_open;
logic w_cnt_up, w_cnt_down;
// B channles input into the arbitration
logic [NoMstPorts-1:0] mst_b_valids, mst_b_readies;
//--------------------------------------
// Read Transaction
//--------------------------------------
// AR ID counter
select_t lookup_ar_select;
logic ar_select_occupied, ar_id_cnt_full;
logic ar_push;
// Register which locks the AR valid signel
logic lock_ar_valid_d, lock_ar_valid_q, load_ar_lock;
logic ar_valid, ar_ready;
logic [NoMstPorts-1:0] mst_r_valids, mst_r_readies;
//--------------------------------------
// Channel Control
//--------------------------------------
//--------------------------------------
//--------------------------------------
// AW Channel
//--------------------------------------
// Control of the AW handshake
always_comb begin
// AXI Handshakes
slv_resp_o.aw_ready = 1'b0;
aw_valid = 1'b0;
// `lock_aw_valid`, used to be protocol conform as it is not allowed to deassert
// a valid if there was no corresponding ready. As this process has to be able to inject
// an AXI ID into the counter of the AR channel on an ATOP, there could be a case where
// this process waits on `aw_ready` but in the mean time on the AR channel the counter gets
// full.
lock_aw_valid_d = lock_aw_valid_q;
load_aw_lock = 1'b0;
// AW ID counter and W FIFO
w_cnt_up = 1'b0;
// ATOP injection into ar counter
atop_inject = 1'b0;
// we had an arbitration decision, the valid is locked, wait for the transaction
if (lock_aw_valid_q) begin
aw_valid = 1'b1;
// transaction
if (aw_ready) begin
slv_resp_o.aw_ready = 1'b1;
lock_aw_valid_d = 1'b0;
load_aw_lock = 1'b1;
// inject the ATOP if necessary
atop_inject = slv_req_i.aw.atop[axi_pkg::ATOP_R_RESP] & AtopSupport;
end
end else begin
// An AW can be handled if `i_aw_id_counter` and `i_counter_open_w` are not full. An ATOP that
// requires an R response can be handled if additionally `i_ar_id_counter` is not full (this
// only applies if ATOPs are supported at all).
if (!aw_id_cnt_full && (w_open != {IdCounterWidth{1'b1}}) &&
(!(ar_id_cnt_full && slv_req_i.aw.atop[axi_pkg::ATOP_R_RESP]) ||
!AtopSupport)) begin
// There is a valid AW vector make the id lookup and go further, if it passes.
// Also stall if previous transmitted AWs still have active W's in flight.
// This prevents deadlocking of the W channel. The counters are there for the
// Handling of the B responses.
if (slv_req_i.aw_valid &&
((w_open == '0) || (w_select == slv_aw_select_i)) &&
(!aw_select_occupied || (slv_aw_select_i == lookup_aw_select))) begin
// connect the handshake
aw_valid = 1'b1;
// push arbitration to the W FIFO regardless, do not wait for the AW transaction
w_cnt_up = 1'b1;
// on AW transaction
if (aw_ready) begin
slv_resp_o.aw_ready = 1'b1;
atop_inject = slv_req_i.aw.atop[axi_pkg::ATOP_R_RESP] & AtopSupport;
// no AW transaction this cycle, lock the decision
end else begin
lock_aw_valid_d = 1'b1;
load_aw_lock = 1'b1;
end
end
end
end
end
// lock the valid signal, as the selection gets pushed into the W FIFO on first assertion,
// prevent further pushing
`FFLARN(lock_aw_valid_q, lock_aw_valid_d, load_aw_lock, '0, clk_i, rst_ni)
if (UniqueIds) begin : gen_unique_ids_aw
// If the `UniqueIds` parameter is set, each write transaction has an ID that is unique among
// all in-flight write transactions, or all write transactions with a given ID target the same
// master port as all write transactions with the same ID, or both. This means that the
// signals that are driven by the ID counters if this parameter is not set can instead be
// derived from existing signals. The ID counters can therefore be omitted.
