diff --git a/.github/workflows/docs.yaml b/.github/workflows/docs.yaml new file mode 100644 index 00000000..70feec2c --- /dev/null +++ b/.github/workflows/docs.yaml @@ -0,0 +1,29 @@ +name: Docs + +on: + pull_request: + workflow_dispatch: + +jobs: + docs: + runs-on: ubuntu-latest + + name: Docs + + steps: + - name: Checkout repository + uses: actions/checkout@v4 + + - name: Fetch all tags and branches + run: git fetch --prune --unshallow + + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: '3.10' + + - name: Install dependencies + run: pip install .[dev] && pip install -r docs/requirements.txt + + - name: Generate Sphinx HTML + run: cd docs && make html \ No newline at end of file diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index ac040fc1..5f42f4dc 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -19,10 +19,10 @@ jobs: python-version: "3.10" - name: Install release packages - run: pip install setuptools wheel twine setuptools-scm[toml] + run: pip install build twine - name: Build distribution - run: python setup.py sdist bdist_wheel + run: python -m build - name: Publish to Test PyPi env: diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 00000000..47b44e5a --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,29 @@ +# .readthedocs.yaml +# Read the Docs configuration file +# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details + +# Required +version: 2 + +# Set the OS, Python version and other tools you might need +build: + os: ubuntu-22.04 + tools: + python: "3.12" + +# Build documentation in the "docs/" directory with Sphinx +sphinx: + configuration: docs/conf.py + fail_on_warning: true + +# Optionally build your docs in additional formats such as PDF and ePub +# formats: +# - pdf +# - epub + +# Optional but recommended, declare the Python requirements required +# to build your documentation +# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html +python: + install: + - requirements: docs/requirements.txt \ No newline at end of file diff --git a/README.md b/README.md index 827c2633..711b666d 100644 --- a/README.md +++ b/README.md @@ -29,6 +29,7 @@ Resources to get started: * [RDF Primer](https://www.w3.org/TR/rdf11-concepts/) * [RDFLib (Python)](https://pypi.org/project/rdflib/) * [One Example for Modeling RDF as ArangoDB Graphs](https://www.arangodb.com/docs/stable/data-modeling-graphs-from-rdf.html) + ## Installation #### Latest Release @@ -41,69 +42,73 @@ pip install git+https://github.com/ArangoDB-Community/ArangoRDF ``` ## Quickstart -Run the full version with Google Colab: Open In Colab +Open In Colab ```py from rdflib import Graph from arango import ArangoClient from arango_rdf import ArangoRDF -db = ArangoClient(hosts="http://localhost:8529").db("_system_", username="root", password="") +db = ArangoClient().db() adbrdf = ArangoRDF(db) -g = Graph() -g.parse("https://raw.githubusercontent.com/stardog-union/stardog-tutorials/master/music/beatles.ttl") - -# RDF to ArangoDB -################################################################################### +def beatles(): + g = Graph() + g.parse("https://raw.githubusercontent.com/ArangoDB-Community/ArangoRDF/main/tests/data/rdf/beatles.ttl", format="ttl") + return g +``` -# 1.1: RDF-Topology Preserving Transformation (RPT) -adbrdf.rdf_to_arangodb_by_rpt("Beatles", g, overwrite_graph=True) +### RDF to ArangoDB -# 1.2: Property Graph Transformation (PGT) -adbrdf.rdf_to_arangodb_by_pgt("Beatles", g, overwrite_graph=True) +**Note**: RDF-to-ArangoDB functionality has been implemented using concepts described in the paper +*[Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches](https://arxiv.org/abs/2210.05781)*. So we offer two transformation approaches: -g = adbrdf.load_meta_ontology(g) +1. [RDF-Topology Preserving Transformation (RPT)](https://arangordf.readthedocs.io/en/docs/rdf_to_arangodb_rpt.html) +2. [Property Graph Transformation (PGT)](https://arangordf.readthedocs.io/en/docs/rdf_to_arangodb_pgt.html) -# 1.3: RPT w/ Graph Contextualization -adbrdf.rdf_to_arangodb_by_rpt("Beatles", g, contextualize_graph=True, overwrite_graph=True) +```py +# 1. RDF-Topology Preserving Transformation (RPT) +adbrdf.rdf_to_arangodb_by_rpt(name="BeatlesRPT", rdf_graph=beatles(), overwrite_graph=True) -# 1.4: PGT w/ Graph Contextualization -adbrdf.rdf_to_arangodb_by_pgt("Beatles", g, contextualize_graph=True, overwrite_graph=True) +# 2. Property Graph Transformation (PGT) +adbrdf.rdf_to_arangodb_by_pgt(name="BeatlesPGT", rdf_graph=beatles(), overwrite_graph=True) +``` -# 1.5: PGT w/ ArangoDB Document-to-Collection Mapping Exposed -adb_mapping = adbrdf.build_adb_mapping_for_pgt(g) -print(adb_mapping.serialize()) -adbrdf.rdf_to_arangodb_by_pgt("Beatles", g, adb_mapping, contextualize_graph=True, overwrite_graph=True) +### ArangoDB to RDF -# ArangoDB to RDF -################################################################################### +```py +# pip install arango-datasets +from arango_datasets import Datasets -# Start from scratch! -g = Graph() -g.parse("https://raw.githubusercontent.com/stardog-union/stardog-tutorials/master/music/beatles.ttl") -adbrdf.rdf_to_arangodb_by_pgt("Beatles", g, overwrite_graph=True) +name = "OPEN_INTELLIGENCE_ANGOLA" +Datasets(db).load(name) -# 2.1: Via Graph Name -g2, adb_mapping_2 = adbrdf.arangodb_graph_to_rdf("Beatles", Graph()) +# 1. Graph to RDF +rdf_graph = adbrdf.arangodb_graph_to_rdf(name, rdf_graph=Graph()) -# 2.2: Via Collection Names -g3, adb_mapping_3 = adbrdf.arangodb_collections_to_rdf( - "Beatles", - Graph(), - v_cols={"Album", "Band", "Class", "Property", "SoloArtist", "Song"}, - e_cols={"artist", "member", "track", "type", "writer"}, +# 2. Collections to RDF +rdf_graph_2 = adbrdf.arangodb_collections_to_rdf( + name, + rdf_graph=Graph(), + v_cols={"Event", "Actor", "Source"}, + e_cols={"eventActor", "hasSource"}, ) -print(len(g2), len(adb_mapping_2)) -print(len(g3), len(adb_mapping_3)) - -print('--------------------') -print(g2.serialize()) -print('--------------------') -print(adb_mapping_2.serialize()) -print('--------------------') +# 3. Metagraph to RDF +rdf_graph_3 = adbrdf.arangodb_to_rdf( + name=name, + rdf_graph=Graph(), + metagraph={ + "vertexCollections": { + "Event": {"date", "description", "fatalities"}, + "Actor": {"name"} + }, + "edgeCollections": { + "eventActor": {} + }, + }, +) ``` ## Development & Testing @@ -123,76 +128,3 @@ def pytest_addoption(parser): parser.addoption("--username", action="store", default="root") parser.addoption("--password", action="store", default="") ``` - -## Additional Info: RDF to ArangoDB - -RDF-to-ArangoDB functionality has been implemented using concepts described in the paper *[Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches](https://arxiv.org/abs/2210.05781)*. - -In other words, `ArangoRDF` offers 2 RDF-to-ArangoDB transformation methods: -1. RDF-topology Preserving Transformation (RPT): `ArangoRDF.rdf_to_arangodb_by_rpt()` -2. Property Graph Transformation (PGT): `ArangoRDF.rdf_to_arangodb_by_pgt()` - -RPT preserves the RDF Graph structure by transforming each RDF Statement into an ArangoDB Edge. - -PGT on the other hand ensures that Datatype Property Statements are mapped as ArangoDB Document Properties. - -```ttl -@prefix ex: . -@prefix xsd: . -ex:book ex:publish_date "1963-03-22"^^xsd:date . -ex:book ex:pages "100"^^xsd:integer . -ex:book ex:cover 20 . -ex:book ex:index 55 . -``` - -| RPT | PGT | -|:-------------------------:|:-------------------------:| -| ![image](https://user-images.githubusercontent.com/43019056/232347662-ab48ebfb-e215-4aff-af28-a5915414a8fd.png) | ![image](https://user-images.githubusercontent.com/43019056/232347681-c899ef09-53c7-44de-861e-6a98d448b473.png) | - --------------------- -### RPT - - -The `ArangoRDF.rdf_to_arangodb_by_rpt` method will store the RDF Resources of your RDF Graph under the following ArangoDB Collections: - - - {graph_name}_URIRef: The Document collection for `rdflib.term.URIRef` resources. - - {graph_name}_BNode: The Document collection for`rdflib.term.BNode` resources. - - {graph_name}_Literal: The Document collection for `rdflib.term.Literal` resources. - - {graph_name}_Statement: The Edge collection for all triples/quads. - --------------------- -### PGT - -In contrast to RPT, the `ArangoRDF.rdf_to_arangodb_by_pgt` method will rely on the nature of the RDF Resource/Statement to determine which ArangoDB Collection it belongs to. This is referred as the **ArangoDB Collection Mapping Process**. This process relies on 2 fundamental URIs: - -1) `` (adb:collection) - - Any RDF Statement of the form ` "Person"` will map the Subject to the ArangoDB "Person" document collection. - -2) `` (rdf:type) - - This strategy is divided into 3 cases: - - 1. If an RDF Resource only has one `rdf:type` statement, - then the local name of the RDF Object is used as the ArangoDB - Document Collection name. For example, - ` ` - would create an JSON Document for ``, - and place it under the `Person` Document Collection. - NOTE: The RDF Object will also have its own JSON Document - created, and will be placed under the "Class" - Document Collection. - - 2. If an RDF Resource has multiple `rdf:type` statements, - with some (or all) of the RDF Objects of those statements - belonging in an `rdfs:subClassOf` Taxonomy, then the - local name of the "most specific" Class within the Taxonomy is - used (i.e the Class with the biggest depth). If there is a - tie between 2+ Classes, then the URIs are alphabetically - sorted & the first one is picked. - - 3. If an RDF Resource has multiple `rdf:type` statements, with none - of the RDF Objects of those statements belonging in an - `rdfs:subClassOf` Taxonomy, then the URIs are - alphabetically sorted & the first one is picked. The local - name of the selected URI will be designated as the Document - collection for that Resource. --------------------- diff --git a/arango_rdf/__init__.py b/arango_rdf/__init__.py index 17da9738..91ccf6d8 100644 --- a/arango_rdf/__init__.py +++ b/arango_rdf/__init__.py @@ -1 +1,2 @@ +from arango_rdf.controller import ArangoRDFController # noqa: F401 from arango_rdf.main import ArangoRDF # noqa: F401 diff --git a/arango_rdf/controller.py b/arango_rdf/controller.py index b2c02a31..55cf7aa1 100644 --- a/arango_rdf/controller.py +++ b/arango_rdf/controller.py @@ -10,9 +10,19 @@ class ArangoRDFController(AbstractArangoRDFController): - """ArangoDB-RDF controller. + """Controller used in RDF-to-ArangoDB (PGT). - You can derive your own custom ArangoRDFController. + Responsible for handling how the ArangoDB Collection Mapping Process + identifies the "ideal RDFS Class" among a selection of RDFS Classes + for a given RDF Resource. + + The "ideal RDFS Class" is defined as an RDFS Class whose local name best + represents the RDF Resource in question. This local name will be + used as the ArangoDB Collection name that will store **rdf_resource**. + + `Read more about how the PGT ArangoDB Collection Mapping + Process works here + <./rdf_to_arangodb_pgt.html#arangodb-collection-mapping-process>`_. """ def __init__(self) -> None: @@ -28,42 +38,19 @@ def identify_best_class( """Find the ideal RDFS Class among a selection of RDFS Classes. Essential for the ArangoDB Collection Mapping Process used in RDF-to-ArangoDB (PGT). - The "ideal RDFS Class" is defined as an RDFS Class whose local name can be - used as the ArangoDB Document Collection that will store **rdf_resource**. + `Read more about how the PGT ArangoDB Collection Mapping + Process works here + <./rdf_to_arangodb_pgt.html#arangodb-collection-mapping-process>`_. + + The "ideal RDFS Class" is defined as an RDFS Class whose local name best + represents the RDF Resource in question. This local name will be + used as the ArangoDB Collection name that will store **rdf_resource**. This system is a work-in-progress. Users are welcome to overwrite this method via their own implementation of the `ArangoRDFController` - Python Class. - - NOTE: Users are able to access the RDF Graph of the current - RDF-to-ArangoDB transformation via the `self.rdf_graph` - instance variable, and the database instance via the - `self.db` instance variable. - - The current identification process goes as follows: - 1) If an RDF Resource only has one `rdf:type` statement - (either by explicit definition or by domain/range inference), - then the local name of the single RDFS Class is used as the ArangoDB - Document Collection name. For example, - - would place the JSON Document for - under the ArangoDB "Person" Document Collection. - - 2) If an RDF Resource has multiple `rdf:type` statements - (either by explicit definition or by domain/range inference), - with some (or all) of the RDFS Classes of those statements - belonging in an `rdfs:subClassOf` Taxonomy, then the - local name of the "most specific" Class within the Taxonomy is - used (i.e the Class with the biggest depth). If there is a - tie between 2+ Classes, then the URIs are alphabetically - sorted & the first one is picked. Relies on **subclass_tree**. - - 3) If an RDF Resource has multiple `rdf:type` statements, with - none of the RDFS Classes of those statements belonging in an - `rdfs:subClassOf` Taxonomy, then the URIs are - alphabetically sorted & the first one is picked. The local - name of the selected URI will be designated as the Document - Collection for **rdf_resource**. + Class. Users are able to access the RDF Graph of the current + RDF-to-ArangoDB transformation via `self.rdf_graph`, and the + database instance via the `self.db`. :param rdf_resource: The RDF Resource in question. :type rdf_resource: URIRef | BNode @@ -73,12 +60,12 @@ def identify_best_class( domain/range inference. :type class_set: Set[str] :param subclass_tree: The Tree data structure representing - the RDFS subClassOf Taxonomy. See `ArangoRDF.__build_subclass_tree()` - for more info. + the RDFS subClassOf Taxonomy. + See :func:`arango_rdf.main.ArangoRDF.__build_subclass_tree` for more info. :type subclass_tree: arango_rdf.utils.Tree - :return: The most suitable RDFS Class URI among the set of RDFS Classes - to use as the ArangoDB Document Collection name associated to - **rdf_resource**. + :return: The string representation of the URI of the most suitable + RDFS Class URI among the set of RDFS Classes to use as the ArangoDB + Document Collection name for **rdf_resource**. :rtype: str """ # These are accessible! diff --git a/arango_rdf/main.py b/arango_rdf/main.py index c9ade6b1..5d25be12 100644 --- a/arango_rdf/main.py +++ b/arango_rdf/main.py @@ -175,20 +175,6 @@ def arangodb_to_rdf( :type rdf_graph: rdflib.graph.Graph :param metagraph: An dictionary of dictionaries defining the ArangoDB Vertex & Edge Collections whose entries will be inserted into the RDF Graph. - For example: - - .. code-block:: python - { - "vertexCollections": { - "Person": {"name", "age"}, - "Book": {"title", "author"} - }, - "edgeCollections": { - "Likes": {"date"}, - "Wrote": {"date"} - } - } - :type metagraph: arango_rdf.typings.ADBMetagraph :param explicit_metagraph: Only keep the document attributes specified in **metagraph** when importing to RDF (is True by default). Otherwise, @@ -558,35 +544,24 @@ def rdf_to_arangodb_by_rpt( This method will store the RDF Resources of **rdf_graph** under the following ArangoDB Collections: - ``` - "f{name}_URIRef" # Vertex collection for `rdflib.term.URIRef`. - "f{name}_BNode" # Vertex collection for`rdflib.term.BNode`. - "f{name}_Literal" # Vertex collection for `rdflib.term.Literal`. - "f{name}_Statement" # Edge collection for all triples/quads. - ``` + 1. ``{Name}_URIRef``: Vertex collection for ``rdflib.term.URIRef`` resources. + 2. ``{Name}_BNode``: Vertex collection for ``rdflib.term.BNode`` resources. + 3. ``{Name}_Literal``: Vertex collection for ``rdflib.term.Literal`` resources. + 4. ``{Name}_Statement``: Edge collection for all triples/quads. :param name: The name of the RDF Graph :type name: str - :param rdf_graph: The RDF Graph object. NOTE: This object - is modified in-place in order for PGT to work. Do not - expect the original state of **rdf_graph** to be preserved. + :param rdf_graph: The RDF Graph object. NOTE: This object is modified + in-place in order for PGT to work. Do not expect the original state of + **rdf_graph** to be preserved. :type: rdf_graph: rdflib.graph.Graph :param contextualize_graph: A work-in-progress flag that seeks to enhance the Terminology Box of **rdf_graph** by providing the following features: - 1) Process RDF Predicates within **rdf_graph** as their own ArangoDB - Document, and cast a (predicate RDF.type RDF.Property) edge - relationship into the ArangoDB graph for every RDF predicate - used in the form (subject predicate object) within **rdf_graph**. - 2) Provide RDFS.Domain & RDFS.Range **Inference** on all - RDF Resources within the **rdf_graph**, so long that no - RDF.Type statement already exists in **rdf_graph** - for the given resource. - 3) Provide RDFS.Domain & RDFS.Range **Introspection** on all - RDF Predicates with the **rdf_graph**, so long that - no RDFS.Domain or RDFS.Range statement already exists - for the given predicate. - 4) TODO - What's next? + + 1) Loading Meta Ontologies (i.e OWL, RDF, RDFS, etc.) into the RDF Graph + 2) Providing Domain & Range Inference + 3) Providing Domain & Range Introspection :type contextualize_graph: bool :param flatten_reified_triples: If set to False, will preserve the RDF structure of reified triples. If set to True, will convert any reified @@ -731,124 +706,23 @@ def rdf_to_arangodb_by_pgt( """Create an ArangoDB Graph from an RDF Graph using the Property Graph Transformation (PGT) Algorithm. - In contrast to RPT, PGT ensures that datatype property statements are - mapped to node properties in the PG. More info on PGT can be found - in the package's README file, or in the following - paper: https://arxiv.org/pdf/2210.05781.pdf. + PGT ensures that datatype property statements (i.e statements whose + objects are Literals) are mapped to document properties in the + Property Graph. `Learn more about PGT here + <./rdf_to_arangodb_pgt.html>`_. - In contrast to RPT, this method will rely on + Contrary to RPT, this method will rely on the nature of the RDF Resource/Statement to determine which ArangoDB - Collection it belongs to. The ArangoDB Collection mapping process relies - on two fundamental URIs: - - 1) (adb:collection) - - Any RDF Statement of the form - "Person" - will map the Subject to the ArangoDB - "Person" document collection. - - 2) (rdf:type) - - This strategy is divided into 3 cases: - 2.1) If an RDF Resource only has one `rdf:type` statement, - then the local name of the RDF Object is used as the ArangoDB - Document Collection name. For example, - - would create an JSON Document for , - and place it under the "Person" Document Collection. - NOTE: The RDF Object will also have its own JSON Document - created, and will be placed under the "Class" - Document Collection. - - 2.2) If an RDF Resource has multiple `rdf:type` statements, - with some (or all) of the RDF Objects of those statements - belonging in an `rdfs:subClassOf` Taxonomy, then the - local name of the "most specific" Class within the Taxonomy is - used (i.e the Class with the biggest depth). If there is a - tie between 2+ Classes, then the URIs are alphabetically - sorted & the first one is picked. - - 2.3) If an RDF Resource has multiple `rdf:type` statements, with - none of the RDF Objects of those statements belonging in an - `rdfs:subClassOf` Taxonomy, then the URIs are - alphabetically sorted & the first one is picked. The local - name of the selected URI will be designated as the Document - collection for that Resource. - - NOTE 1: If **contextualize_graph** is set to True, then additional - `rdf:type` statements may be generated via ArangoRDF's Domain & Range - Inference feature. These "synthetic" statements will be considered when - mapping RDF Resources to the correct ArangoDB Collections, but ONLY if - there were no "original" rdf:type statements to consider for - the given RDF Resource. - - NOTE 2: The ArangoDB Collection Mapping algorithm is a Work in Progress, - and will most likely be subject to change for the time being. - - In contrast to RPT, regardless of whether **contextualize_graph** is set to + Collection it belongs to. This process is referred to as the + ArangoDB Collection Mapping Process. `Learn more about the PGT ArangoDB + Collection Mapping Process here + <./rdf_to_arangodb_pgt.html#arangodb-collection-mapping-process>`_. + + Contrary to RPT, regardless of whether **contextualize_graph** is set to True or not, all RDF Predicates within every RDF Statement in **rdf_graph** will be processed as their own ArangoDB Document, and will be stored under the "Property" Vertex Collection. - To demo the ArangoDB Collection Mapping process, - let us consider the following RDF Graph: - - ``` - @prefix ex: . - @prefix adb: . - @prefix rdfs: . - - ex:B rdfs:subClassOf ex:A . - ex:C rdfs:subClassOf ex:A . - ex:D rdfs:subClassOf ex:C . - - ex:alex rdf:type ex:A . - - ex:sam ex:age 25 . - ex:age rdfs:domain ex:A - - ex:john rdf:type ex:B . - ex:john rdf:type ex:D . - - ex:mike rdf:type ex:G - ex:mike rdf:type ex:F - ex:mike rdf:type ex:E - - ex:frank adb:collection "Z" . - ex:frank rdf:type D . - - ex:bob ex:name "Bob" . - ``` - Given the RDF TTL Snippet above, we can derive the following - ArangoDB Collection mappings: - - ex:alex --> "A" - - This RDF Resource only has one associated `rdf:type` statement. - - ex:sam --> "A" - - Although this RDF Resource has no `rdf:type` associated statement, - we can infer from the domain of the property it uses (ex:age) that - it is of type ex:A. - - ex:john --> "D" - - This RDF Resource has 2 `rdf:type` statements, but `ex:D` is "deeper" - than `ex:B` when considering the `rdfs:subClassOf` Taxonomy. - - ex:mike --> "E" - - This RDF Resource has multiple `rdf:type` statements, with - none belonging to the `rdfs:subClassOf` Taxonomy. - Therefore, Alphabetical Sorting is used. - - ex:frank --> "Z" - - This RDF Resource has an `adb:collection` statement associated - to it, which is prioritized over any other `rdf:type` - statement it may have. - - ex:bob --> "UnknownResource" - - This RDF Resource has neither an `rdf:type` statement - nor an `adb:collection` statement associated to it. It - is therefore placed under the "UnknownResource" - Document Collection. - :param name: The name of the RDF Graph :type name: str :param rdf_graph: The RDF Graph object. NOTE: This object @@ -857,8 +731,8 @@ def rdf_to_arangodb_by_pgt( :type: rdf_graph: rdflib.graph.Graph :param adb_col_statements: An optional RDF Graph containing ArangoDB Collection statements of the form - (adb_vertex http://arangodb/collection "adb_v_col"). - If specified, will be used to determine the ArangoDB Collection + `adb_vertex http://arangodb/collection "adb_v_col" .