assign lookup_aw_select = slv_aw_select_i;
assign aw_select_occupied = 1'b0;
assign aw_id_cnt_full = 1'b0;
end else begin : gen_aw_id_counter
axi_demux_id_counters #(
.AxiIdBits ( AxiLookBits ),
.CounterWidth ( IdCounterWidth ),
.mst_port_select_t ( select_t )
) i_aw_id_counter (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.lookup_axi_id_i ( slv_req_i.aw.id[0+:AxiLookBits] ),
.lookup_mst_select_o ( lookup_aw_select ),
.lookup_mst_select_occupied_o ( aw_select_occupied ),
.full_o ( aw_id_cnt_full ),
.inject_axi_id_i ( '0 ),
.inject_i ( 1'b0 ),
.push_axi_id_i ( slv_req_i.aw.id[0+:AxiLookBits] ),
.push_mst_select_i ( slv_aw_select_i ),
.push_i ( w_cnt_up ),
.pop_axi_id_i ( slv_resp_o.b.id[0+:AxiLookBits] ),
.pop_i ( slv_resp_o.b_valid & slv_req_i.b_ready )
);
// pop from ID counter on outward transaction
end
// This counter steers the demultiplexer of the W channel.
// `w_select` determines, which handshaking is connected.
// AWs are only forwarded, if the counter is empty, or `w_select_q` is the same as
// `slv_aw_select_i`.
counter #(
.WIDTH ( IdCounterWidth ),
.STICKY_OVERFLOW ( 1'b0 )
) i_counter_open_w (
.clk_i,
.rst_ni,
.clear_i ( 1'b0 ),
.en_i ( w_cnt_up ^ w_cnt_down ),
.load_i ( 1'b0 ),
.down_i ( w_cnt_down ),
.d_i ( '0 ),
.q_o ( w_open ),
.overflow_o ( /*not used*/ )
);
`FFLARN(w_select_q, slv_aw_select_i, w_cnt_up, select_t'(0), clk_i, rst_ni)
assign w_select = (|w_open) ? w_select_q : slv_aw_select_i;
assign w_select_valid = w_cnt_up | (|w_open);
//--------------------------------------
// W Channel
//--------------------------------------
//--------------------------------------
// B Channel
//--------------------------------------
logic [cf_math_pkg::idx_width(NoMstPorts)-1:0] b_idx;
// Arbitration of the different B responses
rr_arb_tree #(
.NumIn ( NoMstPorts ),
.DataType ( logic ),
.AxiVldRdy( 1'b1 ),
.LockIn ( 1'b1 )
) i_b_mux (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i( 1'b0 ),
.rr_i ( '0 ),
.req_i ( mst_b_valids ),
.gnt_o ( mst_b_readies ),
.data_i ( '0 ),
.gnt_i ( slv_req_i.b_ready ),
.req_o ( slv_resp_o.b_valid ),
.data_o ( ),
.idx_o ( b_idx )
);
always_comb begin
if (slv_resp_o.b_valid) begin
`AXI_SET_B_STRUCT(slv_resp_o.b, mst_resps_i[b_idx].b)
end else begin
slv_resp_o.b = '0;
end
end
//--------------------------------------
// AR Channel
//--------------------------------------
// control of the AR handshake
always_comb begin
// AXI Handshakes
slv_resp_o.ar_ready = 1'b0;
ar_valid = 1'b0;
// `lock_ar_valid`: Used to be protocol conform as it is not allowed to deassert `ar_valid`
// if there was no corresponding `ar_ready`. There is the possibility that an injection
// of a R response from an `atop` from the AW channel can change the occupied flag of the
// `i_ar_id_counter`, even if it was previously empty. This FF prevents the deassertion.
lock_ar_valid_d = lock_ar_valid_q;
load_ar_lock = 1'b0;
// AR id counter
ar_push = 1'b0;
// The process had an arbitration decision in a previous cycle, the valid is locked,
// wait for the AR transaction.
if (lock_ar_valid_q) begin
ar_valid = 1'b1;
// transaction
if (ar_ready) begin
slv_resp_o.ar_ready = 1'b1;
ar_push = 1'b1;
lock_ar_valid_d = 1'b0;
load_ar_lock = 1'b1;
end
end else begin
// The process can start handling AR transaction if `i_ar_id_counter` has space.
if (!ar_id_cnt_full) begin
// There is a valid AR, so look the ID up.