`. + Useful for creating a custom ArangoDB Collection mapping of RDF Resources within **rdf_graph**. Defaults to None. NOTE: Cannot be used in conjunction with collection statements in **rdf_graph**. @@ -866,43 +740,38 @@ def rdf_to_arangodb_by_pgt( :param write_adb_col_statements: Run the ArangoDB Collection Mapping Process for **rdf_graph** to write the ArangoDB Collection statements of the form - (adb_vertex http://arangodb/collection "adb_v_col") + `adb_vertex http://arangodb/collection "adb_v_col" . ` into **adb_col_statements**. This parameter is ignored if **contextualize_graph** is set to True, as the ArangoDB Collection Mapping Process is required for Graph Contextualization. + See :func:`write_adb_col_statements` for more information. :type write_adb_col_statements: bool :param contextualize_graph: A work-in-progress flag that seeks to enhance the Terminology Box of **rdf_graph** by providing the following features: - 1) Cast a (predicate RDF.type RDF.Property) edge - relationship into the ArangoDB graph for every RDF predicate - used in the form (subject predicate object) within **rdf_graph**. - 2) Provide RDFS.Domain & RDFS.Range Inference on all - RDF Resources within the **rdf_graph**, so long that no - RDF.Type statement already exists in **rdf_graph** - for the given resource. - 3) Provide RDFS.Domain & RDFS.Range Introspection on all - RDF Predicates with the **rdf_graph**, so long that - no RDFS.Domain or RDFS.Range statement already exists - for the given predicate. - 4) TODO - What's next? + + 1) Loading Meta Ontologies (i.e OWL, RDF, RDFS, etc.) into the RDF Graph + 2) Providing Domain & Range Inference + 3) Providing Domain & Range Introspection :type contextualize_graph: bool + :param flatten_reified_triples: If set to False, will preserve the RDF + structure of any Reified Triple. If set to True, will "flatten" any reified + triples into a regular Property Graph Edge. Defaults to True. + + `Learn more about Triple Reification here <./reification.html>`_. + :type flatten_reified_triples: bool :param overwrite_graph: Overwrites the ArangoDB graph identified by **name** if it already exists, and drops its associated collections. Defaults to False. :type overwrite_graph: bool :param batch_size: If specified, runs the ArangoDB Data Ingestion process for every **batch_size** RDF triples/quads within **rdf_graph**. - Defaults to `len(rdf_graph)`. + Defaults to None. :type batch_size: int | None - :param flatten_reified_triples: If set to False, will preserve the RDF - Structure of any reified triples. If set to True, will convert any reified - triples into regular ArangoDB edges. Defaults to True. - :type flatten_reified_triples: bool :param adb_import_kwargs: Keyword arguments to specify additional parameters for the ArangoDB Data Ingestion process. - The full parameter list is here: - https://docs.python-arango.com/en/main/specs.html#arango.collection.Collection.import_bulk + The full parameter list is + `here `_. # noqa: E501 :return: The ArangoDB Graph API wrapper. :rtype: arango.graph.Graph """ @@ -1069,50 +938,19 @@ def write_adb_col_statements( rdf_graph: RDFGraph, adb_col_statements: Optional[RDFGraph] = None, ) -> RDFGraph: - """RDF -> ArangoDB (PGT): Returns an RDF Graph to map RDF Resources to - their respective ArangoDB Collection. + """RDF -> ArangoDB (PGT): Run the ArangoDB Collection Mapping Process for + **rdf_graph** to map RDF Resources to their respective ArangoDB Collection. The PGT Algorithm relies on the ArangoDB Collection Mapping Process to identify the ArangoDB Collection of every RDF Resource. Using this method prior - to running `ArangoRDF.rdf_to_arangodb_by_pgt()` allows you to visualize and - modify the mapping. See the `ArangoRDF.rdf_to_arangodb_by_pgt()` documentation - for an explanation on the ArangoDB Collection Mapping Process. - - A common use case would look like this: - - .. code-block:: python - from rdflib import Graph - from arango_rdf import ArangoRDF - - adbrdf = ArangoRDF(db) - - g = Graph() - g.parse(...) - g.add(...) + to running :func:`rdf_to_arangodb_by_pgt` allows you to visualize and + modify the mapping. `Learn more about the PGT ArangoDB + Collection Mapping Process here + <./rdf_to_arangodb_pgt.html#arangodb-collection-mapping-process>`_. - adb_col_statements = adbrdf.write_adb_col_statements(g) - adb_col_statements.serialize(...) - adb_col_statements.add(...) - adb_col_statements.remove(...) - - adbrdf.rdf_to_arangodb_by_pgt( - 'MyGraph', rdf_graph=g, adb_col_statements=adb_col_statements - ) - - NOTE: Running this method prior to `ArangoRDF.rdf_to_arangodb_by_pgt` + NOTE: Running this method prior to :func:`rdf_to_arangodb_by_pgt` is unnecessary if the user is not interested in - viewing/modifying the ADB Mapping. - - For example, the `adb_col_statements` may look like this: - - .. code-block:: - @prefix adb: . - - adb:collection "Person" . - adb:collection "Person" . - adb:collection "Property" . - adb:collection "Class" . - adb:collection "Dog" . + viewing/modifying the ArangoDB Mapping. NOTE: There can only be 1 `adb:collection` statement associated to each RDF Resource. @@ -1123,10 +961,10 @@ def write_adb_col_statements( `adb:collection` statements. If not provided, a new RDF Graph will be created. Defaults to None. NOTE: The ArangoDB Collection Mapping Process - heavily relies on mapping certain RDF Resources to the - "Class" and "Property" ArangoDB Collections. Therefore + relies heavily on mapping certain RDF Resources to the + `"Class"` and `"Property"` ArangoDB Collections. Therefore, it is currently not possible to overwrite any RDF Resources - that belong to these two collections. + that belong to these collections. :type adb_col_statements: rdflib.graph.Graph | None :type adb_col_statements: Optional[rdflib.graph.Graph] """ diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 00000000..d4bb2cbb --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= +SPHINXBUILD ?= sphinx-build +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/_static/adb_logo.png b/docs/_static/adb_logo.png new file mode 100644 index 00000000..536ac10a Binary files /dev/null and b/docs/_static/adb_logo.png differ diff --git a/docs/_static/cases.png b/docs/_static/cases.png new file mode 100644 index 00000000..f9957a1f Binary files /dev/null and b/docs/_static/cases.png differ diff --git a/docs/_static/pgt.png b/docs/_static/pgt.png new file mode 100644 index 00000000..2a37c742 Binary files /dev/null and b/docs/_static/pgt.png differ diff --git a/docs/_static/pgt_algorithm.png b/docs/_static/pgt_algorithm.png new file mode 100644 index 00000000..800951ee Binary files /dev/null and b/docs/_static/pgt_algorithm.png differ diff --git a/docs/_static/pgt_star.png b/docs/_static/pgt_star.png new file mode 100644 index 00000000..58a8cab8 Binary files /dev/null and b/docs/_static/pgt_star.png differ diff --git a/docs/_static/rdf_logo.png b/docs/_static/rdf_logo.png new file mode 100644 index 00000000..b1940d1f Binary files /dev/null and b/docs/_static/rdf_logo.png differ diff --git a/docs/_static/rpt.png b/docs/_static/rpt.png new file mode 100644 index 00000000..fcdfe343 Binary files /dev/null and b/docs/_static/rpt.png differ diff --git a/docs/_static/rpt_algorithm.png b/docs/_static/rpt_algorithm.png new file mode 100644 index 00000000..d41e5006 Binary files /dev/null and b/docs/_static/rpt_algorithm.png differ diff --git a/docs/_static/rpt_star.png b/docs/_static/rpt_star.png new file mode 100644 index 00000000..90d4591c Binary files /dev/null and b/docs/_static/rpt_star.png differ diff --git a/docs/conf.py b/docs/conf.py new file mode 100644 index 00000000..514b3349 --- /dev/null +++ b/docs/conf.py @@ -0,0 +1,35 @@ +# Configuration file for the Sphinx documentation builder. +# +# For the full list of built-in configuration values, see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Project information ----------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information + +import os +import sys + +sys.path.insert(0, os.path.abspath("..")) + +project = 'ArangoRDF' +copyright = '2024, ArangoDB' +author = 'Anthony Mahanna' + +# -- General configuration --------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration + +extensions = [ + "sphinx_rtd_theme", + "sphinx.ext.autodoc", + "sphinx.ext.viewcode", +] +templates_path = ['_templates'] +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + + +# -- Options for HTML output ------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output + +html_theme = 'sphinx_rtd_theme' +html_static_path = ['_static'] +autodoc_member_order = "bysource" \ No newline at end of file diff --git a/docs/index.rst b/docs/index.rst new file mode 100644 index 00000000..05fbc410 --- /dev/null +++ b/docs/index.rst @@ -0,0 +1,80 @@ + +.. image:: https://github.com/ArangoDB-Community/ArangoRDF/actions/workflows/build.yml/badge.svg?branch=main + :target: https://github.com/ArangoDB-Community/ArangoRDF/actions/workflows/build.yml + +.. image:: https://github.com/ArangoDB-Community/ArangoRDF/actions/workflows/analyze.yml/badge.svg?branch=main + :target: https://github.com/ArangoDB-Community/ArangoRDF/actions/workflows/analyze.yml + +.. image:: https://coveralls.io/repos/github/ArangoDB-Community/ArangoRDF/badge.svg?branch=main + :target: https://coveralls.io/github/ArangoDB-Community/ArangoRDF?branch=main + +.. image:: https://img.shields.io/github/last-commit/ArangoDB-Community/ArangoRDF + :target: https://github.com/ArangoDB-Community/ArangoRDF/commits/main + +\ + +.. image:: https://img.shields.io/pypi/v/arango-rdf?color=3775A9&style=for-the-badge&logo=pypi&logoColor=FFD43B + :target: https://pypi.org/project/arango-rdf/ + +.. image:: https://img.shields.io/pypi/pyversions/arango-rdf?color=3776AB&style=for-the-badge&logo=python&logoColor=FFD43B + :target: https://pypi.org/project/arango-rdf/ + +\ + +.. image:: https://img.shields.io/github/license/ArangoDB-Community/ArangoRDF?color=9E2165&style=for-the-badge + :target: https://github.com/ArangoDB-Community/ArangoRDF/blob/main/LICENSE +.. image:: https://img.shields.io/static/v1?style=for-the-badge&label=code%20style&message=black&color=black + :target: https://github.com/psf/black +.. image:: https://img.shields.io/pepy/dt/arango-rdf?style=for-the-badge&color=282661 + :target: https://pepy.tech/project/arango-rdf + +\ + +.. image:: _static/adb_logo.png + :width: 50px + :alt: ArangoDB + +.. image:: _static/rdf_logo.png + :width: 50px + :alt: RDF + +\ + +ArangoRDF +--------- + +Convert RDF Graphs to ArangoDB, and vice-versa. + + +Requirements +============ + +- Python 3.8+ +- ArangoDB 3.10+ + +Installation +============ + +Latest Release + +.. code-block:: + + pip install arango-rdf + +Current State + +.. code-block:: + + pip install git+https://github.com/ArangoDB-Community/ArangoRDF + + +Contents +======== + +.. toctree:: + :maxdepth: 1 + + quickstart + rdf_to_arangodb_rpt + rdf_to_arangodb_pgt + specs diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 00000000..32bb2452 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=_build + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.https://www.sphinx-doc.org/ + exit /b 1 +) + +if "%1" == "" goto help + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/quickstart.rst b/docs/quickstart.rst new file mode 100644 index 00000000..2925a961 --- /dev/null +++ b/docs/quickstart.rst @@ -0,0 +1,74 @@ +Quickstart +---------- + +.. raw:: html + + Open In Colab + +.. code-block:: python + + from rdflib import Graph + from arango import ArangoClient + from arango_rdf import ArangoRDF + + db = ArangoClient().db() + + adbrdf = ArangoRDF(db) + + def beatles(): + g = Graph() + g.parse("https://raw.githubusercontent.com/ArangoDB-Community/ArangoRDF/main/tests/data/rdf/beatles.ttl", format="ttl") + return g + +**ArangoDB to RDF** + +**Note**: RDF-to-ArangoDB functionality has been implemented using concepts described in the paper +`Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches +`_. So we offer two transformation approaches: + +1. `RDF-Topology Preserving Transformation (RPT) <./rdf_to_arangodb_rpt.html>`_ +2. `Property Graph Transformation (PGT) <./rdf_to_arangodb_pgt.html>`_ + +.. code-block:: python + + # 1. RDF-Topology Preserving Transformation (RPT) + adbrdf.rdf_to_arangodb_by_rpt(name="BeatlesRPT", rdf_graph=beatles(), overwrite_graph=True) + + # 2. Property Graph Transformation (PGT) + adbrdf.rdf_to_arangodb_by_pgt(name="BeatlesPGT", rdf_graph=beatles(), overwrite_graph=True) + +**RDF to ArangoDB** + +.. code-block:: python + + # pip install arango-datasets + from arango_datasets import Datasets + + name = "OPEN_INTELLIGENCE_ANGOLA" + Datasets(db).load(name) + + # 1. Graph to RDF + rdf_graph = adbrdf.arangodb_graph_to_rdf(name, rdf_graph=Graph()) + + # 2. Collections to RDF + rdf_graph_2 = adbrdf.arangodb_collections_to_rdf( + name, + rdf_graph=Graph(), + v_cols={"Event", "Actor", "Source"}, + e_cols={"eventActor", "hasSource"}, + ) + + # 3. Metagraph to RDF + rdf_graph_3 = adbrdf.arangodb_to_rdf( + name=name, + rdf_graph=Graph(), + metagraph={ + "vertexCollections": { + "Event": {"date", "description", "fatalities"}, + "Actor": {"name"} + }, + "edgeCollections": { + "eventActor": {} + }, + }, + ) \ No newline at end of file diff --git a/docs/rdf_to_arangodb_pgt.rst b/docs/rdf_to_arangodb_pgt.rst new file mode 100644 index 00000000..5b9402bc --- /dev/null +++ b/docs/rdf_to_arangodb_pgt.rst @@ -0,0 +1,235 @@ +RDF to ArangoDB (PGT) +--------------------- +`Same graph, but lighter` + +What is PGT? +============ + +**PGT ensures that datatype property statements (i.e statements whose objects are Literals) +are mapped to node properties in the Property Graph (PG)**. + +Consider the following RDF Graph: + +.. code-block:: turtle + + @prefix ex: . + @prefix xsd: . + + ex:book ex:publish_date "1963-03-22"^^xsd:date . + ex:book ex:pages "100"^^xsd:integer . + ex:book ex:cover 20 . + ex:book ex:index 55 . + +PGT creates a PG consisting of a single node respresenting the RDF resource ``(ex:book)`` with +multiple properties representing property-object pairs from the RDF statements, such as ``(ex:index,55)``. +Distinguishing between **datatype** and **object property** statements, this approach transforms object +property statements to edges and datatype property statements to properties of the node representing the subject. +Unlike RPT, the resulting PG nodes represent only RDF resources or blank nodes while Literal Objects will +become properties: + +.. image:: _static/pgt.png + :width: 300px + :alt: PGT + + +The Algorithm belows formalizes the PGT approach. For each triple, check the type of the statement's object +(line 5), and based on that, decide to either create a node (if it does not yet exist, line 6) or +a property (line 13). + + +.. image:: _static/pgt_algorithm.png + :width: 500px + :alt: PGT Algorithm + + +Now, consider the following RDF-star Graph: + +.. code-block:: + + @prefix ex: . + + << ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 . + << ex:Mary ex:age 28 >> ex:certainty 1 . + +PGT transforms the embedded triple depending on its object; if it is an RDF resource, PGT converts it to an +edge. Otherwise, it converts the embedded triple into a node with a property +(lines 6-11) and fails to transform the asserted triple. The transformation of the triples from using PGT +results in a PG with a single node that makes it impossible to represent the ``(ex:certainty 1)`` triple, +since PGs do not support properties over other properties: + +.. image:: _static/pgt_star.png + :width: 400px + :alt: PGT Star Graph + +**Please Note:** The ``rdflib`` python package hasn't yet introduced support for +`Quoted Triples `_, so +ArangoRDF's support for RDF-star is based on `Triple Reification `_. + +As a result, the RDF-star Graph above can be processed with ArangoRDF as follows: + +.. code-block:: python + + from rdflib import Graph + from arango import ArangoClient + from arango_rdf import ArangoRDF + + data = """ + @prefix ex: . + @prefix rdf: . + + # << ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 . + # << ex:Mary ex:age 28 >> ex:certainty 1 . + + [] a rdf:Statement; + rdf:subject ex:Mary; + rdf:predicate ex:likes; + rdf:object ex:Matt ; + ex:certainty 0.5 . + + [] a rdf:Statement; + rdf:subject ex:Mary; + rdf:predicate ex:age; + rdf:object 28 ; + ex:certainty 1 . + """ + + rdf_graph = Graph() + rdf_graph.parse(data=data, format="turtle") + + db = ArangoClient().db() + adbrdf = ArangoRDF(db) + adbrdf.rdf_to_arangodb_by_pgt(name="DataPGT", rdf_graph=rdf_graph, overwrite_graph=True) + + +ArangoDB Collection Mapping Process +==================================== + +The **ArangoDB Collection Mapping Process** is defined as the algorithm used to map +RDF Resources to ArangoDB Collections. In PGT, the ArangoDB Collections generated are +are based on the ``rdf:type`` nature of the RDF Resource / Statement. + +Let's consider the following RDF Graph: + +.. code-block:: turtle + + @prefix ex: . + @prefix adb: . + @prefix rdfs: . + @prefix rdf: . + + ex:B rdfs:subClassOf ex:A . + ex:C rdfs:subClassOf ex:A . + ex:D rdfs:subClassOf ex:C . + + ex:alex rdf:type ex:A . + + ex:sam ex:age 25 . + ex:age rdfs:domain ex:A . + + ex:john rdf:type ex:B . + ex:john rdf:type ex:D . + + ex:mike rdf:type ex:G . + ex:mike rdf:type ex:F . + ex:mike rdf:type ex:E . + + ex:frank adb:collection "Z" . + ex:frank rdf:type ex:D . + + ex:bob ex:name "Bob" . + + ex:alex ex:knows ex:bob . + +The PGT ArangoDB Collection Mapping Process would produce the following ArangoDB Collections: + +1. A (Vertex Collection) +- ``ex:alex`` +- ``ex:sam``: Although this RDF Resource has no ``rdf:type`` associated statement, we can infer from the domain of the property it uses (``ex:age``) that it is of type ``ex:A``. + +2. D (Vertex Collection) +- ``ex:john``: This RDF Resource has 2 ``rdf:type`` statements, but ``ex:D`` is more verbose than ``ex:B`` according to the ``rdfs:subClassOf`` Taxonomy. + +2. E (Vertex Collection) +- ``ex:mike``: This RDF Resource has multiple ``rdf:type`` statements, with +none belonging to the ``rdfs:subClassOf`` Taxonomy. +Therefore, the objects are sorted alphabetically, and ``ex:E`` is the first +in the list. + +3. Z (Vertex Collection) +- ``ex:frank``: This RDF Resource has an ``adb:collection`` statement associated +to it, which is prioritized over any other ``rdf:type`` +statement it may have. Think of it as an override mechanism to any +other ``rdf:type`` statement. + +4. UnknownResource (Vertex Collection) +- ``ex:bob``: This RDF Resource has neither an ``rdf:type`` statement, +nor an ``adb:collection`` statement associated to it. It +is therefore placed under the ``UnknownResource`` Collection. + +5. knows (Edge Collection) +- ``ex:alex ex:knows ex:bob``: This RDF Resource is an edge, and therefore is placed under the +``knows`` Edge Collection. The local name of the predicate is **always** used +as the name of the Edge Collection. + +Thus, we can formalize the ArangoDB Collection Mapping Process as follows: + + +1. Any RDF Statement of the form ``(subject "X")`` +will map the Subject to the ArangoDB Vertex Collection ``X``. + +2. If 1. is not satisfied, then any RDF Statement of the form +``(subject object)`` +are considered in the following way: + +2.1. If an RDF Resource only has one `rdf:type` statement, +then the local name of the RDF Object is used as the ArangoDB +Document Collection name. For example, +``( )`` +would create an JSON Document for ````, +and place it under the "Person" Document Collection. +**NOTE**: The RDF Object will also have its own JSON Document +created, and will be placed under the ``"Class"`` +Document Collection. + +2.2 If an RDF Resource has multiple ``rdf:type`` statements, +with some (or all) of the RDF Objects of those statements +belonging in an ``rdfs:subClassOf`` Taxonomy, then the +local name of the "most specific" Class within the Taxonomy is +used (i.e the Class with the biggest depth). If there is a +tie between 2+ Classes, then the URIs are alphabetically +sorted & the first one is picked. + +2.3 If an RDF Resource has multiple ``rdf:type`` statements, with +none of the RDF Objects of those statements belonging in an +``rdfs:subClassOf`` Taxonomy, then the URIs are +alphabetically sorted & the first one is picked. The local +name of the selected URI will be designated as the Document +collection for that Resource. + + +**Final Remarks** + +We are welcome to suggestions on how to improve the ArangoDB Collection Mapping Process for PGT, +as we understand that it is not perfect. + +Consider overriding the `ArangoRDFController <./specs.html#arango_rdf.controller.ArangoRDFController>`_ Class +to implement your own ArangoDB Collection Mapping Process for PGT. + +Supported Cases +=============== + +**Note**: RDF-to-ArangoDB functionality has been implemented using concepts described in the paper +`Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches +`_. + +The paper presents a systematic list of test cases that transformation approaches need to fulfill. These +test cases range from simple RDF Graphs to complex RDF-star Graphs. + +ArangoRDF's PGT interface can be observed `here <./specs.html#arango_rdf.main.ArangoRDF.rdf_to_arangodb_by_pgt>`_. + +`View how ArangoRDF's PGT transformation approach performs on these test cases in +Colab `_. + +.. image:: _static/cases.png + :width: 500px + :alt: Cases diff --git a/docs/rdf_to_arangodb_rpt.rst b/docs/rdf_to_arangodb_rpt.rst new file mode 100644 index 00000000..1659b49d --- /dev/null +++ b/docs/rdf_to_arangodb_rpt.rst @@ -0,0 +1,152 @@ +RDF to ArangoDB (RPT) +--------------------- +`Virtualizng ArangoDB as a Triple Store` + +What is RPT? +============ + +**The RDF-topology Preserving Transformation (RPT) algorithm preserves the +RDF graph structure by transforming each RDF statement into an edge in the Property Graph (PG).** + +Consider the following RDF Graph: + +.. code-block:: turtle + + @prefix ex: . + @prefix xsd: . + + ex:book ex:publish_date "1963-03-22"^^xsd:date . + ex:book ex:pages "100"^^xsd:integer . + ex:book ex:cover 20 . + ex:book ex:index 55 . + +RPT converts the triple ``(ex:book, ex:index, 55)`` into two +nodes ``(ex:book)`` and ``(55)``, connected by an edge ``(ex:index)``. All other triples +involving RDF resources, blank nodes, or literal values can be transformed in +a similar way so that we obtain the Property Graph below: + +.. image:: _static/rpt.png + :width: 300px + :alt: RPT Graph + + +The Algorithm below formalizes the RPT approach. For each triple, create a node for the subject (line +3) and the object (line 5), with an edge connecting them (line 12) - of course avoiding duplicate +nodes for the same IRIs. + + +.. image:: _static/rpt_algorithm.png + :width: 500px + :alt: RPT Algorithm + + +Now, consider the following RDF-star Graph: + +.. code-block:: + + @prefix ex: . + + << ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 . + << ex:Mary ex:age 28 >> ex:certainty 1 . + +ArangoRDF's RPT transformation for RDF-star Graphs is slightly different from the +transformation proposed in the paper. In order to preserve the concept of **virtualizing ArangoDB +as a Triple Store**, conversion for RDF-star statements is identical to RDF triples. This is not +the case for the RPT transformation proposed in the paper, which proposes to add the `ex:certainty 1` as +an edge attribute to the edge connecting the nodes `ex:Mary` and `28`. Instead, ArangoRDF's RPT +transformation expresses ``(..., ex:certainty, 1)`` as its own edge: + +.. image:: _static/rpt_star.png + :width: 400px + :alt: RPT Star Graph + +**Please Note:** The ``rdflib`` python package hasn't yet introduced support for +`Quoted Triples `_, so +ArangoRDF's support for RDF-star is based on `Triple Reification `_. + +As a result, the RDF-star Graph above can be processed with ArangoRDF as follows: + +.. code-block:: python + + from rdflib import Graph + from arango import ArangoClient + from arango_rdf import ArangoRDF + + data = """ + @prefix ex: . + @prefix rdf: . + + # << ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 . + # << ex:Mary ex:age 28 >> ex:certainty 1 . + + [] a rdf:Statement; + rdf:subject ex:Mary; + rdf:predicate ex:likes; + rdf:object ex:Matt ; + ex:certainty 0.5 . + + [] a rdf:Statement; + rdf:subject ex:Mary; + rdf:predicate ex:age; + rdf:object 28 ; + ex:certainty 1 . + """ + + rdf_graph = Graph() + rdf_graph.parse(data=data, format="turtle") + + db = ArangoClient().db() + adbrdf = ArangoRDF(db) + adbrdf.rdf_to_arangodb_by_rpt(name="DataRPT", rdf_graph=rdf_graph, overwrite_graph=True) + + +ArangoDB Collection Mapping Process +=================================== + +The **ArangoDB Collection Mapping Process** is defined as the algorithm used to map +RDF Resources to ArangoDB Collections. In RPT, the ArangoDB Collections generated are +consistent: + +1. ``{Name}_URIRef``: The Vertex collection for ``rdflib.term.URIRef`` resources. +2. ``{Name}_BNode``: The Vertex collection for ``rdflib.term.BNode`` resources. +3. ``{Name}_Literal``: The Vertex collection for ``rdflib.term.Literal`` resources. +4. ``{Name}_Statement``: The Edge collection for all triples/quads. + +Using the python example from above, the RDF Resources of your RDF Graph would be stored under the following ArangoDB Collections: + +1. DataRPT_URIRef + - ``ex:Mary`` + - ``ex:Matt`` +2. DataRPT_BNode + - ``[]`` (1) + - ``[]`` (2) +3. DataRPT_Literal + - ``0.5`` + - ``1`` +4. DataRPT_Statement + - ``ex:Mary -> ex:likes -> ex:Matt`` + - ``ex:Mary -> ex:age -> 28`` + - ``(ex:Mary -> ex:likes -> ex:Matt) -> ex:certainty -> 0.5`` + - ``(ex:Mary -> ex:age -> 28) -> ex:certainty -> 1`` + +This is the consistent naming scheme for all ArangoRDF RPT transformations. The name of the +RDF Graph is used as a prefix for the 3 Vertex Collections and the 1 Edge Collection. + +Supported Cases +=============== + +**Note**: RDF-to-ArangoDB functionality has been implemented using concepts described in the paper +`Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches +`_. + +The paper presents a systematic list of test cases that transformation approaches need to fulfill. These +test cases range from simple RDF Graphs to complex RDF-star Graphs. + +ArangoRDF's RPT interface can be observed `here <./specs.html#arango_rdf.main.ArangoRDF.rdf_to_arangodb_by_rpt>`_. + +`View how ArangoRDF's RPT transformation approach performs on these test cases in +Colab `_. + +.. image:: _static/cases.png + :width: 500px + :alt: Cases diff --git a/docs/requirements.txt b/docs/requirements.txt new file mode 100644 index 00000000..3255fa30 --- /dev/null +++ b/docs/requirements.txt @@ -0,0 +1,5 @@ +sphinx_rtd_theme +python-arango +cityhash +rdflib +rich \ No newline at end of file diff --git a/docs/specs.rst b/docs/specs.rst new file mode 100644 index 00000000..78e45ece --- /dev/null +++ b/docs/specs.rst @@ -0,0 +1,18 @@ +API Specification +----------------- + +This page contains the specification for all classes and methods available in +ArangoRDF. + +ArangoRDF +========= + +.. autoclass:: arango_rdf.main.ArangoRDF + :members: + + +ArangoRDFController +=================== + +.. autoclass:: arango_rdf.controller.ArangoRDFController + :members: diff --git a/examples/ArangoRDF.ipynb b/examples/ArangoRDF.ipynb index ab253c9a..141c0c03 100644 --- a/examples/ArangoRDF.ipynb +++ b/examples/ArangoRDF.ipynb @@ -1,7 +1,6 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "VBMhu_S_A2-3" @@ -9,12 +8,11 @@ "source": [ "# **ArangoRDF**\n", "\n", - "\"rdf\"\n", - "\"rdf\"" + "\"rdf\"\n", + "\"rdf\"" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "44mc2EvIAzDy" @@ -32,9 +30,9 @@ "outputs": [], "source": [ "%%capture\n", + "!pip install arango-datasets\n", "!pip install adb-cloud-connector\n", - "!pip install arango-rdf==0.1.0\n", - "!git clone https://github.com/ArangoDB-Community/ArangoRDF.git " + "!pip install arango-rdf" ] }, { @@ -45,18 +43,34 @@ }, "outputs": [], "source": [ - "from adb_cloud_connector import get_temp_credentials\n", - "from arango import ArangoClient\n", "import json\n", "\n", - "from rdflib import Graph, ConjunctiveGraph, URIRef, Literal, Namespace\n", - "from rdflib.namespace import RDFS, XSD\n", + "# ArangoDB\n", + "from arango import ArangoClient\n", + "from arango_rdf import ArangoRDF\n", + "from arango_datasets import Datasets\n", + "from adb_cloud_connector import get_temp_credentials\n", "\n", - "from arango_rdf import ArangoRDF" + "# RDF\n", + "from rdflib import Graph, ConjunctiveGraph, URIRef, Literal, Namespace\n", + "from rdflib.namespace import RDFS, XSD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9L0Q4cGTMGMG" + }, + "outputs": [], + "source": [ + "def get_graph(data: str, is_conjunctive_graph: bool = False) -> Graph:\n", + " g = ConjunctiveGraph() if is_conjunctive_graph else Graph()\n", + " g.parse(data=data, format='trig' if is_conjunctive_graph else 'ttl')\n", + " return g" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "yRuJ3OIGE2Yr" @@ -66,7 +80,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "z1SFNei_imUf" @@ -86,7 +99,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "4VzvpJ2EuuMJ" @@ -96,13 +108,12 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "ssq_ohNZu0q_" }, "source": [ - "[RDFLib](https://github.com/RDFLib/rdflib) is a pure Python package for working with RDF. \n", + "[RDFLib](https://github.com/RDFLib/rdflib) is a pure Python package for working with RDF.\n", "\n", "RDFLib aims to be a pythonic RDF API. RDFLib's main data object is a `Graph` which is a Python collection of RDF Subject, Predicate, Object Triples:\n", "\n", @@ -113,7 +124,11 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "xiRxsYqY52BJ" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xiRxsYqY52BJ", + "outputId": "adcd539c-dcf5-4e89-ab50-091406af9832" }, "outputs": [], "source": [ @@ -125,7 +140,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "tibPlFLZ56cZ" @@ -148,7 +162,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "f1tb4nb15_Gl" @@ -172,7 +185,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "1dz2_jcA6Cls" @@ -187,7 +199,11 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "G-zlPMs36LF3" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "G-zlPMs36LF3", + "outputId": "db3d3e78-fd84-4f55-e56d-be28dd990191" }, "outputs": [], "source": [ @@ -199,7 +215,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "4UvegpOD6QBC" @@ -223,7 +238,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "5ag8fFkN6cDK" @@ -237,7 +251,11 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "VBiHxQ8I6ckC" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VBiHxQ8I6ckC", + "outputId": "4bad19d3-f29a-4740-c0d3-e1278f9156a6" }, "outputs": [], "source": [ @@ -245,7 +263,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "fU3ZW4Up6kft" @@ -269,13 +286,12 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "KnQifktFAxHx" }, "source": [ - "# Create a Temporary ArangoDB Cloud Instance" + "# Setup ArangoDB" ] }, { @@ -286,7 +302,7 @@ "base_uri": "https://localhost:8080/" }, "id": "ETS8l_NSAv0F", - "outputId": "b32451f1-b737-4fc9-a7ee-443265acef31" + "outputId": "e4242d73-6443-4292-9977-c3e9670d17ee" }, "outputs": [], "source": [ @@ -295,69 +311,15 @@ "print(json.dumps(con, indent=2))\n", "\n", "# Connect to the db via the python-arango driver\n", - "db = ArangoClient(hosts=con[\"url\"]).db(con[\"dbName\"], con[\"username\"], con[\"password\"], verify=True)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "7y81WHO8eG8_" - }, - "source": [ - "# Data Import" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "id": "BM0iRYPDeG8_" - }, - "source": [ - "For demo purposes, we will be using the [ArangoDB Game Of Thrones Dataset](https://github.com/arangodb/example-datasets/tree/master/GameOfThrones)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7bgGJ3QkeG8_", - "outputId": "fbbe33ff-9df9-459a-93e1-3232ea3733bc" - }, - "outputs": [], - "source": [ - "!chmod -R 755 ArangoRDF/\n", - "!./ArangoRDF/tests/tools/arangorestore -c none --server.endpoint http+ssl://{con[\"hostname\"]}:{con[\"port\"]} --server.username {con[\"username\"]} --server.database {con[\"dbName\"]} --server.password {con[\"password\"]} --replication-factor 3 --input-directory \"ArangoRDF/tests/data/adb/got_dump\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "IkWQ9W4UZcIz" - }, - "outputs": [], - "source": [ - "if not db.has_graph(\"GameOfThrones\"):\n", - " db.create_graph(\n", - " \"GameOfThrones\",\n", - " edge_definitions=[\n", - " {\n", - " \"edge_collection\": \"ChildOf\",\n", - " \"from_vertex_collections\": [\"Characters\"],\n", - " \"to_vertex_collections\": [\"Characters\"],\n", - " },\n", - " ],\n", - " orphan_collections=[\"Traits\", \"Locations\"],\n", - " )" + "db = ArangoClient(hosts=con[\"url\"]).db(\n", + " con[\"dbName\"],\n", + " con[\"username\"],\n", + " con[\"password\"],\n", + " verify=True\n", + " )" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "QfE_tKxneG9A" @@ -367,13 +329,12 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "kGfhzPT9eG9A" }, "source": [ - "Connect ArangoRDF to our temporary ArangoDB cluster:" + "Connect ArangoRDF to our temporary ArangoDB instance:" ] }, { @@ -384,7 +345,7 @@ "base_uri": "https://localhost:8080/" }, "id": "oG496kBeeG9A", - "outputId": "57cb6237-dfea-48b6-a2c3-af4ad52cff7b" + "outputId": "ca895acc-a9ad-4287-8364-7591618b8b5b" }, "outputs": [], "source": [ @@ -392,7 +353,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "znQCjOwt7zBz" @@ -402,36 +362,37 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "0qry3Bcy-160" }, "source": [ - "#### RPT vs PGT" + "#### ❗ RPT vs PGT ❗\n", + "\n" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "0ONWNS6t8x7A" }, "source": [ - "RDF-to-ArangoDB functionality has been implemented using concepts described in the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781).\n", + "ArangoRDF's RDF-to-ArangoDB functionality has been implemented using concepts described in the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781).\n", "\n", - "In other words, ArangoRDF offers 2 RDF-to-ArangoDB transformation methods:\n", + "**TL;DR**:\n", "\n", - "1. RDF-topology Preserving Transformation (RPT): `ArangoRDF.rdf_to_arangodb_by_rpt()`\n", - "2. Property Graph Transformation (PGT): `ArangoRDF.rdf_to_arangodb_by_pgt()`\n", + "ArangoRDF has 2 RDF-to-ArangoDB transformation methods:\n", + "\n", + "1. **RDF-topology Preserving Transformation** (RPT): `ArangoRDF.rdf_to_arangodb_by_rpt()`\n", + "\n", + "2. **Property Graph Transformation** (PGT): `ArangoRDF.rdf_to_arangodb_by_pgt()`\n", "\n", "RPT preserves the RDF Graph structure by transforming each RDF Statement into an ArangoDB Edge.\n", "\n", - "PGT on the other hand ensures that Datatype Property Statements are mapped as ArangoDB Document Properties." + "PGT ensures that Datatype Property Statements (i.e Literal Statements) are mapped as ArangoDB Document Properties." ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "U_sBs3jc96e3" @@ -452,20 +413,59 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "mRutdKii-Pk5" }, "source": [ - "#### Simple RPT & PGT Examples" + "#### Cases" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2PWrF6C5VByv" + }, + "source": [ + "RDF Graph Cases taken from the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "cy_BWXK2AX5n" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "fc377f11c10c4d968c8a6caac22e0012", + "06aca56f72fb4329b49cfcc532ac8116", + "358dc9cbaa2f47f6aa3b14963b022222", + "fb6fc4469af9424c9c8eaaec53ddf478", + "2ddfd1e64d4747f8b3cc576d462d5f56", + "c1a0f2be84cd45749b0043f6510a4bfa", + "eee2941003754994b27156607ed4d79a", + "1d6d26d7b5a642529791ac860d335e29", + "999885ce87084d309d1c8c0972124094", + "d867c72e97bd48b686aac05d789729fe", + "e28d9f03ff10486fbe6f47ea396bc610", + "2cd5ecb36d81498595f558f842e23c05", + "9b60d80acd1140eb91da4ee24e3aec65", + "edc4bc9e70c3451299599dc199951288", + "407cfb7d093540daa3e77ed151028666", + "e849e373b5fd4798b5efae255bba65e7", + "ecf4cf0278e4442188384c7e7c2d7e56", + "4353e4aefa3b4d9a9d57249b27df4932", + "6df2082e6f484dc79472fccacc27c996", + "0d86bf821be447f4ab655cd136af247d", + "1ba7a0ca8b0646b8a5d9cb4ec400e03b", + "024dbdf4ef6d411f8f8a6e25603c68a7", + "3675e6b10c0748e387629f471847295a", + "ac58fe66dce145f0be7f770a26039acf" + ] + }, + "id": "cy_BWXK2AX5n", + "outputId": "2ace5ff0-1603-4719-fe13-dcace5f832bf" }, "outputs": [], "source": [ @@ -479,18 +479,46 @@ "ex:alice ex:meets ex:bob .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "9BFNRAzLDmzU" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 150, + "referenced_widgets": [ + "34082cf6eb994d0e8dc1c5a32103e6a8", + "a601dcef909d423d89e184f7afefd15c", + "39bbccb261f74e9696665119136f35ee", + "89d11dbcd6e34779a029e0cca10286a5", + "03740e7e6199495cbaebf039d6fea20a", + "e9d399758a9c466188e5ed4c7076832a", + "7f35f5dbf07e47f78d51f42f62c42258", + "013737bac24c4fc19871485909ee3d44", + "82621e9cb2ba47baafa2c1580d91740b", + "99fbd40f55514a0087206be19f5b96db", + "a2b0b7c7cc6a4057b8743464c0fb33a8", + "7c95cb7b6bbf4f018a598a9ec2e7d8c9", + "d66eb2a7b7f943e2b9bc8f3c3567da79", + "d911bd1cb75941509e9f3578e037785b", + "b5aaff1d7205458b8a9ef5457d2e3600", + "f2c7dcc0c0c848e18722c628f78b8676", + "54182c5e13f84178b64673a1ddfc3a42", + "52c95751c36a41249e00de51f9280ed5", + "9cd12ef1fe0c467cb7f31ce82200f9e6", + "9e955e0fd94e4b388da05e1056c13e1e", + "367eabfb0fd24998835426983d7565a1", + "89e21dfb027c495f9a9524ec26ff204e", + "e8be2a32f6d341998985b2c1f4e3d9c9", + "95d6f533e8a240c3b0d4aad2e9580335" + ] + }, + "id": "9BFNRAzLDmzU", + "outputId": "5038bf6e-b8be-410f-afe4-3dcdca407898" }, "outputs": [], "source": [ @@ -509,18 +537,46 @@ "ex:Lee a ex:Person .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "E6t4VRcsD2m7" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "36998aa1db0d4404a02bef5abfa995c8", + "f529a9ce3a0a4fdf832eae87d164d458", + "52cbbdbb898f48deae681ff01d1468c8", + "4f58d9bac09c404c9f2b1f7d6007109d", + "b54aeadd1028418a9c44d660dd9a44f9", + "d61fc357d96646cbacbf74a072e3b738", + "8f588230f1de4c58a2e8dbc1b466f0e6", + "6c5dc20ab389471e993a2407b20e01cc", + "5c8ea494175c47e1b55304e2730df295", + "9d506f434f5d4df7be610f8b40fcd390", + "1f9945bbb3924f15999d790fed89863f", + "03a99f41fc0a4353bfc5efb093e552ac", + "de8a98213fa542af9f90496371ce7058", + "bb8162c2ad224fbc87044aa6b7dca2a9", + "41c5ae5ef1f1453ba249725f961f6b47", + "f433163973a148f7ae20eaa83425e8b9", + "663d9df312bf4c44994eca45cc5dcf93", + "7f8a2efde7f242f4af578c23d5d72004", + "442ab928de054d89834465fa7d3f6c90", + "7aac7eecd5364b3d976a3a7c108cde46", + "5474d353569b4aa99ca7b0cfba1a3a45", + "7a61723dadad4e29858db789b0befedd", + "324aaf266fbe4a73a48096790b2b3a8a", + "bcaf27bfd2b94b088aee76f8c1c0b394" + ] + }, + "id": "E6t4VRcsD2m7", + "outputId": "40d573e1-c1fc-449c-88c7-4ad8e1c44f29" }, "outputs": [], "source": [ @@ -534,18 +590,46 @@ "ex:mentorJoe ex:alias ex:teacher .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "NEDGhDfzEEhg" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "d09c5ec60dce44c1a554ab5708e1a06a", + "4e9d7516d4b447e9af814d0ef8e1a33e", + "299cedcd596747f7a8837d2ef1a25f5c", + "2f3cc4e6401444d1a3154659afc9efab", + "5498eaee5d4147e7837cb6c6c563dfbc", + "a8d4da8fc9f9471e9bc5d328b4ca8d90", + "62199c1525d34669b32ec33744030077", + "554c15b9173641b199741a03138c3ec5", + "17719aef6c534bddabefe7a8842e743b", + "fbc6745df8724e9e9379e3ab3b07b2c5", + "ccbc35240b3648ae9b30318be78f7b79", + "f3bb03a8be4645cfa5f39fecdee44057", + "b81d313da9914c0dbc9401bb61e36cd2", + "306ec886b3264c6fa6df970754f7f603", + "e9c373c0a0b14537bcca1d43a4aa7d58", + "6bd89d16c4d649538dc7213f8abc7aed", + "06838a4ca6e3487abf98d48ac909f144", + "746745f6f03543e08fd4429cc5cc900f", + "1656f5d65cf74bc09f36c42d6805e634", + "db682b0171354a50bc8e7ae48d5d49f1", + "e108a1590816436995542b612fedce0c", + "f777d49fe0d0408f8df7051c16a726e5", + "094c0ec357ef44c395c39ae90dd66e7a", + "f6ddbd6c083449d1b675b1829c5b682f" + ] + }, + "id": "NEDGhDfzEEhg", + "outputId": "e3e7726e-f2fa-44c0-9f4a-0923128887a3" }, "outputs": [], "source": [ @@ -563,18 +647,46 @@ "ex:supervise rdfs:subPropertyOf ex:administer .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "WraNcreKcJ35" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "4cb8bd60a6174fdaa24c09f9a852fa18", + "14139b121edc4b42bf05b1bf35f232ef", + "59c0abf74b4d4276ba5bc305f28d26a8", + "5382e4076e9d4b058082df8c722e0668", + "5eb7089127fb481a93e44a1468c01914", + "260648c894104cb092ede5d76ef44111", + "e97722a842234f0da935308222ef07af", + "037bf3dcddc04024ab27ab2c67c6e494", + "ee08f8a0423141508d6163d09448e7a4", + "3f2f2a4d7c484682bf12ded64a1ceee7", + "19f32708e8e148a4a38ea7d27b931a2e", + "b213dfe9dbe6485ba9ce050603aa69f4", + "56a5349593d642ebaf100d6a50abf506", + "bb3de533a75145bba916c21d660249ce", + "b7c35383db9149c0bd7bc1b6c845e7c7", + "908de16ce10a496b991f81cfa695f0e4", + "31cdeffecb6e4de199d9b8925ec7a567", + "86cabf0aa5da4a2bb523713b7f70e2c8", + "c3e8856f18d64146a238e5ec533ba596", + "81b1364ffbd34ef688fb059f9e80afd1", + "518456cbb9b743f38914894954dd8777", + "bea5ba1e9db740a29147d2a2f105c8a9", + "a68461a127d2438fabf18b90f0e7a0f3", + "b9a655403dd74da18f452ca364b843d7" + ] + }, + "id": "WraNcreKcJ35", + "outputId": "0007a8f1-d9bf-4895-daf6-7366bef50ae4" }, "outputs": [], "source": [ @@ -592,15 +704,46 @@ "g = Graph()\n", "g.parse(data=data)\n", "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "00ooim92Ekxv" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "ed9195442d784e6d8550886ee8d67aa5", + "8e09ff0eb87345a88389b0a6780c1167", + "40ba8687516e4923a56bd8354dc97838", + "ccaa03e4315e4945b5fd1c01e084369d", + "117b18d0bbc142ccb0fe1f5598a3cd1b", + "9f28ee10e68c4eb4b4b82076d5324212", + "e9716ce6050143ad814e61e4be7c29c4", + "fa8313cdc1884277a8b7b627d7873f75", + "a5878d1b00ea420a80da1504a988cebd", + "90cb248476934ee496a5c8e1ef2b5c31", + "160f5882af964f5887dc015b767426c4", + "37fc823816794e83a098931026bde2ec", + "b759d7fc0b0143e2bb2b1ca418deca36", + "1efe1b9781934efc9bf72d2632310f77", + "ca414902580045019738e070dd4d345b", + "defc0ab1aa6f4534b882322c9809cabf", + "05a0ce7410fc476085ef3a25bf49cc79", + "d02585418dad49a89330b587b87e9c5a", + "45c23924820f4dc28941d54522152446", + "ec967562785641e6b0c0aaedd4946827", + "b4187694d84a486c96214682fa0b06e8", + "b2212838b5dc498cb7f633a7ceae77f6", + "e5b22f764cb549bea4bafbbab1c80313", + "f4c3e03b26e84299a72432247e3211c2" + ] + }, + "id": "00ooim92Ekxv", + "outputId": "ee60ee36-1fa1-4118-c3c8-842e79f1c364" }, "outputs": [], "source": [ @@ -617,18 +760,46 @@ "ex:book ex:index \"55\" .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "UmIn_SZWccN2" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "573e8e1ec5794c519349919b0c644e0c", + "841e9c1810c640d1bec6c739f60f11a8", + "d2188b7ea4ec494591acd144708bd77a", + "f43396b324cf46b4b10c0f21e3917631", + "8526056c9dfe43f9942f53afdd79152d", + "5d47d305fe12407cbc727cfa15ea56b2", + "a3a87aebeb7e47e393ed6e73309d0368", + "fc64965fc2bb4303a2605992562de2df", + "edba16230f7c4f9db1cbaa9ad78b8bbc", + "562c5eb6af7b48cab01a04d36df6d8a0", + "73467dd00a6a45398be0e336a67e3379", + "a27f4bc191244980a4569f1380509b24", + "38e4ec950dfb48c1b86dfa51b59bd9f6", + "52737430028e42b493963e2ef404902d", + "e8a65707044c47cea44e778d77ecd8a5", + "ab8cd606859e4bfe8bb71c6096f8aa33", + "b8b1c716475e4043af7919e06253f606", + "8008d0fc5ee848c5a60ae9fc6e0af2ca", + "9c73cea9af174a978ed87abd757dd466", + "7ed46570893d4123a718f77890e84081", + "075b504f72064efaaaa1ee09afdc6a9f", + "0700821fd3764f7da3e204d15601d063", + "a96caf05dfcf41cb848229c08969a36b", + "906fe2e4e22940bc9fd816cefc70277a" + ] + }, + "id": "UmIn_SZWccN2", + "outputId": "a320ec95-f1af-450b-a706-0d49abb9e12f" }, "outputs": [], "source": [ @@ -643,18 +814,46 @@ "ex:book ex:title \"Bog\"@da.\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "SQaaqperccbA" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "18a76eb8f00b4c9d93eb862457c93604", + "be38c1c4704e42eaab72fa917a31551f", + "5819a9a679784e53979fe59ac6fdc6c8", + "ea91f40791f247118cbfd30f0a8e0209", + "1368dab9ca5d48baabedaa27e63a6608", + "cf1f8b24c7b64859b87bfea6a16f7dd6", + "1118d6ebf1f74180b2a3fb95d17d5f57", + "34f212a9207b4395a7ab6cee9990ba5a", + "b4b3ea80874b4f6da320f1c11cf08363", + "5a74235176fb4af3831eb25cd2e97262", + "99edc92ed36a4566890b4da4ed68c123", + "0f786717b0094fe785ea05fec93bdf06", + "03b0d5a081d84381929c663657fa266e", + "694a30f6080d488cbc087bdb2d91e91e", + "aaf936790e47461386f187f15e2fb58c", + "c9f80d60eb294a449579d9673201b333", + "e9dcbbb06e584549ba0adbf846ad8999", + "8ae0c9e3aa7841308a73424fa9fac059", + "c050e033d5614e97a63b09513cb6eb10", + "9575b3b304784e31a335e371c2d5f3a5", + "a43f6762475244aabdff63426a9e1423", + "5772089896234e52aa40e3daadc38d30", + "1611c20c4e834c76ae76a4f119db71c8", + "3b81b38993c14de68df2ff40f0a4f590" + ] + }, + "id": "SQaaqperccbA", + "outputId": "f35afe70-71d0-498c-a08f-b2ba28b5e9a5" }, "outputs": [], "source": [ @@ -666,18 +865,46 @@ "ex:List1 ex:contents (\"one\" \"two\" \"three\").