if (slv_req_i.ar_valid && (!ar_select_occupied ||
(slv_ar_select_i == lookup_ar_select))) begin
// connect the AR handshake
ar_valid = 1'b1;
// on transaction
if (ar_ready) begin
slv_resp_o.ar_ready = 1'b1;
ar_push = 1'b1;
// no transaction this cycle, lock the valid decision!
end else begin
lock_ar_valid_d = 1'b1;
load_ar_lock = 1'b1;
end
end
end
end
end
// this ff is needed so that ar does not get de-asserted if an atop gets injected
`FFLARN(lock_ar_valid_q, lock_ar_valid_d, load_ar_lock, '0, clk_i, rst_ni)
if (UniqueIds) begin : gen_unique_ids_ar
// If the `UniqueIds` parameter is set, each read transaction has an ID that is unique among
// all in-flight read transactions, or all read transactions with a given ID target the same
// master port as all read transactions with the same ID, or both. This means that the
// signals that are driven by the ID counters if this parameter is not set can instead be
// derived from existing signals. The ID counters can therefore be omitted.
assign lookup_ar_select = slv_ar_select_i;
assign ar_select_occupied = 1'b0;
assign ar_id_cnt_full = 1'b0;
end else begin : gen_ar_id_counter
axi_demux_id_counters #(
.AxiIdBits ( AxiLookBits ),
.CounterWidth ( IdCounterWidth ),
.mst_port_select_t ( select_t )
) i_ar_id_counter (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.lookup_axi_id_i ( slv_req_i.ar.id[0+:AxiLookBits] ),
.lookup_mst_select_o ( lookup_ar_select ),
.lookup_mst_select_occupied_o ( ar_select_occupied ),
.full_o ( ar_id_cnt_full ),
.inject_axi_id_i ( slv_req_i.aw.id[0+:AxiLookBits] ),
.inject_i ( atop_inject ),
.push_axi_id_i ( slv_req_i.ar.id[0+:AxiLookBits] ),
.push_mst_select_i ( slv_ar_select_i ),
.push_i ( ar_push ),
.pop_axi_id_i ( slv_resp_o.r.id[0+:AxiLookBits] ),
.pop_i ( slv_resp_o.r_valid & slv_req_i.r_ready & slv_resp_o.r.last )
);
end
//--------------------------------------
// R Channel
//--------------------------------------
logic [cf_math_pkg::idx_width(NoMstPorts)-1:0] r_idx;
// Arbitration of the different r responses
rr_arb_tree #(
.NumIn ( NoMstPorts ),
.DataType ( logic ),
.AxiVldRdy( 1'b1 ),
.LockIn ( 1'b1 )
) i_r_mux (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i( 1'b0 ),
.rr_i ( '0 ),
.req_i ( mst_r_valids ),
.gnt_o ( mst_r_readies ),
.data_i ( '0 ),
.gnt_i ( slv_req_i.r_ready ),
.req_o ( slv_resp_o.r_valid ),
.data_o (),
.idx_o ( r_idx )
);
always_comb begin
if (slv_resp_o.r_valid) begin
`AXI_SET_R_STRUCT(slv_resp_o.r, mst_resps_i[r_idx].r)
end else begin
slv_resp_o.r = '0;
end
end
assign ar_ready = ar_valid & mst_resps_i[slv_ar_select_i].ar_ready;
assign aw_ready = aw_valid & mst_resps_i[slv_aw_select_i].aw_ready;
// process that defines the individual demuxes and assignments for the arbitration
// as mst_reqs_o has to be drivem from the same always comb block!