\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "r0kHJogZFEKO" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 150, + "referenced_widgets": [ + "eeaeab711cca4776bbf9d852b61d2744", + "f65b348bdebe446ab8381f928147bb67", + "c643b1c5505f4f0c83895c0b3e726657", + "900ea2b6683f4dbc89aa1360936bad45", + "8cf060d8fc7f4ecf80b318a11473c020", + "b04978aca95e428ab04c656b3d39fdc5", + "4f691259e5674b3da1f46f11075d5428", + "456a8dd834234dbabcc65cc4b98f2b2d", + "6a78b165f4aa4e04bb0a40d531d1facc", + "d544f1ae4c1c4355b02b6b58ffe4e227", + "7628cbddf01341e0ad612263dba3ed06", + "1167bf2328584950a2fe44c959d88a85", + "13a2bad0545b4813b411dd2059dcdaab", + "23537334ef5f4bf7871e86250eab22c9", + "b5e30a4917db413081b1003aac893141", + "8add49e7aff949c8b6aa86ecf1b8404c", + "750e03bd0e7340ea94112bb5971b556d", + "5871fa9c17ca4dbbad7c110842b1c43c", + "85eb298ec6d649c4bef732d7776e1936", + "be66a8a9c8544a8c9fa4d86468c57d05", + "341b818f59ba43d4b69166e655dd9765", + "4624a85e55f54bbf9488a44dcb872a06", + "283c95e105104ea6a5b235ede8a1a2ab", + "d4f26543a05649eab36d2d2e430bf868" + ] + }, + "id": "r0kHJogZFEKO", + "outputId": "790750bc-b180-4bf4-e847-ac279c59f5dc" }, "outputs": [], "source": [ @@ -690,18 +917,46 @@ "_:c ex:country \"Canada\" .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "noAXcHOJFJvG" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 150, + "referenced_widgets": [ + "1fc43d8d945449ff8bf650a7168f3175", + "c06094c52f354bf887b9573ef728ba6f", + "597dc766da6d4c65a6e526f29d8001ad", + "6c9fda1cf8f441649b19421140844eca", + "222ddec771e2487088f38f5d8abc93d6", + "ca9ee619db5145a7b14ef9eaf7b282ef", + "90c5c0ba3d0b4e8e8194dc0bc254b191", + "d773e247a00b40f592d2b8a355d67eae", + "5f82c603b82e424daed6d81cc12810b3", + "94d0232fdf1a46b8ad11059dbf8162dc", + "cb0587dfec79428a8171b6e29aa7b75c", + "a8a41f5965ec45ed90c876c0b309b044", + "fca5445e52624e6aabf3acea3b614d1a", + "d793b865039d47fa966eb68c790b62a6", + "afd95022a638474ebd254a4e365e0f5f", + "787d5500e7da4133a75f8df78b8466fa", + "b98c2692fc3c4837a405d58e2cb2aede", + "a05e21f6174647dca22307a6ae256d40", + "549cc0eeb21e4816af1ce48c6992db04", + "863bb5095d89492cb6153b3bbde5b104", + "ba683955f5904919ad09b805dbbf6a5c", + "ddf39a4764c84bafb454073773b0b5f3", + "48867504843843389281e9c6c12953c4", + "84276bda9c6c4c7280423540f4695001" + ] + }, + "id": "noAXcHOJFJvG", + "outputId": "554e4310-e28b-40a7-a701-a2ac91affdaf" }, "outputs": [], "source": [ @@ -720,6 +975,7 @@ " ex:Monica ex:name \"Monica\" .\n", " ex:Monica ex:homepage .\n", " ex:Monica ex:hasSkill ex:Management .\n", + " ex:Monica ex:dateOfBirth \"1963-03-22\".\n", "}\n", "\n", "ex:Graph2 {\n", @@ -731,18 +987,48 @@ "}\n", "\"\"\"\n", "\n", - "cg = ConjunctiveGraph()\n", - "cg.parse(data=data, format='trig')\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", cg, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", cg, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "gtHKG7PiGyyF" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 134, + "referenced_widgets": [ + "7f4735b6532b44bf9e2a4deb1385e677", + "e86234b816a148f482c6f0d7fc241675", + "fbb89f7404f644b4adcb2e011bd39a2f", + "d2a5ec6f84244ed58b1cbf3fadcffe9d", + "f3091863c2ce495b8846ca16c240bac6", + "3c6e454224c346ae820de03d069583ad", + "1d6a2e9d98e6431db87f0f20de68a2db", + "ef946e47d6e74ed6a4441e6aeba6ac07", + "3559d4b574044e0e8bace41211b1649f", + "2b8042363eca490d9be41f7876e0aab0", + "a7ba9072d835401592f843ed6fe9a334", + "47bee386693546e4906a547ff5556cb2", + "14c1ae08e37343c683e4a8a3f8173d79", + "f5b15a86202840cca452980125b90c48", + "de3bbb53c6704b888d9b9754434bfdb9", + "ee7a0a507eae44e192b9d10ffdaf26de", + "a2798e676ae644a0bc091c23c1e7c5c1", + "ffc83e4385534117bc664c291338f355", + "5fdae6f5461e462dad3e5309fffe4cc3", + "db4f225255194d17bb18112c8a4d10e6", + "ea833033e1c24a8faf3bec5e29418b5e", + "b9c6b47990fe48aab0970677ab004b46", + "ea9cbfeffdc64559af9b768846b634a5", + "326423bae4c54057ad221e7c3077ad64", + "05cf4bc8861048029fcf6df306e7c8d0", + "c62a384e50324db581016107e3a22952" + ] + }, + "id": "gtHKG7PiGyyF", + "outputId": "5bd57d09-d663-4156-9df3-3725eeb33aee" }, "outputs": [], "source": [ @@ -759,7 +1045,7 @@ "\n", ":Zenkey rdfs:subClassOf :Zebra .\n", ":Zenkey rdfs:subClassOf :Donkey .\n", - ":Donkey rdfs:subClassOf :Animal . \n", + ":Donkey rdfs:subClassOf :Animal .\n", ":Zebra rdfs:subClassOf :Animal .\n", ":Human rdfs:subClassOf :Animal .\n", ":Animal rdfs:subClassOf :LivingThing .\n", @@ -773,6 +1059,7 @@ ":marty a :LivingThing .\n", ":marty a :Animal .\n", ":marty a :Human .\n", + ":marty a :Author .\n", "\n", ":john a :Singer .\n", ":john a :Writer .\n", @@ -780,15 +1067,11 @@ ":john adb:collection \"Artist\" .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "7ZeZNno5k3XW" @@ -796,7 +1079,7 @@ "source": [ "Cases 8 - 15: RDF-Star\n", "\n", - "`rdflib` has yet to introduce support for [Quoted Triples](https://www.w3.org/TR/rdf12-concepts/#dfn-quoted-triple), so ArangoRDF's support for RDF-star is based on [Triple Reification](https://www.w3.org/wiki/RdfReification)." + "The [rdflib](https://github.com/RDFLib/rdflib) package hasn't introduced support for [Quoted Triples](https://www.w3.org/TR/rdf12-concepts/#dfn-quoted-triple) yet, so ArangoRDF's support for RDF-star is based on [Triple Reification](https://www.w3.org/wiki/RdfReification)." ] }, { @@ -805,79 +1088,95 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 100, + "height": 167, "referenced_widgets": [ - "8787ef8386834db8a1fabdd1dd84fa53", - "0d91a444dc224f9db01cceb0a800e11b", - "5c28912b58204b69aca48cef391be3b8", - "9f1771b2fea94c3bac52f3834bebdce2", - "0304960babaf40e4a92bbbc118e10a24", - "5838a39a9e134909bc2a1c1d24052997" + "cbd2e6e8012d489da9a645a46a5c86e6", + "5fe9196bb6434bc4a410828e6d966c1d", + "1153c63c0eaa41ec8e041d18aa60bb1e", + "07dca4c78ef047919da9e857902cc9fe", + "f546c39ec32440478213a3d65d4bc56f", + "377819d3b19240fbb1afdbe5b5cc3d19", + "ece3c57da50247d28899dbc8f3178856", + "68a631ba14a04579a21076e608113f5b", + "3048cf5c63824a339a17d275ba6f5dbb", + "fbdd9315fee8499b9445d1d41ff052ba", + "5a1c4b8078e94b92ae912eeb9b9ee02b", + "fa0b56ec689c405d9903de685af4e39e", + "dd548245268443c9b84ad36e2b7659e0", + "e4e29c64dbaf484b9d4d2ee2e820445e", + "a49f012e93be46ddb68a33c2fce2760b", + "fab556deb44348ee88db08d6e4166484", + "09e6afa357fd4803be75a3378a16668f", + "2c2e6463d20f4b6ab097a09ee4a38b5a", + "00769c4ddffe45caaf3d6b25b36dbc1e", + "19970b3954634ea4b51383a554c939d6", + "df96d0217860475fb2115fd656c8e075", + "3ecde2ba048344a9877afe06fae66e02", + "cbf2ac2f71e24256bcae1e4321e39d58", + "88337681b0304b969bbad61c5ec0c3b4" ] }, "id": "XevGMv7qdPgI", - "outputId": "50495223-2b27-4d2e-e84c-01cc964b8432" + "outputId": "a562dae2-048f-4d80-8d28-e5ed1fdb0649" }, "outputs": [], "source": [ "# Case 8: Embedded object property statement in subject position\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "<< ex:alice ex:likes ex:bob >> ex:certainty 0.5 .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", + "@prefix xsd: .\n", "\n", "[] a rdf:Statement;\n", " rdf:subject ex:alice;\n", " rdf:predicate ex:likes;\n", " rdf:object ex:bob ;\n", - " ex:certainty 0.5 .\n", - "\n", + " ex:certainty \"0.5\"^^xsd:double .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "KAs-MpmAp8_c" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84, + "referenced_widgets": [ + "b69a1ecf8f1447ddb4f04e55212f6d97", + "5f98553c1f4f4594a4b04d519700c077", + "b669c7e6ace146ba8a5b4a2acd29064f", + "da95283e26034646ad205320aa8900ad", + "eb609f79887b4c7b9c796b802290f645", + "3983a55e940b4729869ddcc63b83bb51", + "abdad6f869ba40529d63e6ca8d4b854c", + "09c18b9e1bfa46e297e2476df6de6349" + ] + }, + "id": "KAs-MpmAp8_c", + "outputId": "ef925d15-c87d-44af-fc8d-f879adb94592" }, "outputs": [], "source": [ "# Case 9: Embedded datatype property statement in subject position\n", - "# Note: PGT does not support this case \n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "<< ex:Mark ex:age 28 >> ex:certainty 1 .\n", - "\"\"\"\n", + "# Note: PGT does not support this case yet\n", "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", "\n", "[] a rdf:Statement;\n", - " rdf:subject ex:Mark;\n", + " rdf:subject ex:mark;\n", " rdf:predicate ex:age;\n", " rdf:object 28 ;\n", " ex:certainty 1 .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -886,28 +1185,41 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 116, + "height": 184, "referenced_widgets": [ - "3fe6ce0b39d444f8aa1fa45b6b6f1aa7", - "9713b9bae1574359a4059ee19d26bbef", - "57e31b0d41514940b9cfcc5397d6ee2d", - "2f50e0986425434fa1ac6566e86cd574", - "6be66e4518f04ee197f3a89a23a63e73", - "17756af9fd3f455a9a9da6c02e4b358d" + "f500a92dca614fbe97190ea07b76f391", + "1980f083a8a24d118d4929daae64b05d", + "b4da93b0d8664c74bfffcd2fdf727d01", + "8182af5eea8247f38b41d468c10b2ce5", + "68ed047e78784348b8478e06f36498da", + "841e8ab2c5f044b4a1fadd8c2acd4a89", + "a32bca072f5c491cae9947d2b4cd5de9", + "6583d4fa4e8e465dbd8a6f7e903f9766", + "0e59fe845b1f474181c50e61c986780c", + "ba49567d52134f59be958023a178943e", + "5feded6877d94084a1426ceec3d0baca", + "31f235ab96ac4c3e866a1f42525bbf08", + "2da044ff861542359703ca9ae6c0d56b", + "a7a62d0a2adb4945bbff664966216d33", + "e91a8d9c045142c88600528a20845161", + "8de688d21cf147988f21e29a740ff08c", + "1b529365878647f980449bb9b38b9460", + "e34293eb4991417b9519a1029276803a", + "5a62d99ec49d4d2181f4296e97334516", + "4499a8f97cc4412db02dbe138ccf9357", + "2f40386b3fd1461b91d3809794504b5c", + "2d502c4cd2ce41cfa6e35eff82ebe098", + "51c97d40286f4bd9b922aedf3fd912a2", + "9134cccccc79418d887f13938c68d35e" ] }, "id": "_ZWrGS9Uqoc1", - "outputId": "24b962a7-76db-48e7-f05f-57f860d29c3f" + "outputId": "c150db3c-418d-45f7-ba26-0b5fb44a5eb6" }, "outputs": [], "source": [ "# Case 10: Embedded object property statement in object position\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "ex:bobshomepage ex:source << ex:mainPage ex:writer ex:alice >> .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -915,17 +1227,16 @@ "_:x a rdf:Statement;\n", " rdf:subject ex:mainPage;\n", " rdf:predicate ex:writer;\n", - " rdf:object ex:alice .\n", + " rdf:object ex:alice;\n", + " ex:1 \"1\";\n", + " ex:2 \"2\";\n", + " ex:3 \"3\" .\n", "\n", "ex:bobshomepage ex:source _:x .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -934,29 +1245,42 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 83, + "height": 167, "referenced_widgets": [ - "f1aabec820b64be5b8e996a2a2c19643", - "51a410d1637f485494bbf71029df078c", - "bbd9f6489d6d4b4bacc62c3c743b09ee", - "d09e8f0f2980498ea82ee47e5487a0ac", - "1cd62a510adb45908e518c37d286a220", - "2f521f91fe8b4a05af9e5f492342b27a" + "0f9c78460dd242fb8aae8d90beb5de1e", + "7c318d14e6f34bfd8c415f6d3c395f1a", + "d2f6d27d78f943a38a86a253e8b445de", + "8998ed5dbfd44af287e21c401cf9d209", + "7713d7ed396c4fb3852c1513ae59a7a6", + "db06c3e74e6b4d0e87aba61e4386e521", + "ebd4df3b9f144ea18b91234936f1b6a2", + "6198ee915b6148259ac259d5d8709217", + "896ec3cb702c4e8693939179306da04b", + "fb7b8319d8c44e17b1e72f964c5a319b", + "7a9da186117340f18f557f39131f3ab3", + "811ac8febf1846ed9e2db9cfc2a6aeb7", + "31c785fe99cb45488b2370510428f2f9", + "9af45bf1246244c9bede98ed124371ae", + "2184f8202fbe4d359a0d611cdedb70c7", + "29ebc2c2cc8349c7ad0c33e8772a202d", + "f2ea318f46fa4045898a74adb4282073", + "d8f70e21fa5d4ef0a8185dd8537c8c42", + "ae2da01ed0d642abb114323e9f67d829", + "99b484013ed3422c9c5bd2d5bfcdbb47", + "c0e10fa9eeac4a66ab0a90c7b3c2fe80", + "ea6b9fdbcaa14135be29b6980706130f", + "f3738174a0b445429dc6942b109d7b23", + "3ec735ec0be8406e93b98c8fc5faa94d" ] }, "id": "E_iK33XDSiml", - "outputId": "cbd8922b-02fc-4137-b1d4-79c8881748d8" + "outputId": "584aa990-7441-40b5-edc9-a8bb86022143" }, "outputs": [], "source": [ "# Case 11: Embedded object property statement in subject position and non-literal object\n", "# Case 11.1: Asserted statement with non-literal object\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "<< ex:mainPage ex:writer ex:alice >> ex:source ex:bobshomepage .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -966,14 +1290,10 @@ " rdf:predicate ex:writer;\n", " rdf:object ex:alice ;\n", " ex:source ex:bobshomepage .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -982,30 +1302,42 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 67, + "height": 184, "referenced_widgets": [ - "74986d09ef0142c7a5a7c21a3a5110ab", - "994b46fd0e0a446aa28211961585a578", - "465bc346393e44689437b9cc9077cd09", - "379e753ec1784adcb56e316c2b700d63", - "415dc3a7e28a47aeac3b8324e7fbe62d", - "c537bd80b0884e8fa3c156533ddd19ff" + "92282a6db94f41f79fe9e13b9354aadf", + "4a397ba17bd747a185a82cf1a1fb4637", + "223f64295def4d82b07989a0e9171191", + "eff7fd5f3f574ed38cfcafb5495e83c0", + "56658e42d18f4db7b09c3dff62b0e7cf", + "d7e349f506e34b12b72bc284c874c515", + "ce2a57c811794249afb7fa5c49af992b", + "b29eb50fc0bc4a7b9abf6a7da3042f72", + "f63d3988a9ce4174bd5e85f2f87b29b9", + "393a3b2b1fab47b3836ce742c9491594", + "10b486782c364980b39db66ee20b7834", + "82153626f6e34225908e5d49fa73d5b1", + "f98fd73455d24b718e6c0217cacc5ebb", + "d8ee71ebbae045fd82b67ed6fcb1d2ca", + "af5d50833aa74fec9e5916a7ee76fcac", + "666b5be3143e4d1aad23ead3f9ce53ea", + "2ff255c0ad7f4b6db1681395395073e6", + "5dc5238380194b4fb0726733020ce9a9", + "f12398082c0d4dd3961a166418f65f51", + "e097249a1e6c484f9d1c54e8e76bf5a4", + "aa947d9e955b476686905afb94bd9a30", + "ac20f1f535434e80b9db35fdf03f4c60", + "3735f9c2a9924655ae67398428eb9c14", + "e39bf2d80ac94271bdeabee0c0c3cbb1" ] }, "id": "0oZbDeLeS6ll", - "outputId": "7d370296-8c0b-4f5d-cefe-f05c820e58fd" + "outputId": "aae04df7-3caf-4278-f11f-5d0e1c243895" }, "outputs": [], "source": [ "# Case 11: Embedded object property statement in subject position and non-literal object\n", "# Case 11.2: Asserted statement with non-literal object that appears in another asserted statement\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "ex:alex ex:age 25 .\n", - "<< ex:alice ex:friend ex:bob >> ex:mentionedBy ex:alex .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -1017,14 +1349,10 @@ " rdf:predicate ex:friend;\n", " rdf:object ex:bob ;\n", " ex:mentionedBy ex:alex .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -1033,31 +1361,42 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 100, + "height": 167, "referenced_widgets": [ - "b0083d492a3448e196aeb877f5ee2385", - "95116252d81e4a1aa9b344d96da31308", - "221d020caf68478ca7c1dcaf84b13f10", - "c529f4531a4242059f59383d7a111486", - "a74ca78dbcd44771892b708dd9705551", - "e1ffa38988d84dfe91f89d25c4f33535" + "510794a7ae37442f8b66a3a74661de66", + "c9855520f70e4202956e0d0c5dcfac69", + "63544062794940b8a60ec50c3d8fd5df", + "32c2bf3fe02f4b2b9f6e32cf8496a83e", + "a32dc9b3892f4087a3b824b3bab6486f", + "b1f35477806840a8b8a54799fe8e1398", + "60c5ddd64d9347f590e71a185604f117", + "49f447ea948b4d3cb29a19d0ac248815", + "1562b02158f14e2585764860276d7daa", + "2ca5014106714ad0a571daed220fe8a3", + "06f7a6f1943c403c96aca9b2be8cd920", + "cf53bc54ba0745639e93548d2d70a5f7", + "c9de6aa0f8464e86b5746365dff1bd28", + "0d9071e019d242b8835bd761a1e7ccb6", + "9e6876611736455caa8d7810419c28cf", + "d6e781982c5f44fcba3fbd679e951358", + "6ddbd53f84c04a808dbfda79308b5291", + "259234af91af41e5a00ff6dd69de6abb", + "9eac31d5717d4ca696ea683f4776987c", + "bce8c14036354838975daf20e8437b41", + "1eecac5b4e75476abeaea6ec99823841", + "8e496993198046a5ad9ecb6a7cfc358b", + "d711c89e86da452ba56a5d0fa177fc6e", + "bafb6c71b2174ce5a3b261d3c48cf0b4" ] }, "id": "woNfHiZ5S__t", - "outputId": "855406f6-c3b0-419e-a8c6-0d815c4cef22" + "outputId": "b547b01d-724e-4c65-de21-68ccb631ca48" }, "outputs": [], "source": [ "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n", "# Case 12.1: Asserted statement with rdf:type as predicate\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:mainPage ex:writer ex:alice >> rdf:type ex:bobshomepage .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -1067,14 +1406,10 @@ " rdf:predicate ex:writer;\n", " rdf:object ex:alice ;\n", " rdf:type ex:bobshomepage .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -1083,31 +1418,42 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 100, + "height": 167, "referenced_widgets": [ - "a4dea9f78e014a9d9ddd35cc5b0256fb", - "2882bb947da84d6d8ebe063364cacfff", - "2823ee8e9ecf4ce2bdac9f641c3f037f", - "75b23a1142834c47843d9f451fea17d8", - "c84484cf3f6b4035963ef5de688027a9", - "e1d3b02470c3404fa5faf0b6a0a8acb6" + "31d64688e87848b5b582bf5c46dd4dd9", + "b4aeebce09de4f76b56757c293f765e4", + "82bb77ad205b41b18346d25c709bfb04", + "46356aae8ddc45ffa519a783411ed5c3", + "b1664273e12e42fe9ffc87283ee1ac17", + "3b77a9b7d5a54d0bb587666d26fe9638", + "9f871650a7f9452a972e3fb359f6202c", + "acc2faa48c3347c3b4f58272b0119048", + "95531688a8654c2fa47d740cd92b338f", + "2ebcb5a1f513410f8f703da16b3f44c1", + "de930ca00f7d4853afa6d2cd832ecd06", + "78ac12ef772441a49ab15c1a583efed1", + "7516668d476a4ad296e457ed2dce582c", + "f8e863f9e8d445b9a9f70a3ebe71cc22", + "f27e93a7fb054bc68b2030ed0d7a01a2", + "52d16d34612d42a5ace968d4104c89ed", + "03929fe528d24f6d8dca2511a18a02b1", + "6ae66ff0e0a84581b6c836c7b9df5472", + "8d7e37c4a725424cab94706f7c149b68", + "8c983236500b40628285ef1c5ffc4486", + "07ab0f2d3ee94fe0a63ce1df394192e7", + "47de40701c0e44b4980e966e2feeefe2", + "07a08a86cc2c4981beb1ff4d1715e4c0", + "f711293be6064fbeb78a10e36fb4ca3c" ] }, "id": "lbbdb2lwS_2M", - "outputId": "d9ae1108-1ba5-4dd9-b61f-8bae40cabe39" + "outputId": "0b252df3-43ed-4a2d-d459-888207d45bf9" }, "outputs": [], "source": [ "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n", "# Case 12.2: Embedded statement with rdf:type as predicate\n", "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:lara rdf:type ex:writer >> ex:owner ex:journal .\n", - "\"\"\"\n", - "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -1117,55 +1463,72 @@ " rdf:predicate rdf:type;\n", " rdf:object ex:writer ;\n", " ex:owner ex:journal .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "4TwIzKZ4S_tN" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 167, + "referenced_widgets": [ + "86fb91142a524df2aea0b38e5e70ebf3", + "56fafa7b834944e8ab133cf454d7c975", + "1096a45ec72c4288942a61bfb522fcfa", + "99818b0b3b334807a9d480701be490ea", + "69d271c6000c484fbcae7d9c1df71c2d", + "aa4a6d44d69b4c3c9e14217ddf76fbe3", + "b90d6e06cf554533a8c4b2d0e7aead3a", + "5474b2535fdc4876932eb118f1f9da25", + "3a490438c9024452a8dc43ba4380184a", + "dce9a62edd304dd986fc904eaa2be8bd", + "e3ed2561d46c462492517def810ef87a", + "9133433c68334384a838e7bb43d46a72", + "ba1aa9d3a8414164b0a5f469e618a093", + "8aea416f223d4311a6cf9d4f1843df79", + "f8c653de7fdd4d28a0b4e855e31f8497", + "930632942d004d67aca96d6b1dd1f4f8", + "a98c3bdfb31e47d5b25442fa3114f5dc", + "2cf2703a60dd432a8cafa2d44cebc91f", + "d51d672e72484bf8abebd43741065c75", + "59c050129aa24f939162cf2a24329d1f", + "f5486bbcd6a542029db8c33230db6fbf", + "00aeacee663742bca19ea1564d49593a", + "5f1ab0c9d552407e8dd816c32ba3ff0f", + "76bd81b761b0409c89b9ce656b8bee27" + ] + }, + "id": "4TwIzKZ4S_tN", + "outputId": "b4f66a58-7857-411e-e900-faab135e9253" }, "outputs": [], "source": [ - "# Case 13: Double nested RDF-star statement in subject position\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< << ex:Steve ex:position ex:CEO >> ex:mentionedBy ex:book >> ex:source ex:Journal .\n", - "\"\"\"\n", + "# Case 13: Nested RDF-star statements\n", + "# Case 13.1: Nested RDF-star statement in Subject position\n", "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", "\n", - "_:x a rdf:Statement;\n", - " rdf:subject ex:Steve;\n", + "ex:steve_position_ceo a rdf:Statement;\n", + " rdf:subject ex:steve;\n", " rdf:predicate ex:position;\n", " rdf:object ex:CEO .\n", "\n", "[] a rdf:Statement;\n", - " rdf:subject _:x;\n", + " rdf:subject ex:steve_position_ceo;\n", " rdf:predicate ex:mentionedBy;\n", " rdf:object ex:book;\n", - " ex:source ex:Journal .\n", - "\n", + " ex:source ex:journal .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -1174,36 +1537,64 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 67, + "height": 134, "referenced_widgets": [ - "3b3582c5b8c34e6fa0aa8438adca7c94", - "be3545f15d0a484a98b0a049586fb907", - "8f7985fd0a84462eb451d85e428dbeff", - "a199384048dc44249882c3e0c65fda2f", - "b5d4fa7d28e143e2abd243f6846c6bef", - "536e9c1c2fbc456e8271519408c21f66" + "4c4e06460b1b45ab9cc9f4c17735e00c", + "5050f635e23d4d568a5ee162f3215cc4", + "36485dd1f0ac4020afb98ac853eed41c", + "6d22cce22d104fcfbac869f965502e53", + "b9ac6f8011d44f3396ba8b10c732253f", + "8d0d7952de7a4da4a759103ab22d2e37", + "c50644b32a9a416eb8590251c6fcbcb0", + "d988cd5ee4a34d2e8f86fef5093907ce", + "0ff7666935a04234b659ba79a2597c71", + "eff0b0606bdc40c88ebbd0509f4e8f14", + "4e9eb2e764d5451b9e583a3fc6290103", + "c35fb525a58246eebbf2fef1bd336b5e", + "e202d4e312114fae8ba6694151cfbbd5", + "f2b43ef11cf7421295d4c96b95c5e703", + "1ac2539ba6d94d6e92826d93d66dc649", + "f4d86a9622e74997aa7516410d0b7d92", + "aecca36ee5df464286c080f69a90a3b0", + "d7e12b91acdf4c68b11d967db6c533fa", + "fed1fa7af3a744d6959ca223c349806b", + "6dd871296cf44b4686c58701864c723c", + "635a63f420c848c089f70ca2e5aae701", + "816f7c8969da49e080916a9a6e6bf6df", + "b9f506c4c28a4e38be7b3b16cf972e06", + "05199d53ef264ae6acb67ef478a436ae" ] }, - "id": "yZDLiPMkS_kG", - "outputId": "97d98723-6c93-4860-cc8a-a829fee5f8dc" + "id": "BfMbv1NpP6nt", + "outputId": "23bacd02-4a05-4e7b-9955-860ab70d9801" }, "outputs": [], "source": [ - "# Case 14: Multi-valued properties\n", - "# Case 14.1: RDF statements with same subject and predicate and different objects\n", + "# Case 13: Nested RDF-star statements\n", + "# Case 13.2: Nested RDF-star statements in Object positions\n", "\n", "data = \"\"\"\n", "@prefix ex: .\n", + "@prefix rdf: .\n", "\n", - "ex:college_page ex:subject \"Info_Page\";\n", - " ex:subject \"aau_page\" .\n", - "\"\"\"\n", + "ex:steve_position_ceo a rdf:Statement;\n", + " rdf:subject ex:steve;\n", + " rdf:predicate ex:position;\n", + " rdf:object ex:CEO .\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", + "ex:book_mentioned_by_steve_position_ceo a rdf:Statement;\n", + " rdf:subject ex:book;\n", + " rdf:predicate ex:mentionedBy;\n", + " rdf:object ex:steve_position_ceo .\n", "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n" + "[] a rdf:Statement;\n", + " rdf:subject ex:journal;\n", + " rdf:predicate ex:source;\n", + " rdf:object ex:book_mentioned_by_steve_position_ceo .\n", + "\"\"\"\n", + "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { @@ -1212,32 +1603,99 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 100, + "height": 150, "referenced_widgets": [ - "671b4473d89c4e7db560ecda1995cbca", - "5d82d19332db417998f81a504843e33b", - "96174346c25947fc9b1f7cee248378e0", - "b6e7e282065a4dc2b4efe8f72f2eaf31", - "fab828255ae74fa286ab18bdfa024314", - "5a7eb5c6b8a6441b956e9b778124e3b1" + "fc20c290802a41db8737daee15189174", + "41a6f15ee08a4e4e8ec03d1497b5ad2e", + "e6c4596dd3914ee2b7c338eff8bcf647", + "e58f215244e64ff68be337fd5a183058", + "cf37b65d12b54c17b1ed4c98f85bff2b", + "850743cb94c341849186c864f3d1f51c", + "934cbfecfbe34488abddbcd88f61ef26", + "de5ed27e132945f58444c0fb1a797f17", + "44bf2681ecea4978ac5e68449c2ebd2b", + "a5e9deebe6da40b889153e028b9a68bd", + "b817b83ccfed4b3daf48fdb2e0c33487", + "ebd854f567124326b5e790eeffde107a", + "d3d17d3949b6429a8a29397f99936256", + "feebddc745d8419fb64f0d144dc5c95b", + "0c39047fd29f488a8a731a3278b519b4", + "835443e97f3c4fdb98f0b1947e4dde81", + "c7d57948e351421a8cc2329cabdad6d1", + "f3fd59269d1740ef80c59a6dad9c2319", + "6b579a16241a49fe894af095168eab07", + "c4d12e6c75674af08b8adb827ab57615", + "0cb0cb6662834a5195ccf041f26e274d", + "105d4fe99189401994e333ed7978ebc3", + "39504ef3a8ed4dd285d67771f81f415a", + "f931874b27c84f2a9d8c0b6ef67f764f" ] }, - "id": "X_qBsxffS_br", - "outputId": "663faaf3-32c0-478d-a80a-50332feec396" + "id": "yZDLiPMkS_kG", + "outputId": "ffc977ba-aa38-42fc-9859-517e63cc453e" }, "outputs": [], "source": [ "# Case 14: Multi-valued properties\n", - "# Case 14.2: RDF-star statements with the same subject and predicate and different objects\n", + "# Case 14.1: RDF statements with same subject and predicate and different objects\n", "\n", - "\"\"\"\n", + "data = \"\"\"\n", "@prefix ex: .\n", - "@prefix rdf: .\n", "\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 .\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 1 .\n", + "ex:college_page ex:subject \"Info_Page\";\n", + " ex:subject \"aau_page\" .\n", + "\n", + "ex:college_page_2 ex:subject \"Info_Page\" .\n", + "\n", + "ex:college_page ex:link ex:college_page_2 .\n", "\"\"\"\n", "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 167, + "referenced_widgets": [ + "b133a98869b142fa817360896ddafa70", + "d38bbde094c7431289f7601a13315025", + "9c94473b37144abb9cbe6ac26b8b64a4", + "7c4cb95e53f345b08c1f4439d2f4c2b1", + "02782281dd414f71b683b9a32aa31caa", + "4888e641f7d1495487f59158aff1895a", + "e785484e947d4bce8dd4020c92d32681", + "eb48ef60fdf0417082c2c74dff515ef3", + "d0fb3aac531b474d868868ed2bdceaac", + "d6fbeecbce094ee681da46d7836b5501", + "862b42e51d1d4c1aac66d07fc07a1961", + "5344ab9f5213406f821b4fc52f34c1b6", + "d62264402f0940f9a3658d834661d80a", + "26ffe01988374a8ebcf74ed0c30773fc", + "4f1af8b21f1a4a8db470924b8030ac26", + "d3891a12da3149f78927bc97712eecba", + "603b1ecf2f3d4db78d8a0f290baca136", + "efd05d0c9db0475b86d43a4a7a269fe1", + "34766e8e7bac4be9bfb86c455ee75493", + "cd8d836cb70a42849cb48facc90fd6e7", + "9914c1cfebf6400aa9a8ac54763d80a3", + "1b37da3c0e884470af207ab618e4d83a", + "2a6a1086a40341b3a9fb46912cb75dd6", + "207a6a1c6f714ee9a9482d83aa1b6d29" + ] + }, + "id": "X_qBsxffS_br", + "outputId": "0ba71c7c-e1ec-42d0-b82c-72835fac14ad" + }, + "outputs": [], + "source": [ + "# Case 14: Multi-valued properties\n", + "# Case 14.2: RDF-star statements with the same subject and predicate and different objects\n", + "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -1247,21 +1705,93 @@ " rdf:subject ex:Mary;\n", " rdf:predicate ex:likes;\n", " rdf:object ex:Matt ;\n", - " ex:certainty 0.5 .\n", + " ex:certainty \"0.5\"^^xsd:double .\n", "\n", "[] a rdf:Statement;\n", " rdf:subject ex:Mary;\n", " rdf:predicate ex:likes;\n", " rdf:object ex:Matt ;\n", " ex:certainty 1 .\n", - "\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 167, + "referenced_widgets": [ + "9a5fe71de1ca4e949b1b61173089cd7a", + "176ab88312ca4473b876b9dd94260f35", + "25bf71951a7a46e8ab818832fb6d770c", + "fe3b2882a7ad4ff99044c20354c1c8c0", + "bb24c652631f41bcbe0f9461372f8061", + "b0aea30c1ae54e57aec64cfa3f5e0f66", + "c8a31feebbbd4479bb4d3149f703b482", + "4801a13b780346d888b36082869de287", + "f139ed160d5641fc8603a7e27f4739d1", + "1833ea424b6944919951e027db237691", + "d7f0e36535a7471c89e7992b8d1b7c01", + "70bb188603354ddca66d4146ec8e471c", + "960cca7f5fe44b1db8d6f1b42ec9c96a", + "d515e99b328d4e118174560fa329af02", + "32cbde21198749b880278b11b845eeca", + "99036c6715c544ea9c50cd68621fde3a", + "680bf32f724e469982385088a61bb1fc", + "29bd1e51d7a5416db6f8646bbf620040", + "13356c7a8f8b4a83bfe2caa420745097", + "a89b108c9fec490687b74e968dfe98f7", + "cdd0250b550f438c863d72f4706d9131", + "86fd50b8fd6f4dbf95b30557df477519", + "b2b5e1788189446fa4ecab95341c4c20", + "7e791f4fd0d54af68e2f96e3e3119830" + ] + }, + "id": "ZQqkFmPZQ69J", + "outputId": "2cc05095-f116-49e4-e2f0-deb47d721d25" + }, + "outputs": [], + "source": [ + "# Case 14: Multi-valued properties\n", + "# Case 14.3: Contexted within Named Graphs\n", + "\n", + "data = \"\"\"\n", + "@prefix ex: .\n", + "@prefix rdf: .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:college_page_3;\n", + " rdf:predicate ex:subject;\n", + " rdf:object \"Info_Page\" .\n", + "\n", "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "[] a rdf:Statement;\n", + " rdf:subject ex:college_page_4;\n", + " rdf:predicate ex:subject;\n", + " rdf:object \"Info_Page\", \"aau_page\" .\n", + "\n", + "ex:Graph1 {\n", + " ex:college_page ex:subject \"Info_Page\";\n", + " ex:subject \"aau_page\" .\n", + "}\n", + "\n", + "ex:Graph2 {\n", + " [] a rdf:Statement;\n", + " rdf:subject ex:college_page;\n", + " rdf:predicate ex:link;\n", + " rdf:object ex:college_page_3;\n", + " ex:foo \"bar\";\n", + " ex:foo \"bar2\" .\n", + "}\n", + "\"\"\"\n", + "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)" ] }, { @@ -1270,31 +1800,107 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 67, + "height": 167, "referenced_widgets": [ - "119b38887a7044c3adecda48e34a171c", - "da3cdc7228ca4857b9cc2059d172942d", - "fcb5ff7dbef141b587166e4907b43852", - "ea6f3e9d8e494193b08118820f53476c", - "ae84e2c9b2514e2f98af669dee2387b2", - "1e161fa8e44947dc8c4210c6db49fd90" + "9cee9150609e4c219279ed050a66a184", + "f3fe3d08163449909f5161eb0c8d3ce4", + "52d888e703e546578d3d9eb0d3cee5dc", + "1615255ac8434968865b3bcc80cb53b7", + "a60161904de345dab13563494719af43", + "8278b10ae8974c06811e7264527858d6", + "4800e6188bee433382b650145a17152e", + "4ba0cd3dd2be43d7b97e10804e01563a", + "c05911de0b4840c9a5cae04a58a58eec", + "e00e4a5e870c4ae2ab15e9ee4dafbfb3", + "752e8beefa234828be053813a24db5cb", + "bd7c88d2b8ac430ebe4d6e8146ad4a50", + "3ef4f135a9814fdd913d113eecc4cb2f", + "ee751b1aded24d2fa4c07f2779e2a049", + "754215a7023e452f9578907cf2b333f4", + "a5b9e7a95014425ab6963a48e86f49f9", + "6d47a7766b92481fb6ff95ba77e8f0de", + "690dc7e0e3ff44e98880bdc12d7d370a", + "cd435a80b43340cc81e55108f7c686b8", + "bddbfacd0981464fb4bc7c3380d9293a", + "20bc8e7e0c9842b4a46cc5fe0c81687a", + "36a9e23ee2454fbb907facd9a07f9fca", + "89fdce4ca2f94221892e9f0d1197b8e0", + "7f716d2ad0e34fe8a67b1f6b8a9669c5" ] }, "id": "cD-S3cZ-S_Ta", - "outputId": "c068301a-f806-442b-9995-ef77b5fff94d" + "outputId": "975b43e8-0151-44e2-cee8-34c160835cc7" }, "outputs": [], "source": [ "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", + "# Case 15.1: Basic Reified Statements\n", "\n", - "\"\"\"\n", + "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", + "@prefix xsd: .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:certainty 0.5 .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:source \"text\" .\n", "\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 .\n", - "<< ex:Mary ex:likes ex:Matt >> ex:source \"text\" .\n", "\"\"\"\n", "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 184, + "referenced_widgets": [ + "00383ab1aadf438abf1f7ae40b0019d8", + "dd1262da5c7747bdb20dcfd9d0da8251", + "b60321f2d5444f349823a209b6592681", + "9abce425fb6a448a95b5b70d2d9a1f8a", + "92f7b68f2c954de1b9543accbb64f8c7", + "cc13170e10c142a89c2d36848ef13812", + "25200c81b79d4cf5b1887275467b25aa", + "dc71d23ca2c44ff39aad451bf7bb9bb8", + "fe07548f389642ecad02242a3297620e", + "ea218a29d344434abccaf303b0044dca", + "e492859f96704105b908c0f9e94f5aed", + "06d16a9226c94ce99cc1ba0de6828a0f", + "8b722d54416e4852b656d5cd0b2c5d08", + "d8b062e2e9da4af08c7e4d822f47c72e", + "ff0c11c9fd084a7790d7ae629772682f", + "b7e9590766f74bbdb62ea28a5bbc0ff4", + "da1a326b026644db9c1d3f956dbf35ed", + "465fbf12cec047dbb66c016aab1d876e", + "fceffadb163e4d74ae077a0e437bc879", + "c01224a7670240deb02a974dc360f0f2", + "89df658ca02348e5aef38d8b4158e772", + "eb1d608d4a384a19ae066051c956ce80", + "ab5bd1eda3b8465e8991c9dd80242069", + "8848879b486546d8b6b1039484813a7f" + ] + }, + "id": "r7jArqpvR6OK", + "outputId": "4d118087-03ed-4d19-a20e-73960dd22fd5" + }, + "outputs": [], + "source": [ + "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", + "# Case 15.2: Basic Reified Statement + regular statement\n", + "\n", "data = \"\"\"\n", "@prefix ex: .\n", "@prefix rdf: .\n", @@ -1304,67 +1910,283 @@ " rdf:subject ex:Mary;\n", " rdf:predicate ex:likes;\n", " rdf:object ex:Matt;\n", - " ex:certainty 0.5 .\n", + " ex:certainty \"0.5\"^^xsd:double ;\n", + " ex:foo ex:bar .\n", + "\n", + "ex:Mary ex:likes ex:Matt .\n", + "\"\"\"\n", + "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 184, + "referenced_widgets": [ + "1b7c320b49ba4a4d928090a55773d076", + "c5418daa64ef4c90ae44c7e845342cd2", + "5e5d6a1434204d9ca591ba7e5d80d394", + "eae1dc1f0c53488d9161546790aae34e", + "c0325b7f26d5436d99bee8a72fcd6d84", + "51c57fbccac34167855a2270c365b9b2", + "c0e5df890daa49eba05e2b3fc0c3a096", + "113d67880f1f4a48a88e1425b163cdb8", + "c05da93fed3d4d47a958f969dc575242", + "4c0629fb41e446bcb8c5bf7a6ed97820", + "0816edb1772f4e8f9e1326590f22a3cc", + "b2f03524128a4c6089d808686ad5281e", + "f334a52987ad4a0a9487c841b4eb4ab3", + "78620943d50549a3a57dbb4302b174be", + "d59751a9fa8045d884ebc30aeeadca70", + "7c21761ffbc04fd8a11c87bdcc07df64", + "580a7824847f45cd9ad774d975337480", + "1c533729c7f54f83b19169afb445d001", + "82aaa9fcf9ea489e89d567daf545bdf6", + "8a5cc8bcddb7487d872f8082c29bcdab", + "7f7008b7106847d0a71b51679e4e4522", + "5ad11cd62cc3452dbda9f543f100d135", + "b6eed34455224c21aa7b56e9222fcf44", + "3304bc08ecd648e6a566d74f17109680" + ] + }, + "id": "oWZcONtcSFwb", + "outputId": "16f97ebf-9a3c-4e16-dc1f-130c5a898287" + }, + "outputs": [], + "source": [ + "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", + "# Case 15.2: Basic Reified Statement + duplicate \"regular\" statement\n", + "\n", + "data = \"\"\"\n", + "@prefix ex: .\n", + "@prefix rdf: .\n", + "@prefix xsd: .\n", "\n", "[] a rdf:Statement;\n", " rdf:subject ex:Mary;\n", " rdf:predicate ex:likes;\n", " rdf:object ex:Matt;\n", - " ex:source \"text\" .\n", + " ex:certainty \"0.5\"^^xsd:double ;\n", + " ex:foo ex:bar .\n", "\n", + "ex:Mary ex:likes ex:Matt .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 184, + "referenced_widgets": [ + "8ccc94cf504e40eab5c7ea493f756f8b", + "b36ff1e5657c40c19ed169b354198efe", + "97686950407044e493db9b6e5f96abc3", + "6d8ac4bfc9f6436f99c1e36a4d0d0e43", + "70df5da45fdf4c8da8a368073e139caf", + "d7f6a5acbacb4f95950ecb48616a024d", + "e68cc58160134aa99a339cf9d726fd8a", + "387e8f25a72745968de20c93174fb8b3", + "12e58e8320e6432f9e38fd28eabd7b6a", + "67d0366ca2cd42cdbc3392d5cd606bd7", + "f45d3a94b0df4882b4e1bbb4194d0e2f", + "a5ffe50661654304a6368878b509264c", + "f93c03087ce94becaee30819a8ccd195", + "ab184d09c37043dbb7218a9748f24b31", + "fc193d6dec664d4e8b54b59ce18c8909", + "6fbf0c9ea5c543e694559524ccde9489", + "92fa5df4e678468cb6562d228b0f9af8", + "6094952cc61f414cbb9682aa3fd33313", + "42c89ab89b204967a4970c9c6ca189a6", + "f90e31d881904ee1b8f31b089a3e95d2", + "907bb9cf62e74cd292ea26cd7cd8d205", + "503dd524d03a4032ab66b63d0de621ae", + "44d289bcd3eb4ebd91c1e4a4b327a1e1", + "fb584b5d386e4a7591bb48059cb7af87" + ] + }, + "id": "b_H6fDD0STPw", + "outputId": "61aebcda-78b1-4b02-daac-4d0ddd896062" + }, + "outputs": [], + "source": [ + "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", + "# Case 15.3: Basic Reified Statement + duplicate Reified Statement\n", "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" + "data = \"\"\"\n", + "@prefix ex: .\n", + "@prefix rdf: .\n", + "@prefix xsd: .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:certainty \"0.5\"^^xsd:double ;\n", + " ex:foo ex:bar .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt .\n", + "\"\"\"\n", + "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)" ] }, { - "attachments": {}, - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "0SWi4e3wIMtw" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 167, + "referenced_widgets": [ + "d3cf60c5428e48d19db119ff4d747021", + "eae497edc98c4a2d81889d2cb4a3b621", + "3628924e22f54ca6bd3bc98dc0619de9", + "0b40cbc2604b4be58158cc8e56814f2e", + "ea632dc371e54437b52c5b22112b0e8e", + "bad0c11cb6ce497fb4c11bc03c533831", + "665e5cbce33143c0bc88c390aa35eed5", + "34df82f492d24cf18aa31027352e0df1", + "7d640d33c8a14846b089e21b404757a9", + "7e84fb9c3f464f08a4ba504cd7efdf0a", + "312d8f397d4f4362bbef7d18c1ba5de3", + "0d2b101b5cd34df5a60f49f0322b8ae5", + "27933cff78c94ea08128a4ab09aabc3d", + "5b5972f2a60d4165b29193acec5a3efb", + "c734fb7abf734de8a786b74490dbdc45", + "5483cddfc4a441bba4e38e06d531573b", + "14f9df9b0c98462aa5838e3da9fa1d9a", + "b5351fcc283f4f08a4c03ba7ff4c6171", + "23667a2c1edf48f0805b6f3a7deaff60", + "2d3b9ecb52c3494697f0914a9eda32ce", + "0b6cf37ac5ee4ab5a1d8b6dacd7cd5ab", + "733b2bb8ff1248dba07fb78f751141de", + "4de3bbd3d55a4b78a3eb1e521ce5cfe3", + "55577346bc664471a01442b07a9d5348" + ] + }, + "id": "FQj1859cRwms", + "outputId": "a8c7c579-7cb5-4f6d-d11a-13c661411d42" }, + "outputs": [], "source": [ - "#### RDF to ArangoDB w/ Graph Contextualization" + "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", + "# Case 15.4: Nested Reified Statements with Named Graphs\n", + "\n", + "data = \"\"\"\n", + "@prefix ex: .\n", + "@prefix rdf: .\n", + "@prefix xsd: .\n", + "\n", + "[] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:certainty 1 .\n", + "\n", + "ex:Graph1 {\n", + " ex:mary_likes_matt_05 a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:certainty 0.5 .\n", + "}\n", + "\n", + "ex:Graph2 {\n", + " [] a rdf:Statement;\n", + " rdf:subject ex:Mary;\n", + " rdf:predicate ex:likes;\n", + " rdf:object ex:Matt;\n", + " ex:certainty 0.75 .\n", + "\n", + " [] a rdf:Statement;\n", + " rdf:subject ex:John;\n", + " rdf:predicate ex:said;\n", + " rdf:object ex:mary_likes_matt_05;\n", + " ex:foo \"bar\" .\n", + "}\n", + "\"\"\"\n", + "\n", + "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n", + "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "vec21mb9MkhR" + "id": "0SWi4e3wIMtw" }, "source": [ - "Contextualizing an RDF Graph within ArangoDB is a work-in-progress feature that attempts to enhance the Terminology Box of the original RDF Graph. This is done by:\n", - "\n", - "1. Loading the OWL, RDF, and RDFS Ontologies as 3 sub-graphs via `ArangoRDF.load_meta_ontology()`\n", - "2. Setting the `contextualize_graph` flag to `True` in any of the `rdf_to_arangodb` methods.\n" + "#### Graph Contextualization" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "dUOCXzn5Owhj" + "id": "vec21mb9MkhR" }, "source": [ - "Enabling the `contextualize_graph` flag currently provides the following features:\n", - "\n", - "1. Process RDF Predicates within the RDF Graph as their own ArangoDB Document, and cast a (predicate RDF.type RDF.Property) edge relationship into the ArangoDB graph for every RDF predicate used in the form (subject predicate object) within the RDF Graph.\n", + "❗ Graph Contextualiztion is a work-in-progress feature ❗\n", "\n", - "2. Provide RDFS.Domain & RDFS.Range Inference on all RDF Resources within the RDF Graph, so long that no RDF.Type statement already exists in RDF Graph for the given resource.\n", + "Contextualizing an RDF Graph to enhances the Terminology Box of the original RDF Graph. This is done by:\n", "\n", - "3. Provide RDFS.Domain & RDFS.Range Introspection on all RDF Predicates within the RDF Graph, so long that no RDFS.Domain or RDFS.Range statement already exists for the given predicate." + "1. Loading the OWL, RDF, and RDFS Ontologies into the RDF Graph\n", + "2. Providing Domain & Range Inference\n", + "3. Providing Domain & Range Introspection\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "P9oGi91RJbAI" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "b3891e36049d4b3ca529ee521cacb673", + "b63b93b6d74e4e008dc4de0268877371", + "6686917122224b15b7f511dc89212ce6", + "900b7c249fbb49c59c18d2c9968f2891", + "2a1d425b97524de6aac4edc3b8e67000", + "44ebf31be6c64bf4b539f81c1250a8f1", + "4d6a69a6ddd84ef68a4902e889af0e18", + "64938ff2e522484a94712608de674545", + "b1c9f3985d874907ad3038ad6a836afa", + "e077548daac5479a9092dd7985a85dc7", + "f586ae31f10141c7afe0f6baa1794d03", + "93ce4c6d2f2f43fa95a2a443f3321e4b", + "3e668d9f0ee74d078e3627b3ac969ede", + "f4bb379438d74bcc8c9312d491e37fa7", + "ba86d6019c8a4be19f4fb3afc63e0830", + "2a09643054274217b1166b0ad5db22aa", + "032a12f2cbaa4235aa24c1d127a28363", + "987b6a19cb0e4a29a79c4fc5596796c0", + "188785b1836c47d0bc6f01fba3524651", + "8a4170094368494aa860c215fffda76a", + "e62cf939fd2c47408098ba78de765f0a", + "291de7e0668e447c917b3a7134cae0fd", + "4eeaa3082d74487796caa0db21a1521a", + "9122d486ae7a422b96e097342891fb70", + "a71eeca8fd5746eea89964c6791c3b62", + "9275bb009a014e058d6b737d93d89c06" + ] + }, + "id": "P9oGi91RJbAI", + "outputId": "c9097281-026d-400f-f245-f4aae639ee62" }, "outputs": [], "source": [ @@ -1406,17 +2228,11 @@ ":Imagine :artist :John_Lennon .\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "g = adbrdf.load_meta_ontology(g)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, contextualize_graph=True, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, contextualize_graph=True, overwrite_graph=True)" + "rpt_contextualized_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), contextualize_graph=True, overwrite_graph=True)\n", + "pgt_contextualized_graph= adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), contextualize_graph=True, overwrite_graph=True)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { "id": "9gBg-hDs77i7" @@ -1426,153 +2242,739 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "_kkM4P0fWR4e" + "id": "KSGKrcaPa_pi" + }, + "source": [ + "We'll be using an ArangoDB-native dataset representing a Knowledge Graph constructed from the [GDETL Project](https://www.gdeltproject.org/).\n", + "\n", + "> GDELT monitors the world's news media from nearly every corner of every country in print, broadcast, and web formats, in over 100 languages, every moment of every day. [...] Put simply, the GDELT Project is a realtime open data global graph over human society as seen through the eyes of the world's news media, reaching deeply into local events, reaction, discourse, and emotions of the most remote corners of the world in near-realtime and making all of this available as an open data firehose to enable research over human society.\n", + "\n", + "The events we're using today range from peaceful protests to significant battles. The image below depicts the connections around an example event:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wtyqU1Wdb-jR" + }, + "source": [ + "![open_intelligence_sample copy.png]()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "0806477acc4149a980271b600b0b27e6", + "8b258df3426f4781afed10499392c225", + "7145e6a71760467eb8797864f0e5d2a0", + "9c5380da6d794a228ac12ecab0d949ef", + "e6256c3b21914adc871cf4db6baf7fee", + "af651b267e5b4b11a2605b02f5a75ff3", + "f86c993cec21489983df88cee2ab5b2a", + "8348424c59c94f279f061d2ba339b17d", + "5c2e8b16eaba46d7ad63a4723a0e6c95", + "db764534dfec4bc3a9ef40f37c154129", + "ff2e1f75ed3a42e9882c2ce5e5d748c9", + "c4d4cc4bf5c54d6691135b25ba4d0c84", + "57c5c601d72d4bd8a30779500c0f63f1", + "678ff0b0994a40a982091b2d13f57c4a", + "958d1cb2fff3485a86ad5f3d9456d579", + "3fe5027f1c994fc4ba3c22f245604c13", + "050f31f028794d49bdad2e33c5e1e32e", + "a2954cc253fa4a2f9ad430ee12cec117", + "1b06375f7c054d05aac5766732801ad9", + "399256ab248e403ba3f26d5bd91b091c", + "3c19457d425b4574817572b38aa17d86", + "7a9a3f418d6a409cba2643daa11ec233", + "28ace3f50b3c4a25a7fc1b7f6eab7814", + "d2bc18ff98e142c58fdf18a9075d4c2b", + "98d22f88193c47939b93d552a3041447", + "66079ff3dbe043df86ba4c8cddd7ffb7", + "245bdf024f754fa1bbb8bedc5b59cfef", + "4f5490021107448cba0795253a892a71", + "47f69ff14b9a4021bdfe15d532a65753", + "3f92018b112e4213a1ee9b3d810828e5", + "4f4bb6f685a44d318827eecfd9d25215", + "a4acb870019b4b1daabbc92ce84ed88b", + "c48a252f55d64e78aadc927d94de4b4f", + "380f4a19bf51442e8bc93b77abe405d5", + "798d0ce58f28445cb91bcd4af75ad379", + "09a5785134684029b1cff1bc7510c534", + "f280bf45be9947bfa83e5d2ad1ffdd48", + "5b08d7a0cd37421fac9dd182c7e803a3", + "0c409a70fd6b4c42a75e575398722229", + "f74aa3ab9aff44f89396316e51f9774a", + "354a8042212b42b5ab48116c07be8c4a", + "ce982e0638b4403dba8bb46e8402d506", + "5c32f4f07b8241eb810c6b7d3bf0d516", + "98ef86cf824a4d7ca12d8cb76b22bbb6", + "772165f70bd347009bdbdc989a3610e5", + "e7e96edf087640c5a618deb016e4d277", + "9a481076f28e4e9098fca0d75d5e44f3", + "efcf3c8ce7424604b4726a5fdf8f9a97", + "ac0b18ff7a1c40b5b50326d891f5e5af", + "96e6a9c132cb4e068c01d819c9c53951", + "87ccb50738954e6d94e2d75f8194215f", + "096ad7b5b4844287b88f2b76e5cf107b", + "5e4d0d5329cd4f8f83fcef7dfd413eb1", + "d1ae873ccd9b459b8c8074d0cf87ff84", + "820e68b984f6428a8bff72a178447b41", + "d61489f2e3b34790905f0d2f5e32f17f", + "a81ff8d9fc6142188423abf029103491", + "ef3be25a72514885a169017b63a4212f" + ] + }, + "id": "a6uPF7X_a2sB", + "outputId": "d43ae6b2-19b9-4399-9879-fd98f37f995e" + }, + "outputs": [], + "source": [ + "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n", + "Datasets(db).load(\"OPEN_INTELLIGENCE_ANGOLA\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mNWLGGTUipj" }, "source": [ - "The `arangodb_graph_to_rdf` and `arangodb_collections_to_rdf` methods return two objects:\n", + "#### via Graph Name" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "e7b1063bfccb405ea38b0fac7e2ab121", + "bb8e13a4f24f4a33a7b72454d38e6092", + "a903e7ef6e0946168d5422fba725bfbb", + "96d344126fbe41159cf025667fbce0c5", + "7fa97decd4204eb498b44554d9b2ac1a", + "38e979b0cf94465388eeb0c2e1d37214", + "025f0dba6472458da784d68dd82f6b05", + "6d2a7f63e099467d86af116e97de71a8", + "f0ae785301df4dd08619c600dc98d04d", + "eaeea446d3f74ed6adabfa5646ac05a2", + "72f9d06266ea4e97849c170c48308c77", + "b0c72633943841ec8911af176a347b21", + "22644f41d98444ad8f897fb1b940b854", + "5c60b07c9c5c424cbd266d3c2bc7189d", + "7e72dc811b934c2883020de74c82625a", + "695b886aee124d78ae582f914b88e26a", + "6c191d39e72f4dfc90443e57184cca27", + "e815564404004a3391d274458502ce9c", + "4106df416f7c47a1a0b6ab9e954acdab", + "9d5e41d68dd9479db77ef9bef14835de", + "52abd56876a0434abe9570679bbdb57b", + "6fecb562ef6c4e51be7bd0b42108c15e", + "666341c39bc3491086c936250956e6c4", + "939df2cace1e4c92bed3c64acf556698", + "7d4b161694aa424489ec20c93023128d", + "423019e8f56e4579a18e1b08bb216944", + "d062be96b4164b0fa74f3492465b7a63", + "5c6159ac9941405ea2399930e3385856", + "a516048f6b254c4c89924978719cd530", + "d8e05175e7e4468783b8f748cd69440b", + "ced9a003eb3c4db0b9c67cf5d4eba3ec", + "4c00c2738c77446291a8a88da8061603", + "bd8b2fd62451435a96df5db182c28f23", + "5c5d3d5139c44a7abc6616d674aab82c", + "2cb971a1d4ed49b3b1de2f1b062b40a1", + "2e6aa556b9fd44f68347677bea11caa3", + "cfbd898fda734c0585f5c9901a4c629f", + "8fb1525ca3744f33a0be9f712507cb03", + "92bb5e694f98436bad05b576e6aa1aab", + "6efa083feddf4ce497059534916b2b43", + "dcb2d51e15c7495fa7394660acfada07", + "0bf8f16e94f848d6bb465dc307c0e90b", + "76da0198443840b6b36d6f4ff9fb9aea", + "5e6618e3da7446fa8be8fb0c38a44935", + "a2d650f2905a4544a54b349d32c6d745", + "5b141553b59d4a64b567117a48a0f05d", + "2d19bd459bf54b1197a1fd18c47f4b05", + "5542d4fbb1294b63a5e7dee5f4af5fa0", + "a78281fc9c554c57852e29bc09ac8bea", + "80d8531d226f4b6c9d144aaea20130e3", + "af1f098d2a8f46f9b517ac359687a2ab", + "b126e7213e4f4630af51f1c3fe526e58", + "1088d2e6621a41c8a912520fb9206879", + "8bf0a3e6c09545d7a55487783e0b82c9", + "3cbbfb7c4c254dd995bc2d10e2429a4d", + "005f4ea3e18243d886f4264a8e328bcf" + ] + }, + "id": "rA5dBseDaiQB", + "outputId": "6979c566-f6c2-4c41-d98c-183b1317d728" + }, + "outputs": [], + "source": [ + "rdf_graph = adbrdf.arangodb_graph_to_rdf(name=\"OPEN_INTELLIGENCE_ANGOLA\", rdf_graph=Graph())\n", "\n", - "1. The RDF representation of the ArangoDB Graph, i.e `rdf_graph`\n", - "2. Another RDF Graph mapping the RDF Resources to their designated ArangoDB Collection, i.e `adb_mapping`.