always_comb begin
// default assignments
mst_reqs_o = '0;
slv_resp_o.w_ready = 1'b0;
w_cnt_down = 1'b0;
for (int unsigned i = 0; i < NoMstPorts; i++) begin
// AW channel
mst_reqs_o[i].aw = slv_req_i.aw;
mst_reqs_o[i].aw_valid = 1'b0;
if (aw_valid && (slv_aw_select_i == i)) begin
mst_reqs_o[i].aw_valid = 1'b1;
end
// W channel
mst_reqs_o[i].w = slv_req_i.w;
mst_reqs_o[i].w_valid = 1'b0;
if (w_select_valid && (w_select == i)) begin
mst_reqs_o[i].w_valid = slv_req_i.w_valid;
slv_resp_o.w_ready = mst_resps_i[i].w_ready;
w_cnt_down = slv_req_i.w_valid & mst_resps_i[i].w_ready & slv_req_i.w.last;
end
// B channel
mst_reqs_o[i].b_ready = mst_b_readies[i];
// AR channel
mst_reqs_o[i].ar = slv_req_i.ar;
mst_reqs_o[i].ar_valid = 1'b0;
if (ar_valid && (slv_ar_select_i == i)) begin
mst_reqs_o[i].ar_valid = 1'b1;
end
// R channel
mst_reqs_o[i].r_ready = mst_r_readies[i];
end
end
// unpack the response B and R channels for the arbitration
for (genvar i = 0; i < NoMstPorts; i++) begin : gen_b_channels
// assign mst_b_chans[i] = mst_resps_i[i].b;
assign mst_b_valids[i] = mst_resps_i[i].b_valid;
// assign mst_r_chans[i] = mst_resps_i[i].r;
assign mst_r_valids[i] = mst_resps_i[i].r_valid;
end
// Validate parameters.
// pragma translate_off
`ifndef VERILATOR
`ifndef XSIM
initial begin: validate_params
no_mst_ports: assume (NoMstPorts > 0) else
$fatal(1, "The Number of slaves (NoMstPorts) has to be at least 1");
AXI_ID_BITS: assume (AxiIdWidth >= AxiLookBits) else
$fatal(1, "AxiIdBits has to be equal or smaller than AxiIdWidth.");
end
default disable iff (!rst_ni);
aw_select: assume property( @(posedge clk_i) (slv_req_i.aw_valid |->
(slv_aw_select_i < NoMstPorts))) else
$fatal(1, "slv_aw_select_i is %d: AW has selected a slave that is not defined.\
NoMstPorts: %d", slv_aw_select_i, NoMstPorts);
ar_select: assume property( @(posedge clk_i) (slv_req_i.ar_valid |->
(slv_ar_select_i < NoMstPorts))) else
$fatal(1, "slv_ar_select_i is %d: AR has selected a slave that is not defined.\
NoMstPorts: %d", slv_ar_select_i, NoMstPorts);
aw_valid_stable: assert property( @(posedge clk_i) (aw_valid && !aw_ready) |=> aw_valid) else
$fatal(1, "aw_valid was deasserted, when aw_ready = 0 in last cycle.");
ar_valid_stable: assert property( @(posedge clk_i)
(ar_valid && !ar_ready) |=> ar_valid) else
$fatal(1, "ar_valid was deasserted, when ar_ready = 0 in last cycle.");
slv_aw_chan_stable: assert property( @(posedge clk_i) (aw_valid && !aw_ready)
|=> $stable(slv_req_i.aw)) else
$fatal(1, "slv_aw_chan unstable with valid set.");
slv_aw_select_stable: assert property( @(posedge clk_i) (aw_valid && !aw_ready)
|=> $stable(slv_aw_select_i)) else
$fatal(1, "slv_aw_select_i unstable with valid set.");
slv_ar_chan_stable: assert property( @(posedge clk_i) (ar_valid && !ar_ready)
|=> $stable(slv_req_i.ar)) else
$fatal(1, "slv_ar_chan unstable with valid set.");
slv_ar_select_stable: assert property( @(posedge clk_i) (ar_valid && !ar_ready)
|=> $stable(slv_ar_select_i)) else
$fatal(1, "slv_ar_select_i unstable with valid set.");
internal_ar_select: assert property( @(posedge clk_i)
(ar_valid |-> slv_ar_select_i < NoMstPorts))
else $fatal(1, "slv_ar_select_i illegal while ar_valid.");
internal_aw_select: assert property( @(posedge clk_i)
(aw_valid |-> slv_aw_select_i < NoMstPorts))
else $fatal(1, "slv_aw_select_i illegal while aw_valid.");
w_underflow: assert property( @(posedge clk_i)
((w_open == '0) && (w_cnt_up ^ w_cnt_down) |-> !w_cnt_down)) else