\n", + "print(len(rdf_graph))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-FTakjQKUoWW" + }, + "source": [ + "#### via Collection Names" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "ad0e243808cb46aa8605d8929e5129e2", + "15f7cd15b0904731a4ce5daaa81f560b", + "c49b5805f1bb4cd79fd87111fbd96118", + "23f1b6f7b7564c78aaf32ed5b7f382a2", + "4c8a803a162a47fca5b6484485a50168", + "6060a8afe98e41388fc3ca928af0d70d", + "2f4743884cf64364831cd82a9f2b7ed3", + "9222e80943b64fdaafbf0081aa501800", + "d1bd0d1096f042db9f2e41892c8855ff", + "67989ac8ad2a4f1a9919736d384cd294", + "ee1ee485ba5d4618906048b066e5b6b9", + "d6fa32c7e0794b78972d889c2ce55546", + "45883547766c4981b798206e55a5c2f9", + "95725b5bc05e4576b867b6066c5cd0b4", + "6e3a7048cf634fe4b8d16547ffe89d7d", + "5e4096f76e344148b57a688b2e9fe8b9", + "0769e25469e44c0f97b9d1f9ad2abf5d", + "50e0d72760df48cdbd0ab58a118f3b83", + "00da493dbd004b858625ed4fb1e2556d", + "48de9d4c770749dc933ec65ef35e9ce6" + ] + }, + "id": "TDny1v4sdelB", + "outputId": "346d2e1a-02b9-4918-8370-a0305ab66f22" + }, + "outputs": [], + "source": [ + "rdf_graph = adbrdf.arangodb_collections_to_rdf(\n", + " name=\"OPEN_INTELLIGENCE_ANGOLA\",\n", + " rdf_graph=Graph(),\n", + " v_cols={\"Event\", \"Actor\", \"Source\"},\n", + " e_cols={\"eventActor\", \"hasSource\"},\n", + ")\n", "\n", - "The second graph, `adb_mapping`, can be re-used in the RDF to ArangoDB (PGT) process to maintain the Document-to-Collection mappings." + "print(len(rdf_graph))" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "UCQ9ppnUQa7e" + "id": "qddfFNtaUpoo" + }, + "source": [ + "#### via MetaGraph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "c09d4aa3bbb440eea986e872479dd746", + "04e0e2fbdcbf43bdb6fd3a1cb1b9a5ba", + "5c3399c807834637b5b872fdec6a126a", + "a27c2cbe14eb40aa8b071a031c694220", + "94e3ac81d4924b1699a1801aaffd5349", + "6691ef61f8e743e8a274bf0710c84673", + "85ee2b46acbe42cb838ff89ee8457607", + "c627a1455abe47ac921d1bd841cdd9c2", + "008a2c05cf294ef0a8be167b1a2433e9", + "a6fb760fd98d448b990b6a9636df4894", + "fe58b0d093f24f3da92c546038fe1735", + "de3564cef3e44c2fbc0a25953d1b4500" + ] + }, + "id": "kQSN13xdeH1X", + "outputId": "497885bc-1bdd-4a10-986f-387287b807cc" + }, + "outputs": [], + "source": [ + "rdf_graph = adbrdf.arangodb_to_rdf(\n", + " name=\"OPEN_INTELLIGENCE_ANGOLA\",\n", + " rdf_graph=Graph(),\n", + " metagraph={\n", + " \"vertexCollections\": {\n", + " \"Event\": {\"date\", \"description\", \"fatalities\"},\n", + " \"Actor\": {\"name\"}\n", + " },\n", + " \"edgeCollections\": {\n", + " \"eventActor\": {}\n", + " },\n", + " },\n", + ")\n", + "\n", + "print(len(rdf_graph))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGivoIz5Uv_-" + }, + "source": [ + "# Round-Tripping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s900bHJQinK3", + "outputId": "25e0dae1-e450-4576-aed3-38d1d4223dfa" }, + "outputs": [], "source": [ - "#### Non-native" + "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"OPEN_INTELLIGENCE_ANGOLA\", drop_collections=True, ignore_missing=True)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "mYZIEAzhQ5CO" + "id": "4PzrROxlU0TM" }, "source": [ - "Non-native: An ArangoDB Graph that originates from an RDF Context, which has been brought over via one of the `rdf_to_arangodb` methods (RPT/PGT)." + "#### RDF -> ArangoDB -> RDF" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "orwoPEIOQjHO" + "id": "oZNYvQxDgTvw" }, "outputs": [], "source": [ "data = \"\"\"\n", - "PREFIX : \n", - "PREFIX rdf: \n", - "PREFIX rdfs: \n", - "PREFIX xsd: \n", + "@prefix ex: .\n", + "@prefix rdf: .\n", + "@prefix rdfs: .\n", "\n", - ":The_Beatles rdf:type :Band .\n", - ":The_Beatles :name \"The Beatles\" .\n", - ":The_Beatles :member :John_Lennon .\n", - ":The_Beatles :member :Paul_McCartney .\n", - ":The_Beatles :member :Ringo_Starr .\n", - ":The_Beatles :member :George_Harrison .\n", - ":John_Lennon rdf:type :SoloArtist .\n", - ":Paul_McCartney rdf:type :SoloArtist .\n", - ":Ringo_Starr rdf:type :SoloArtist .\n", - ":George_Harrison rdf:type :SoloArtist .\n", - ":Please_Please_Me rdf:type :Album .\n", - ":Please_Please_Me :name \"Please Please Me\" .\n", - ":Please_Please_Me :date \"1963-03-22\"^^xsd:date .\n", - ":Please_Please_Me :artist :The_Beatles .\n", - ":Please_Please_Me :track :Love_Me_Do .\n", - ":Love_Me_Do rdf:type :Song .\n", - ":Love_Me_Do :name \"Love Me Do\" .\n", - ":Love_Me_Do :length 125 .\n", - ":Love_Me_Do :writer :John_Lennon .\n", - ":Love_Me_Do :writer :Paul_McCartney .\n", + "ex:Monica ex:employer ex:ArangoDB .\n", "\n", - ":McCartney rdf:type :Album .\n", - ":McCartney :name \"McCartney\" .\n", - ":McCartney :date \"1970-04-17\"^^xsd:date .\n", - ":McCartney :artist :Paul_McCartney .\n", + "ex:Graph1 {\n", + " ex:Monica a ex:Entity .\n", + " ex:Management a ex:Skill .\n", + " ex:Monica ex:name \"Monica\" .\n", + " ex:Monica ex:homepage .\n", + " ex:Monica ex:hasSkill ex:Management .\n", + " ex:Monica ex:dateOfBirth \"1963-03-22\".\n", + "}\n", "\n", - ":Imagine rdf:type :Album .\n", - ":Imagine :name \"Imagine\" .\n", - ":Imagine :date \"1971-10-11\"^^xsd:date .\n", - ":Imagine :artist :John_Lennon .\n", + "ex:Graph2 {\n", + " ex:Programming a ex:Skill .\n", + " a ex:Website .\n", + " ex:Monica a ex:Person .\n", + " ex:Person rdfs:subClassOf ex:Entity .\n", + " ex:Monica ex:hasSkill ex:Programming .\n", + "}\n", "\"\"\"\n", "\n", - "g = Graph()\n", - "g.parse(data=data)\n", + "rdf_graph_original = get_graph(data, True)\n", "\n", - "# Selecting RPT or PGT for this example does not matter, as the\n", - "# end-result is the same.\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n", - "# adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "\n", - "# ArangoDB to RDF via Graph Name\n", - "g2, adb_mapping_2 = adbrdf.arangodb_graph_to_rdf(\"DataPGT\", Graph())\n", + "def graphs_are_identical(rdf_graph_a: Graph, rdf_graph_b: Graph) -> Graph:\n", + " assert rdf_graph_a and rdf_graph_b\n", + " return len(rdf_graph_a - rdf_graph_b) == 0 and len(rdf_graph_b - rdf_graph_a) == 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 318, + "referenced_widgets": [ + "43792423dbaa49e4a4a19360091969b6", + "37a49fa1897849209764d68a6edd7008", + "23ca8452d91843d4bb367f79cb6fe21d", + "8f7a612cdc9646b1b3cdb3d2ef67a18e", + "52232abd9c904269997d568cc50c1fb6", + "0169a84a8bb74d7c8adc26dc9a701e2c", + "2ae4cd88a2684d4f876f62b0c0e1123d", + "632b440161b34a959a3fe82835f38f8d", + "b8ac74c5fc4b4eb499b6a196e187f2e5", + "aab83555df50479a88c3538e90b68fdc", + "409be936927846888c78a0cff15bf635", + "c81a9e5eb7bd497783e94cced16b94d5", + "71ddb22aed0446adbed06ade5f30a61d", + "7a3fc411802043c3b22e418a9d267bc1", + "f04b940f370643f68cca247a8cc5f952", + "f6bd0240ca004ff09b268afae04470de", + "387642d5ed1e408eba7516e6524c34f4", + "bb79559742424902a0693dc602c38f0e", + "fabcaecd1a0843afaf433bc2df936725", + "c1339ae8330144a0ba9a671411985389", + "8fb0eac7af4b4ba4836d5695deca6d32", + "31830517c9bc4134919413ff27dcdd00", + "e0515ddef3b54c19a674914c12730848", + "63bac0edac794f03b66da29a7d1d933d", + "274d1b85334c41e88282eae8d98df3dc", + "37768143af064eec94f846d5116caaa9", + "340471b0216d4e06852629be4c27f681", + "00ed07ecf31041ad84d32453fd43d0c1", + "13971de33d714affbdcbf4e17d7e6262", + "3e3c5ccb09e6420cbf4133930213227f", + "2417e2dc248f48f797adefe8cc228028", + "9983582ff7264e4cab10eed911e85f83", + "8903da96fe434ebc82efdb15a34a6edf", + "f0da88487b40424392885d47c76e5c8e", + "198e324979c14efdbb5990d057403a18", + "196c029b42e7468b8c1b2b82d93fb9d3", + "ab7f2a36f8354d82be9c6d8dc2940511", + "a69290567e9a4f809d50b4d02ad59ddc", + "b5a7dfdd273548ec9a75390e44f4f72d", + "6cba2fee3ce64170a5130d70695eec26", + "66bb8913622c403881eba0997ae6548f", + "1a60e18063d7443e9a7022a1bab0008f", + "98bee394813140c68b6cb5bfaba6a10c", + "51aa91d7110f4f90b69f83c790fb6b52", + "3b55e3255b46482fa0126d7df8fb6215", + "d0006980ed5642088dfb0f4766723316", + "de76ab207aa24b5187e8df6a244330f4", + "869184bdb77644ff9f5a7dfd62a20bc7", + "a37eb48a3cd74bc08b8880621c36c72f", + "ed62ee4dc04b400887a85c9186864cd8", + "9c80d8b208a44c6a9143dd3e9016d384", + "cc29a014f37240619b3c1e774e5a6b3c", + "12366995bad14594b1346c343bc10bdc", + "8310490b2e384846beb367a25d2cdf23", + "4ed9a5a4cce84f0aa47fe499455ac814", + "52e4fd6dcfae437b8f12e2d60e28318e", + "c685227c7509453ab0ba7c0a25ac3931", + "db1507b61b2447beb7226be27f091e63", + "de9df9c6f97d493da4a4236a4673e0c2", + "cd5583d33cb74601a6c1d822f5014846" + ] + }, + "id": "O94Dg2sVhTdT", + "outputId": "76636c9e-6627-4940-9bfe-00c7210491a5" + }, + "outputs": [], + "source": [ + "# PGT\n", + "adb_graph = adbrdf.rdf_to_arangodb_by_pgt(\n", + " \"DataPGT\",\n", + " get_graph(data, True),\n", + " overwrite_graph=True,\n", + ")\n", "\n", - "# ArangoDB to RDF via Collection Names\n", - "g3, adb_mapping_3 = adbrdf.arangodb_collections_to_rdf(\n", + "rdf_graph_new = adbrdf.arangodb_graph_to_rdf(\n", " \"DataPGT\",\n", - " Graph(),\n", - " v_cols={\"Album\", \"Band\", \"Class\", \"Property\", \"SoloArtist\", \"Song\"},\n", - " e_cols={\"artist\", \"member\", \"track\", \"type\", \"writer\"},\n", + " type(rdf_graph_original)()\n", ")\n", "\n", - "print(len(g2), len(adb_mapping_2))\n", - "print(len(g3), len(adb_mapping_3))\n", + "assert graphs_are_identical(rdf_graph_original, rdf_graph_new)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 168, + "referenced_widgets": [ + "5a2d4a845d274bb9bd81165ce410a444", + "f4e4607b23a54074b058c823703b1c53", + "dd28a24eec3d4539bfc5be068fdb4717", + "945453c61da944a087f84fefa5a7d421", + "2fc6b8341e474b62a6ee7daff89304d2", + "1b669b3013fc4ea4a9951b7db3771f3b", + "c17bf36fde304a7f841ec0f7657f1c4b", + "4c7729ca0129498a99a5c1a33117c21e", + "d84a5c85435840f0b1eee9c6f61f2bb7", + "efd59aa2a7474984af289f75f2c04b6a", + "dc0b77ee6c8b427da5b1969576a0fe55", + "ae8c90ad5c7d42c4b702373327e843a6", + "64ef034cf3e043359fa8a92e4c040f94", + "f7641041d47e4ac89ba017b5838dc440", + "87ee460987eb400ba53ef8a8ac0f83ec", + "7c27638420a14a1bb93c50865d63162a", + "7d618e6d56914751b3344f67135d89e6", + "f5d10a6ad6124b15829f3d9d64880c79", + "c5474e0551fd4080bb2c8b62cef9f3a1", + "91ae98fc5b2e451ba177255edf131409", + "b0d4d4d12b0449e791a866e9ec7dcbe1", + "16b2c93f497d4f62aa06a35052933fd1", + "7fe6e86bf2d942c293ee3fdd97dc863a", + "2741d4016cd94f18ac0d38c5f16de281" + ] + }, + "id": "Y51zcrJUfiL5", + "outputId": "30def815-e95f-4930-b6bc-9da664d748cf" + }, + "outputs": [], + "source": [ + "# RPT\n", + "adb_graph = adbrdf.rdf_to_arangodb_by_rpt(\n", + " \"DataRPT\",\n", + " get_graph(data, True),\n", + " overwrite_graph=True,\n", + ")\n", + "\n", + "rdf_graph_new = adbrdf.arangodb_graph_to_rdf(\n", + " \"DataRPT\",\n", + " type(rdf_graph_original)()\n", + ")\n", "\n", - "print('--------------------')\n", - "print(g2.serialize())\n", - "print('--------------------')\n", - "print(adb_mapping_2.serialize())\n", - "print('--------------------')" + "assert graphs_are_identical(rdf_graph_original, rdf_graph_new)" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": { - "id": "uxp9AW7kQkM5" + "id": "_q34B2SQU22_" }, "source": [ - "#### Native" + "#### ArangoDB -> RDF -> ArangoDB" ] }, { - "attachments": {}, - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "xoza5AvUVqWP" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 260, + "referenced_widgets": [ + "3e4cc848dfd54a94911c913f784b8731", + "6edb486ed2f24b35a80cac3b8c8cdc10", + "d3abeb9ccf0c42ed8de36317f3c01a47", + "6c3b09e3d1cf4dff8702402fc413cca0", + "daad61352bce433bb1d55a7120bf6782", + "6a1f66e50ad74367a52d2ae3f8f48f12", + "49da35b5b10c4203bbbfebce32b2a80f", + "27bc6eda9d0f4277bea6de3bc3decab4", + "933df8dd162440638f608b1ae6bd34da", + "17677c4248b1466baeb36a4a1725856a", + "aa13cae66ac64a8e9e365748bc5ff67f", + "54dc7c0868724390bf94e030c4287418", + "59d1812502754c6bb6701e3614ba2d94", + "fd39fc51745a4de086c6b7ca00c3f832", + "a0cae451b1c241beaf57344f2890c810", + "edc9a966c2634d9cbad3bac706115686", + "87b9a0caa3da42c3bf48158da7825856", + "8214ad5a0a52493aa93c363a5be2d221", + "3fcd605337d142a58bb2d7c656e6f509", + "e15e3352f99340069470a8d33416986f", + "787ab170a303420cb36ae0cfd43c9d63", + "8fbd43f55d92442f9fb057dfd38d732a", + "54b93b209d61498eb7d2da4bf24042ea", + "1b72c41a51244810befd264aad85f526", + "92bbd0f0d5a647abab9bff176af5a0fc", + "6f52f700d62c455f995dbe7e60ee899e", + "b056cebde1384bb49944a7322a01e32c", + "4069f0176c3c46c081f1c64fd5d50bdc", + "a6409ed1bff345a39fc3f4b562d8ebc9", + "43e9f9350be04c3897feef328fca07fa", + "58eaf8c7cacc4156acda80aa02e94761", + "fe56ad08950d44ae87c2f512092edd3d", + "4ea55c7b06794f9f81e86b202c5ba354", + "b57d0a227c1048d4961219ebf1d32530", + "c2bcea063da949c2b0bf0730c41b55ac", + "e7491ac5da904f1f8f06bc2643650839", + "a41722216871421697c751905d5433e4", + "8cb37d36be2e45c5adc9fe5a43cfd1e0", + "9d0664c32a6a4f859331c90df1d1b6b2", + "41d72b118f31481ca4318ca46b2915a6", + "54abea983db442579f8647cef03d6823", + "6436d487a2e94e41b51bcff155413b02", + "95b8c8d3d31b4a938974d0f5684ef529", + "af04648c3e4d414ab666e01ee3050311", + "d313578b458c4028ad993f1ac95c743a", + "5c748f9b979f4fe499a05558c49668ac", + "076b285dbfb94f72bb119aff2c4213a5", + "05bca57620264084a8d6706ed80eb206", + "28773c52acae44fabda65710a389c4c8", + "47f7cf67a9d9415da8fc00725bdca58d", + "61308ce8c6c2433fa2173b5707bd8598", + "a557d52c1e3247dd847c5d6870c0abf2", + "4bd5e014b1aa4b649a84f7ad4510f6d1", + "e2dab9c4ac714611a7d92f5d54e1a28b", + "3ebef63c1ed3413f8b2b84cba0b7a9d3", + "41b26d58b2094b629bdf38122d108a6f", + "3e869d0fc5be4643aea1cfa06f2d5281", + "14a0aa763fdf4d3b85e693a5393c71bb" + ] + }, + "id": "tCBsS5Q2jXrP", + "outputId": "f528702b-7f75-4be4-ed21-3fc339da1d57" }, + "outputs": [], "source": [ - "Native: ArangoDB Graphs that originate from an ArangoDB context. We'll be using the [ArangoDB Game Of Thrones Dataset](https://github.com/arangodb/example-datasets/tree/master/GameOfThrones).\n", + "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n", "\n", - "Since we are dealing with a \"native\" ArangoDB Graph, we can rely on the `infer_type_from_adb_col` flag to indicate that `rdf:type` statements of the form (adb_doc rdf:type adb_col) should be inferred upon transferring ArangoDB Documents into RDF.\n", + "Datasets(db).load(\"OPEN_INTELLIGENCE_ANGOLA\")\n", "\n", - "We can also take advantage of the `include_adb_key_statements` flag to indicate that `adb:key` statements of the form (adb_doc adb:key adb_doc[\"key\"]) should be generated upon transferring ArangoDB Documents into RDF.\n", "\n", - "Note that enabling `infer_type_from_adb_col` `include_adb_key_statements` is only recommended if your ArangoDB graph is \"native\" to ArangoDB. That is, the ArangoDB graph does not originate from an RDF context.\n", + "def get_adb_graph_count(name: str):\n", + " global db\n", + " adb_graph = db.graph(name)\n", "\n", - "Finally, we set the `list_conversion_mode` flag to `collection` to indicate that JSON Lists within ArangoDB Documents should be converted into RDF Collections (other options include `container`, and `static`). " + " e_cols = {col[\"edge_collection\"] for col in adb_graph.edge_definitions()}\n", + "\n", + " v_count = 0\n", + " for v in db.graph(name).vertex_collections():\n", + " if v in e_cols:\n", + " continue\n", + "\n", + " v_count += adb_graph.vertex_collection(v).count()\n", + "\n", + " e_count = 0\n", + " for e_d in adb_graph.edge_definitions():\n", + " e_count += adb_graph.edge_collection(e_d[\"edge_collection\"]).count()\n", + "\n", + " return (v_count, e_count)\n", + "\n", + "original_v_count, original_e_count = get_adb_graph_count(\"OPEN_INTELLIGENCE_ANGOLA\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "id": "yQ85OY7paqMM" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 368, + "referenced_widgets": [ + "5a86d7d42ad74fb3bd471638a7e45df1", + "0ffed931b7e4411a882931ceb9d1b576", + "9aa19c471c064051a8ae962b1171ec24", + "cddf17d22f3447d199991a2ea1aa0564", + "8908115ec245468a9cf70d01f6349f90", + "25cc5340c82d4a60ad273cd6483dc48e", + "a683cf075e284cb5b2e57d47b9ad12e3", + "e1e3e373677b43dfa26d434d98a13ad9", + "13d371035c6e4441930620dee3c09ed0", + "14f1024bc2b349ad813ceab38b01f2dc", + "d359bbfd2725461baca4d2bd87e7c8d5", + "67e0fafdd9634aa69ac889342be69b51", + "af81fb0736e3444ab0e18760dd169e6a", + "803eef70784b4d5fb3cacd1abd7467cd", + "a551464a398b4bc9a3480717b6e65f2d", + "056a6e550f7f4f0eb763a4c9dec97a7b", + "c45d35ffd0884d7b9cf302de9a83f441", + "bcdf72b37a4d418ba3a7f97da7865629", + "526371c5ffa3455cb72359531671c385", + "b83f5e4968a44cc1bed752f63c23d45a", + "392bfe6ed1dd4327a9412a54cc4ab3d9", + "d96d5a9fba94419f93f6fc9f21e4ab10", + "8d909b7c90fa4caf8ea819dbed241e55", + "c4f776339f7248bc859bf49e61dbf37b", + "5501dd653f1647359616f7623579201c", + "910b3f36e0754872a132ee0076344338", + "f383807d016240daa720e0128fe960e5", + "d49a46b7410047008abd6117ba5cde00", + "d508449fbe214b4e92027329c253ba28", + "29ce0c02552f4a80aba63d003d1d13bc", + "3a132126a793411bac755f8981035861", + "9c61c2582e9e451488f01c22cc432d76", + "24c93b5825e04d07a0ac19b3054b2863", + "f73f626669b544d6a475cb528aada059", + "766d7599e584400f8f809227bb830fd1", + "ebc417617758470db76e670fe62473d5", + "d84cd061cf7440f287a581afe6f2e2a4", + "0ada0c44b2294efb8e7dc0307bb19fef", + "44c65c1407694742adc3f28968a2966c", + "0ff0e0b8a3424639aee19cb30ae03d45", + "8e7710a3934e4560afdc3ac42ae24da2", + "a0795fecba464f489c075ab0234d7580", + "77506a89557942298d13974e3cfb3283", + "77c43e3b70e244cfbdc97b60fabf75d4", + "9761b6144bff43e68155f661d777813d", + "5cb7eb9c39dc4ea6afbea5abce584d88", + "2966bbae3f8641f2a283bdcc1ed28033", + "f20624e96bcc46da8201c667f5affd34", + "1ad7fd19b2a14e138f58820275a3278c", + "1221b14e6fb44d9ab96518acd53bcb39", + "403355da7c0c452aa01188dec9f5197a", + "3fd821e5df744d36979ed8e4c21a64ab", + "3112012c724349f9a63467df384246bf", + "96c381aafc6c41de80080a60c6bd3433", + "41495fb3d42c4d88be5a5a883d3c3bc6", + "3be3d246e0424d1e94a921b94e1e0d9c", + "b59177f7df2e49bd8b499f81b70f6a36", + "df5c71b2fdf34623aa3b78871280b391", + "e68bc4e082df4493ba36e26684b62fa0", + "c3109b609f56431188eda471f4755219", + "1e28979e830648b1b3b4291d99eacb9b", + "8f0597ac3d684a55bb50b09036d76fd4", + "e8100f2fe07643b280aef789317c55e4", + "31df91153fe447bf8b4d5c2fbbded6e1", + "4dbed5e2c47f45f6b8617d13f14b743a", + "40d33cdc4f7d471e99668c2141a92e92", + "8fefa52620ae4ae798bb8698856404ae", + "9d28f57475024725b8ad8e8e66376c08", + "dd221f9487144800895f876010e45db1", + "f467e34102c644b3bb68bedb0fccf318", + "636701c209594d84bbbb6cd5dd620951", + "5e613d9d31f34b8883d8d0afae83cae7", + "37588cf454af45ad8a1c2c6ffb8c1dab", + "4ec0631a9829472fbf88cac4607a57f9" + ] + }, + "id": "K0ZN58bEjYFk", + "outputId": "4da5197e-fde3-4389-833d-e760aafed948" }, "outputs": [], "source": [ - "rdf_graph, adb_mapping = adbrdf.arangodb_graph_to_rdf(\"GameOfThrones\", rdf_graph=Graph(), list_conversion_mode=\"collection\", infer_type_from_adb_v_col=True, include_adb_key_statements=True)\n", - "print(rdf_graph.serialize())" + "# PGT\n", + "rdf_graph = adbrdf.arangodb_graph_to_rdf(\n", + " \"OPEN_INTELLIGENCE_ANGOLA\",\n", + " Graph(),\n", + " list_conversion_mode=\"serialize\",\n", + " dict_conversion_mode=\"serialize\",\n", + " include_adb_v_col_statements=True,\n", + " include_adb_v_key_statements=True,\n", + " include_adb_e_key_statements=True,\n", + ")\n", + "\n", + "\n", + "adb_graph = adbrdf.rdf_to_arangodb_by_pgt(\n", + " \"OPEN_INTELLIGENCE_ANGOLA\",\n", + " rdf_graph,\n", + " overwrite_graph=True\n", + ")\n", + "\n", + "property_v_count = adb_graph.vertex_collection(\"Property\").count()\n", + "\n", + "new_v_count, new_e_count = get_adb_graph_count(\"OPEN_INTELLIGENCE_ANGOLA\")\n", + "\n", + "assert original_v_count == new_v_count - property_v_count\n", + "assert original_e_count == new_e_count" ] } ], @@ -1582,15 +2984,14 @@ "44mc2EvIAzDy", "yRuJ3OIGE2Yr", "KnQifktFAxHx", - "7y81WHO8eG8_", "QfE_tKxneG9A", - "znQCjOwt7zBz", "0qry3Bcy-160", - "mRutdKii-Pk5", "0SWi4e3wIMtw", "9gBg-hDs77i7", - "UCQ9ppnUQa7e", - "uxp9AW7kQkM5" + "7mNWLGGTUipj", + "-FTakjQKUoWW", + "qddfFNtaUpoo", + "RGivoIz5Uv_-" ], "provenance": [] }, diff --git a/examples/notebook_output/ArangoRDF_output.ipynb b/examples/notebook_output/ArangoRDF_output.ipynb index d009101e..067c48c5 100644 --- a/examples/notebook_output/ArangoRDF_output.ipynb +++ b/examples/notebook_output/ArangoRDF_output.ipynb @@ -8,8 +8,8 @@ "source": [ "# **ArangoRDF**\n", "\n", - "\"rdf\"\n", - "\"rdf\"" + "\"rdf\"\n", + "\"rdf\"" ] }, { @@ -30,9 +30,9 @@ "outputs": [], "source": [ "%%capture\n", + "!pip install arango-datasets\n", "!pip install adb-cloud-connector\n", - "!pip install arango-rdf==0.1.0\n", - "!git clone https://github.com/ArangoDB-Community/ArangoRDF.git" + "!pip install arango-rdf" ] }, { @@ -43,14 +43,31 @@ }, "outputs": [], "source": [ - "from adb_cloud_connector import get_temp_credentials\n", - "from arango import ArangoClient\n", "import json\n", "\n", - "from rdflib import Graph, ConjunctiveGraph, URIRef, Literal, Namespace\n", - "from rdflib.namespace import RDFS, XSD\n", + "# ArangoDB\n", + "from arango import ArangoClient\n", + "from arango_rdf import ArangoRDF\n", + "from arango_datasets import Datasets\n", + "from adb_cloud_connector import get_temp_credentials\n", "\n", - "from arango_rdf import ArangoRDF" + "# RDF\n", + "from rdflib import Graph, ConjunctiveGraph, URIRef, Literal, Namespace\n", + "from rdflib.namespace import RDFS, XSD" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "9L0Q4cGTMGMG" + }, + "outputs": [], + "source": [ + "def get_graph(data: str, is_conjunctive_graph: bool = False) -> Graph:\n", + " g = ConjunctiveGraph() if is_conjunctive_graph else Graph()\n", + " g.parse(data=data, format='trig' if is_conjunctive_graph else 'ttl')\n", + " return g" ] }, { @@ -105,408 +122,408 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { - "id": "xiRxsYqY52BJ", - "outputId": "ceda6040-6c4a-4076-eda0-3d119fee3a94", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "xiRxsYqY52BJ", + "outputId": "adcd539c-dcf5-4e89-ab50-091406af9832" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_alignment\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantiko\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://vi.dbpedia.org/resource/Mạng_ngữ_nghĩa\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/topics yes\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs https://global.dbpedia.org/id/4jzLX\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://de.dbpedia.org/resource/Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/birthPlace\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/commons Category:Semantic Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Con il termine web semantico, termine coniato dal suo ideatore, Tim Berners-Lee, si intende la trasformazione del World Wide Web in un ambiente dove i documenti pubblicati (pagine HTML, file, immagini, e così via) sono associati ad informazioni e dati (metadati) che ne specificano il contesto semantico in un formato adatto all'interrogazione e all'interpretazione (es. tramite motori di ricerca) e, più in generale, all'elaborazione automatica.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sr.dbpedia.org/resource/Семантички_веб\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Biology\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tacit_knowledge\n", "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/RDF_example.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Web Semantik (Web Bermakna) merujuk kepada teknik yang memungkinkan konten pada Web untuk dapat lebih dimengerti oleh komputer. Istilah Web Semantik itu sendiri dicetuskan oleh Tim Berners-Lee, penemu World Wide Web. Sekarang, prinsip Web Semantik disebut-sebut akan muncul pada Web 3.0, generasi ketiga dari World Wide Web. Bahkan, Web 3.0 itu sendiri sering disamakan dengan Web Semantik. Teknologi Web Semantik ini antara lain adalah RDF, OWL dan SPARQL.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_network\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://es.dbpedia.org/resource/Web_semántica\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Concept\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantically-Interlinked_Online_Communities\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Age104924103\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/W3C_XML_Schema\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/WikicatWebServices\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment セマンティック・ウェブ(英: semantic web)は W3C のティム・バーナーズ=リーによって提唱された、ウェブページの意味を扱うことを可能とする標準やツール群の開発によってワールド・ワイド・ウェブの利便性を向上させるプロジェクト。セマンティック・ウェブの目的はウェブページの閲覧という行為に、データの交換の側面に加えて意味の疎通を付け加えることにある。 現在のワールド・ワイド・ウェブ上のコンテンツは主にHTMLで記述されている。HTMLでは文書構造を伝えることは可能だが、個々の単語の意味をはじめとする詳細な意味を伝えることはできない。これに対し、セマンティック・ウェブはXMLによって記述した文書にRDFやOWLを用いてタグを付け加える。この、データの意味を記述したタグが文書の含む意味を形式化し、コンピュータによる自動的な情報の収集や分析へのアプローチが可能となると期待されている。オントロジーを扱う階層まではW3Cにより標準化されているが、それ以上の階層の開発は難しいため、実現と標準化には長期間掛かると予想されている。また、既存のWebサイトに対するメタデータ付与の作業が必要であるため、Web全域への普及に関しても長期間掛かると予想されている。 近年では、Google検索のリッチスニペットなどの応用例が存在する。\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:R\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_web_service\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Ο Σημασιολογικός Ιστός (Web 3.0 ή Semantic Web στα αγγλικά) είναι μια επέκταση του σημερινού Ιστού, που θα φέρει δομή στο ουσιαστικό περιεχόμενο των ιστοσελίδων. Η λογική πίσω από αυτό είναι ότι η δημοσιευμένη πληροφορία θα περιέχει μεταδεδομένα, τα οποία θα είναι κοινά για όλους, θα μπορούν να «κατανοούνται» και από μηχανές, οι οποίες θα βοηθήσουν στην καλύτερη συλλογή και επεξεργασία τους. Στον επιχειρηματικό τομέα, θα υπάρχει καλύτερη οργάνωση των εταιριών, καλύτερες εμπειρίες για τους χρήστες στις διαδικτυακές αγορές και καλύτερος συντονισμός μεταξύ διαφορετικών εταιριών.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Branches_of_science\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://gl.dbpedia.org/resource/Web_semántica\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Data_model\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Altavista\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/n no\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Knowledge_engineering\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantiska webben är ett begrepp myntat av World Wide Web Consortiums (W3C) chef Tim Berners-Lee, som också är skapare av världswebben (WWW). Begreppet beskriver metoder och teknik för att möjliggöra för maskiner att förstå innebörden eller \"semantiken\" i informationen på webben. Den ursprungliga visionen var att tillgången på maskinläsbara metadata skulle möjliggöra för automatiska agenter och annan programvara att ansluta till internet på ett mer intelligent sätt.\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://th.dbpedia.org/resource/เว็บเชิงความหมาย\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment 语义网(英语:Semantic Web)是由万维网联盟的蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,它的核心是:通过给万维网上的文档(如: HTML文档)添加能够被计算机所理解的语义(元数据),从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。不过语意网概念实际上是基于很多已有技术的,也依赖于后来和text-and-markup与知识表现的综合。 \"语义\"网是由比现今成熟的网际搜索工具更加行之有效的、更加广泛意义的并且自动聚集和搜集信息的文档组成的。其最基本的元素就是。\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:RDF_example.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cognitive_science\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Clear\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Resource_(computer_science)\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ru.dbpedia.org/resource/Семантическая_паутина\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Human_science\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_computing\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sr.dbpedia.org/resource/Семантички_веб\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label 시맨틱 웹\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Automated_reasoning_system\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/User_agent\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment El Web semàntic és un projecte que té com a objectiu crear un medi universal per a l'intercanvi d'informació significativa (semàntica), d'una forma comprensible per a les màquines, del contingut dels documents de la Web. Amb això es pretén ampliar la interoperabilitat dels sistemes informàtics i reduir la mediació dels operadors humans en els processos intel·ligents de flux d'informació. El pare de la idea, Tim Berners-Lee, creador del Web i fundador del W3C, proposa que la Web semàntica serveixi per a ampliar la capacitat de la World Wide Web mitjançant els , els llenguatges d'etiquetatge i altres eines de processament relacionades.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label ويب دلالي\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_base\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_(journal)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Quote\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ora_Lassila\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://www.wikidata.org/entity/Q1731\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/d Q54837\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment La web semántica (del inglés semantic web) es un conjunto de actividades desarrolladas en el seno de World Wide Web Consortium con tendencia a la creación de tecnologías para publicar datos legibles por aplicaciones informáticas (máquinas en la terminología de la Web semántica).​ Se basa en la idea de añadir metadatos semánticos y ontológicos a la World Wide Web. Esas informaciones adicionales —que describen el contenido, el significado y la relación de los datos— se deben proporcionar de manera formal, para que así sea posible evaluarlas automáticamente por máquinas de procesamiento. El objetivo es mejorar Internet ampliando la interoperabilidad entre los sistemas informáticos usando \"agentes inteligentes\". Agentes inteligentes son programas en las computadoras que buscan información sin \n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hyperlink\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/Person\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ta.dbpedia.org/resource/வலை_3.0\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Property104916342\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment セマンティック・ウェブ(英: semantic web)は W3C のティム・バーナーズ=リーによって提唱された、ウェブページの意味を扱うことを可能とする標準やツール群の開発によってワールド・ワイド・ウェブの利便性を向上させるプロジェクト。セマンティック・ウェブの目的はウェブページの閲覧という行為に、データの交換の側面に加えて意味の疎通を付け加えることにある。 現在のワールド・ワイド・ウェブ上のコンテンツは主にHTMLで記述されている。HTMLでは文書構造を伝えることは可能だが、個々の単語の意味をはじめとする詳細な意味を伝えることはできない。これに対し、セマンティック・ウェブはXMLによって記述した文書にRDFやOWLを用いてタグを付け加える。この、データの意味を記述したタグが文書の含む意味を形式化し、コンピュータによる自動的な情報の収集や分析へのアプローチが可能となると期待されている。オントロジーを扱う階層まではW3Cにより標準化されているが、それ以上の階層の開発は難しいため、実現と標準化には長期間掛かると予想されている。また、既存のWebサイトに対するメタデータ付与の作業が必要であるため、Web全域への普及に関しても長期間掛かると予想されている。 近年では、Google検索のリッチスニペットなどの応用例が存在する。\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDFS\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Social_Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Семантична павутина (англ. Semantic web) — нова концепція розвитку Всесвітньої павутини і мережі Інтернет, яка створена і впроваджується Консорціумом Всесвітньої павутини (англ. World Wide Web Consortium, W3C). Інші назви — семантичний веб, семантична мережа. Хоча поняття семантична мережа, яке виникло раніше, породило поняття семантична павутина, їх слід відокремлювати. Термін вперше запровадив Тім Бернерс-Лі в травні 2001 року в журналі «Scientific American»\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantika Reto\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Семанти́ческая паути́на (от англ. semantic web) — общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label ويب دلالي\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Cite_journal\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Entity–attribute–value_model\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantika Reto (Angle:Semantic web) estas nova koncepto pri evoluo de Interreto, kiun alprenis kaj disvastigas Konsorcio de la Tutmonda Teksaĵo. Iufoje oni ĝin nomas Semantika Teksaĵo, Semantika Plekto.Tiu koncepto permesas publikigi, konsulti, kaj speciale aŭtomatigi la traktadon de sciadoj strukturitaj.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Defeasible_reasoning\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Microdata_(HTML)\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Further\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Mastodon_(software)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Artificial_intelligence\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Семанти́ческая паути́на (от англ. semantic web) — общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки. В обычной Всемирной паутине, основанной на HTML-страницах, информация заложена в тексте страниц и предназначена для чтения и понимания человеком. Семантическая паутина состоит из машинно-читаемых элементов — узлов семантической сети, с опорой на онтологии. Благодаря этому программы-клиенты получают возможность непосредственно получать из интернета утверждения вида «предмет — вид взаимосвязи — другой предмет» и вычислять по ним логические заключения. Семантическая паутина работает параллельно с обычной Всемирной паутиной и на её основе, используя протокол HTTP и идентификаторы ресурсов URI. Название «Семантическая паутина» было впервые введено Тимом Бернерсом-Ли (изобретателем Всемирной паутины) в сентябре 1998 года, и называется им «следующим шагом в развитии Всемирной паутины». Позже в своём блоге он предложил в качестве синонима термин «гигантский глобальный граф» (англ. giant global graph, GGG, по аналогии с WWW). Концепция семантической паутины была принята и продвигается консорциумом Всемирной паутины.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/E-learning\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_browser\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Short_description\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semàntic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Multi-agent_systems\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/Person\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/API\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet_of_things\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://d-nb.info/gnd/4688372-1\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/infocom yes\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Service100577525\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Digital_humanities\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cory_Doctorow\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Machine-readable_data\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Spamming\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:RDF_example.svg\n", + "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Meta-data\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/WikicatInternetAges\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Simple_Knowledge_Organization_System\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://eo.dbpedia.org/resource/Semantika_Reto\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Work100575741\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Thing\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tim_Berners-Lee\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Communication100033020\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/List_of_emerging_technologies\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://cacm.acm.org/magazines/2021/2/250085-a-review-of-the-semantic-web-field/fulltext%7Cdoi-access=free\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Code\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTML\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Deductive_reasoning\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Identifier\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Italics\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageLength 48380\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/User_agent\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Turtle_(syntax)\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://nl.dbpedia.org/resource/Semantisch_web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Distributed_artificial_intelligence\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Clear\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fa.dbpedia.org/resource/وب_معنایی\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linguistics\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_science\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://pt.dbpedia.org/resource/Web_semântica\n", + "http://dbpedia.org/resource/Semantic_Web http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Extension\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://bg.dbpedia.org/resource/Семантична_мрежа\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Metacrap\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Amazon.com\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Timo_Honkela\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Scholia\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Σημασιολογικός Ιστός\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Giant_Global_Graph\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web3\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Probabilistic_logic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Computational_semantics\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantiska webben är ett begrepp myntat av World Wide Web Consortiums (W3C) chef Tim Berners-Lee, som också är skapare av världswebben (WWW). Begreppet beskriver metoder och teknik för att möjliggöra för maskiner att förstå innebörden eller \"semantiken\" i informationen på webben. Den ursprungliga visionen var att tillgången på maskinläsbara metadata skulle möjliggöra för automatiska agenter och annan programvara att ansluta till internet på ett mer intelligent sätt. Även om termen \"semantiska webben\" inte är formellt definierad, så används den för att beskriva den modell och de tekniker som föreslagits av W3C. Dessa tekniker inkluderar Resource Description Framework (RDF), olika format för datautbyte (till exempel RDF / XML, JSON-LD, Notation 3, Turtle, N-Tripplar och notationer som RDF Schema och Web Ontology Language (OWL), som alla syftar till att ge en formell beskrivning av koncept, termer och relationer inom ett givet kunskapsområde. Många av de tekniker som föreslagits av W3C finns redan och används i olika projekt. Den semantiska webben som en global vision har dock inte ännu realiserats, och dess kritiker har ifrågasatt om tillvägagångssättet är möjligt. Dessutom har andra tekniker med liknande mål, till exempel mikroformat, utvecklats, vilka inte alltid beskrivs som \"den semantiska webben\".\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTTP\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDFS\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/b Semantic Web\n", + "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/RDF_example_extended.svg\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_data\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Emerging_technologies\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Σημασιολογικός Ιστός\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Attribute100024264\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semântica\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://no.dbpedia.org/resource/Semantisk_web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Microformat\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ar.dbpedia.org/resource/ويب_دلالي\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ur.dbpedia.org/resource/رابط_معنائی\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantiska webben\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Use_American_English\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cognitive_science\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Activity100407535\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Description_logic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Allan_M._Collins\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Entity–relationship_model\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Web_services\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Message106598915\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hyperlink\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Meaning_(linguistics)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageInterLanguageLink http://commons.dbpedia.org/resource/File:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_Data\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://id.dbpedia.org/resource/Web_semantik\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_translation\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/WikicatInternetAges\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Act100030358\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Folksonomy\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/itemtype%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Cite_journal\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_integration\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Metadata\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Web semantikoa (semantic web) World Wide Web Consortiumen muinean garatutako jarduera multzo bat da, aplikazio informatikoek datu irakurgarriak argitaratzeko teknologia bermatzen duena. World Wide Webari metadatu ontologiko eta semantikoak gehitzeko ideian oinarritzen da. Helburua interneta hobetzea da sistema informatikoen elkargarritasuna handituz, eragile adimenduak erabiliz. Eragile adimenduak informazioa era automatikoan eta gizakien laguntzarik gabe bilatzen duten programa informatikoak dira. Ideia honen aitzindaria, Tim Berners-Lee, hasieratik saiatu zen informazio semantikoa sartzen haren sorkuntzan (World Wide Web), baina arazo desberdinengatik ez zuen lortu. Arrazoi horrengatik landu zuen semantika.