$fatal(1, "W counter underflowed!");
`ASSUME(NoAtopAllowed, !AtopSupport && slv_req_i.aw_valid |-> slv_req_i.aw.atop == '0)
`endif
`endif
// pragma translate_on
end
endmodule
module axi_demux_id_counters #(
// the lower bits of the AXI ID that should be considered, results in 2**AXI_ID_BITS counters
parameter int unsigned AxiIdBits = 2,
parameter int unsigned CounterWidth = 4,
parameter type mst_port_select_t = logic
) (
input clk_i, // Clock
input rst_ni, // Asynchronous reset active low
// lookup
input logic [AxiIdBits-1:0] lookup_axi_id_i,
output mst_port_select_t lookup_mst_select_o,
output logic lookup_mst_select_occupied_o,
// push
output logic full_o,
input logic [AxiIdBits-1:0] push_axi_id_i,
input mst_port_select_t push_mst_select_i,
input logic push_i,
// inject ATOPs in AR channel
input logic [AxiIdBits-1:0] inject_axi_id_i,
input logic inject_i,
// pop
input logic [AxiIdBits-1:0] pop_axi_id_i,
input logic pop_i
);
localparam int unsigned NoCounters = 2**AxiIdBits;
typedef logic [CounterWidth-1:0] cnt_t;
// registers, each gets loaded when push_en[i]
mst_port_select_t [NoCounters-1:0] mst_select_q;
// counter signals
logic [NoCounters-1:0] push_en, inject_en, pop_en, occupied, cnt_full;
//-----------------------------------
// Lookup
//-----------------------------------
assign lookup_mst_select_o = mst_select_q[lookup_axi_id_i];
assign lookup_mst_select_occupied_o = occupied[lookup_axi_id_i];
//-----------------------------------
// Push and Pop
//-----------------------------------
assign push_en = (push_i) ? (1 << push_axi_id_i) : '0;
assign inject_en = (inject_i) ? (1 << inject_axi_id_i) : '0;
assign pop_en = (pop_i) ? (1 << pop_axi_id_i) : '0;
assign full_o = |cnt_full;
// counters
for (genvar i = 0; i < NoCounters; i++) begin : gen_counters
logic cnt_en, cnt_down, overflow;
cnt_t cnt_delta, in_flight;
always_comb begin
unique case ({push_en[i], inject_en[i], pop_en[i]})
3'b001 : begin // pop_i = -1
cnt_en = 1'b1;
cnt_down = 1'b1;
cnt_delta = cnt_t'(1);
end
3'b010 : begin // inject_i = +1
cnt_en = 1'b1;
cnt_down = 1'b0;
cnt_delta = cnt_t'(1);
end
// 3'b011, inject_i & pop_i = 0 --> use default
3'b100 : begin // push_i = +1
cnt_en = 1'b1;
cnt_down = 1'b0;
cnt_delta = cnt_t'(1);
end
// 3'b101, push_i & pop_i = 0 --> use default
3'b110 : begin // push_i & inject_i = +2
cnt_en = 1'b1;
cnt_down = 1'b0;
cnt_delta = cnt_t'(2);
end
3'b111 : begin // push_i & inject_i & pop_i = +1
cnt_en = 1'b1;
cnt_down = 1'b0;
cnt_delta = cnt_t'(1);
end
default : begin // do nothing to the counters
cnt_en = 1'b0;
cnt_down = 1'b0;
cnt_delta = cnt_t'(0);
end
endcase
end
delta_counter #(
.WIDTH ( CounterWidth ),
.STICKY_OVERFLOW ( 1'b0 )
) i_in_flight_cnt (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.clear_i ( 1'b0 ),
.en_i ( cnt_en ),
.load_i ( 1'b0 ),
.down_i ( cnt_down ),
.delta_i ( cnt_delta ),
.d_i ( '0 ),
.q_o ( in_flight ),
.overflow_o ( overflow )
);
assign occupied[i] = |in_flight;
assign cnt_full[i] = overflow | (&in_flight);
// holds the selection signal for this id
`FFLARN(mst_select_q[i], push_mst_select_i, push_en[i], '0, clk_i, rst_ni)
// pragma translate_off
`ifndef VERILATOR
`ifndef XSIM
// Validate parameters.
cnt_underflow: assert property(
@(posedge clk_i) disable iff (~rst_ni) (pop_en[i] |=> !overflow)) else
$fatal(1, "axi_demux_id_counters > Counter: %0d underflowed.\
The reason is probably a faulty AXI response.", i);
`endif
`endif
// pragma translate_on
end
endmodule