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://gl.dbpedia.org/resource/Web_semántica\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Biology\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Data_sharing\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Amazon.com\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Семанти́ческая паути́на (от англ. semantic web) — общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ora_Lassila\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Free_University_of_Berlin\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_engineering\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Citation_needed\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_alignment\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/JSON-LD\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Authority_control\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/N-Triples\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_Ontology_Language\n", + "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Internet_ages\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_Rule_Language\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Metadata\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Div_col_end\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_Open_Data\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/SPARQL\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web sémantique\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Quote\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Het semantisch web verschaft een framework waarmee gegevens kunnen worden gedeeld en hergebruikt. Het is een samenwerking onder leiding van het internationale orgaan voor internetstandaarden, het World Wide Web Consortium W3C. Het semantisch web is een uitbreiding van het internet, om de uitwisseling van gegevens tussen de deelnemers, tussen alle nodes, efficiënter te laten verlopen. Open data zijn de vrij beschikbare informatie, die door het semantisch web wordt gebruikt.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ca.dbpedia.org/resource/Web_semàntic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_matching\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_search_engine\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Computable_knowledge\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_crawler\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/W3C_XML_Schema\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/MusicGenre\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_social_network\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://is.dbpedia.org/resource/Merkingarvefur\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_overload\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment A Web semântica é uma extensão da World Wide Web que permite aos computadores e humanos trabalharem em cooperação. Ela interliga significados de palavras e, neste âmbito, tem como finalidade conseguir atribuir um significado (sentido) aos conteúdos publicados na Internet de modo que seja compreensível tanto pelo humano como pelo computador. A ideia da Web semântica surgiu em 2001, quando Tim Berners-Lee, James Hendler e Ora Lassila publicaram um artigo na revista Scientific American, intitulado: “Web Semântica: um novo formato de conteúdo para a Web que tem significado para computadores vai iniciar uma revolução de novas possibilidades” (The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities).\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Medical_terminology\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://archive.org/details/isbn_9780470396797\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Fuzzy_logic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Digital_humanities\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/API\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ta.dbpedia.org/resource/வலை_3.0\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/birthPlace\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://de.dbpedia.org/resource/Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/FOAF_(software)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://example.org/semantic-web/%22%3ESemantic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract The Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. To enable the encoding of semantics with the data, technologies such as Resource Description Framework (RDF) and Web Ontology Language (OWL) are used. These technologies are used to formally represent metadata. For example, ontology can describe concepts, relationships between entities, and categories of things. These embedded semantics offer significant advantages such as reasoning over data and operating with heterogeneous data sources. These standards promote common data formats and exchange protocols on the Web, fundamentally the RDF. According to the W3C, \"The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries.\" The Semantic Web is therefore regarded as an integrator across different content and information applications and systems. The term was coined by Tim Berners-Lee for a web of data (or data web) that can be processed by machines—that is, one in which much of the meaning is machine-readable. While its critics have questioned its feasibility, proponents argue that applications in library and information science, industry, biology and human sciences research have already proven the validity of the original concept. Berners-Lee originally expressed his vision of the Semantic Web in 1999 as follows: I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. A \"Semantic Web\", which makes this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The \"intelligent agents\" people have touted for ages will finally materialize. The 2001 Scientific American article by Berners-Lee, Hendler, and Lassila described an expected evolution of the existing Web to a Semantic Web. In 2006, Berners-Lee and colleagues stated that: \"This simple idea…remains largely unrealized\".In 2013, more than four million Web domains (out of roughly 250 million total) contained Semantic Web markup.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet_censorship\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://el.dbpedia.org/resource/Σημασιολογικός_Ιστός\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Intelligent_text_analysis\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Principle_of_explosion\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_technology\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract El Web semàntic és un projecte que té com a objectiu crear un medi universal per a l'intercanvi d'informació significativa (semàntica), d'una forma comprensible per a les màquines, del contingut dels documents de la Web. Amb això es pretén ampliar la interoperabilitat dels sistemes informàtics i reduir la mediació dels operadors humans en els processos intel·ligents de flux d'informació. El pare de la idea, Tim Berners-Lee, creador del Web i fundador del W3C, proposa que la Web semàntica serveixi per a ampliar la capacitat de la World Wide Web mitjançant els , els llenguatges d'etiquetatge i altres eines de processament relacionades.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment 시맨틱 웹(Semantic Web)은 '의미론적인 웹'이라는 뜻으로,현재의 인터넷과 같은 분산환경에서 리소스(웹 문서, 각종 파일, 서비스 등)에 대한 정보와 자원 사이의 관계-의미 정보(Semanteme)를 기계(컴퓨터)가 처리할 수 있는 온톨로지 형태로 표현하고, 이를 자동화된 기계(컴퓨터)가 처리하도록 하는 프레임워크이자 기술이다. 웹의 창시자인 팀 버너스리가 1998년 제안했고 현재 W3C에 의해 표준화 작업이 진행 중이다.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://lt.dbpedia.org/resource/Semantinis_tinklas\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semántica\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://es.dbpedia.org/resource/Web_semántica\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_2.0\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Sémantický web\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Relational_database\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Institut_national_de_recherche_en_informatique_et_en_automatique\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/birthPlace%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/OpenAlex\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/XHTML\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://rdf.freebase.com/ns/m.0bbv9w2\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scalable_vector_graphics\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/Place%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment The Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. Berners-Lee originally expressed his vision of the Semantic Web in 1999 as follows:\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_science\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/Person%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Abstraction100002137\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Privacy\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://mk.dbpedia.org/resource/Семантичка_пајажина\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/birthPlace%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Семантическая паутина\n", - "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Web_services\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://it.dbpedia.org/resource/Web_semantico\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://nl.dbpedia.org/resource/Semantisch_web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Paraconsistent_logic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hypertext_Markup_Language\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_engineering\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantic Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet_censorship\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Code\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Authority_control\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Het semantisch web verschaft een framework waarmee gegevens kunnen worden gedeeld en hergebruikt. Het is een samenwerking onder leiding van het internationale orgaan voor internetstandaarden, het World Wide Web Consortium W3C. Het semantisch web is een uitbreiding van het internet, om de uitwisseling van gegevens tussen de deelnemers, tussen alle nodes, efficiënter te laten verlopen. Open data zijn de vrij beschikbare informatie, die door het semantisch web wordt gebruikt.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Geospatial_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ur.dbpedia.org/resource/رابط_معنائی\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Semantics\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://yago-knowledge.org/resource/Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_technology\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Allan_M._Collins\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Usability\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tag_(metadata)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_HTML\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://zh.dbpedia.org/resource/语义网\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract A Web semântica é uma extensão da World Wide Web que permite aos computadores e humanos trabalharem em cooperação. Ela interliga significados de palavras e, neste âmbito, tem como finalidade conseguir atribuir um significado (sentido) aos conteúdos publicados na Internet de modo que seja compreensível tanto pelo humano como pelo computador. A ideia da Web semântica surgiu em 2001, quando Tim Berners-Lee, James Hendler e Ora Lassila publicaram um artigo na revista Scientific American, intitulado: “Web Semântica: um novo formato de conteúdo para a Web que tem significado para computadores vai iniciar uma revolução de novas possibilidades” (The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities). A web semântica é a relação de interatividade do homem e o computador, onde um depende do outro para a conclusão de tarefas, assim ocorrendo a acepção de entendimento do comando estipulado do ser humano à interface operacional da máquina, dando um significado de ordem a ser executada. Sendo desta forma uma espécie de escrita de entendimento tanto para o computador e para usuário, por meio de organização das informações contidas na máquina, através do seu perfil de suas últimas pesquisas realizadas, originando um repositório de dados ligados, como se fosse um verbete de enciclopédia. Podemos fazer uma ligação da web semântica com a Ciência da Informação, pelo fato de possuir a ideia estrutural de arranjo sistêmico, agrupando um conjunto de coleta de análise, classificação, armazenamento, disseminação e recuperação de informação como se fosse uma enciclopédia. Esta ligação, entre a Ciência da Informação e a Web Semântica, pode ser encontrada no projeto da Rede Universal de Documentação de Paul Otlet, que assenta nos mesmos ideais. O objetivo principal da web semântica não é treinar as máquinas para que se comportem como pessoas, mas sim desenvolver tecnologias e linguagens que tornem a informação legível para as máquinas. A finalidade passa pelo desenvolvimento de um modelo tecnológico que permita a partilha global de conhecimento assistido por máquinas. A integração das linguagens ou tecnologias eXtensible Markup Language (XML), Resource Description Framework (RDF), arquiteturas de metadados, ontologias, agentes computacionais, entre outras, favorecerá o aparecimento de serviços Web que garantam a interoperabilidade e cooperação.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/GRDDL\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Unicode\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Frank_van_Harmelen\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_Navigator\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Ο Σημασιολογικός Ιστός (Web 3.0 ή Semantic Web στα αγγλικά) είναι μια επέκταση του σημερινού Ιστού, που θα φέρει δομή στο ουσιαστικό περιεχόμενο των ιστοσελίδων. Η λογική πίσω από αυτό είναι ότι η δημοσιευμένη πληροφορία θα περιέχει μεταδεδομένα, τα οποία θα είναι κοινά για όλους, θα μπορούν να «κατανοούνται» και από μηχανές, οι οποίες θα βοηθήσουν στην καλύτερη συλλογή και επεξεργασία τους. Ο Σημασιολογικός Ιστός βασίζεται σε τεχνολογίες που ήδη υπάρχουν (URI και XML) αλλά και σε νέες τεχνολογίες (RDF, RDFS, OWL, κα.), οι οποίες αναπτύσσονται με την βοήθεια της κοινότητας. Δεδομένου ότι ο νέος Ιστός σκοπεύει να είναι μια μεγάλη βάση όπου δεδομένα από διαφορετικά πεδία θα συνδέονται μεταξύ τους, αναμένεται να παίξει μεγάλο ρόλο στη ζωή μας. Μερικά από τα πεδία στα οποία αναμένεται να έχει την μεγαλύτερη επίδραση είναι στην υγεία, στην παιδεία και στις επιχειρήσεις. Υπάρχουν ήδη πολλές προσπάθειες από εταιρίες, ερευνητές και μη κερδοσκοπικές οργανώσεις για να παραγάγουν πρότυπα οντολογιών, κυρίως για τα παραπάνω πεδία, για να υπάρχουν κοινές γλώσσες και περισσότερα δεδομένα τα οποία να μπορούν να συνδυαστούν για καλύτερα αποτελέσματα. Στην υγεία, γίνεται προσπάθεια για τη δημιουργία ενοποιημένων γλωσσών ιατρικής ορολογίας και υπηρεσίες που θα βοηθάνε το ιατρικό προσωπικό και θα κατευθύνουν τους καταναλωτές σε αξιόπιστες πληροφορίες υγείας σχετικά με την κατάστασή τους. Στην εκπαίδευση, ο Σημασιολογικός Ιστός θα συμβάλει σημαντικά στην μάθηση κυρίως στον τρόπο αναζήτησης πληροφοριών, στην οργάνωση των αποτελεσμάτων και στη δημιουργία ενός προγράμματος μάθησης ειδικό για το καθένα. Στον επιχειρηματικό τομέα, θα υπάρχει καλύτερη οργάνωση των εταιριών, καλύτερες εμπειρίες για τους χρήστες στις διαδικτυακές αγορές και καλύτερος συντονισμός μεταξύ διαφορετικών εταιριών. Στην καθημερινότητά θα υπάρχουν επιδράσεις του Web 3.0 στα κοινωνικά δίκτυα και εικονικές κοινότητες. Θα υπάρχουν εφαρμογές, οι οποίες θα δίνουν περισσότερες, πιο έμπιστες, πληροφορίες και θα διευκολύνουν σημαντικά τις διαδικτυακές δραστηριότητες.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hypertext_Markup_Language\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/n no\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_query\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Sémantický web se má stát novým evolučním stupněm stávajícího webu. Jedná se o web, kde jsou informace strukturovány a uloženy podle standardizovaných pravidel, což usnadňuje jejich vyhledání a zpracování. Staví zejména na Resource Description Framework (RDF) a (OWL). Na specifikacích pro sémantický web pracuje World Wide Web Consortium (W3C). Myšlenku sémantického, neboli významového webu poprvé vyslovil Tim Berners-Lee v roce 2001, kdy upozornil na skutečnost, že současný web je pouze změť webových stránek, která neustále roste a ve které je stále složitější nalézt relevantní informace. Sémantický web je podle něj rozšířením současného webu, v němž informace mají přidělen dobře definovaný význam lépe umožňující počítačům a lidem spolupracovat. Sémantický web představuje reprezentaci dat na WWW. Je založen na technologii Resource Description Framework (RDF), která integruje širokou škálu aplikací využívajících syntaktický zápis v XML a identifikátory URI pro pojmenovávání. Znamená to tedy, že data prezentovaná na Internetu by měla mít přesně definovaný význam a dovolovat do značné míry automatizované (strojové) zpracování, které by se mělo realizovat pomocí softwarových agentů. Základním krokem k vytvoření sémantického webu je konceptualizace dat dostupných na Internetu, jejíž klíčovým nástrojem jsou ontologie, aneb formalizované reprezentace znalostí určené k jejich sdílení a znovupoužití. Sémantický web je dále založen na standardizovaném popisu webových zdrojů (vše, dosažitelné pomocí WWW, tedy textové dokumenty, obrázky, videosekvence, zvukové soubory apod.). Každý zdroj by byl vybaven stejnými charakteristikami údaji (autor, typ zdroje, klíčová slova atd.), což by umožnilo uživatelům Internetu pracovat se sítí WWW jako s relační databází a dotazovat se na její obsah prostřednictvím jazyků podobných SQL. Důraz by se kladl na vysokou přesnost a relevanci odpovědi na vyhledávací dotaz. Technologickým základem sémantického webu by se měl stát standard RDF (Resource Description Framework) - obecný rámec pro popis, výměnu a znovupoužití metadat. Poskytuje jednoduchý model pro popis zdrojů, který není závislý na konkrétní implementaci. Datový model RDF umožní specifikovat trojice (zdroj, vlastnost, hodnota vlastnosti). Tímto se jedná mimo jiné o přiřazení sémantiky webovým zdrojům, což je pro sémantický web klíčové. Sémantický web propaguje Tim Berners-Lee již řadu let, přesto se dosud nedočkal výrazného rozmachu, pravděpodobně protože je oproti stávajícímu webu příliš komplikovaný. Proto vznikají jednodušší způsoby, jak do stávajícího webu snadno přidat sémantickou informaci: Mikroformáty a RDFa.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Inference\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Communication100033020\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Семантична павутина (англ. Semantic web) — нова концепція розвитку Всесвітньої павутини і мережі Інтернет, яка створена і впроваджується Консорціумом Всесвітньої павутини (англ. World Wide Web Consortium, W3C). Інші назви — семантичний веб, семантична мережа. Хоча поняття семантична мережа, яке виникло раніше, породило поняття семантична павутина, їх слід відокремлювати. Термін вперше запровадив Тім Бернерс-Лі в травні 2001 року в журналі «Scientific American»\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://www.w3.org/2002/07/owl%23equivalentClass%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://el.dbpedia.org/resource/Σημασιολογικός_Ιστός\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://uk.dbpedia.org/resource/Семантична_павутина\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Web Semantik (Web Bermakna) merujuk kepada teknik yang memungkinkan konten pada Web untuk dapat lebih dimengerti oleh komputer. Istilah Web Semantik itu sendiri dicetuskan oleh Tim Berners-Lee, penemu World Wide Web. Sekarang, prinsip Web Semantik disebut-sebut akan muncul pada Web 3.0, generasi ketiga dari World Wide Web. Bahkan, Web 3.0 itu sendiri sering disamakan dengan Web Semantik. Teknologi Web Semantik ini antara lain adalah RDF, OWL dan SPARQL.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/name%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantics\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tim_O'Reilly\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/DBpedia\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Multi-agent_systems\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Extensibility\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_overload\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Sémantický web se má stát novým evolučním stupněm stávajícího webu. Jedná se o web, kde jsou informace strukturovány a uloženy podle standardizovaných pravidel, což usnadňuje jejich vyhledání a zpracování. Staví zejména na Resource Description Framework (RDF) a (OWL). Na specifikacích pro sémantický web pracuje World Wide Web Consortium (W3C).\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Abstraction100002137\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Anchor\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/Person%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTML_element\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Buzzword106608277\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://pt.dbpedia.org/resource/Web_semântica\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://data.wordlift.io/wl0216/entity/semantic_web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Concept\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Trust_service\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Semantics\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ar.dbpedia.org/resource/ويب_دلالي\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantico\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/MIT_Press\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Computational_semantics\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Het semantisch web verschaft een framework waarmee gegevens kunnen worden gedeeld en hergebruikt. Het is een samenwerking onder leiding van het internationale orgaan voor internetstandaarden, het World Wide Web Consortium W3C. Het semantisch web is een uitbreiding van het internet, om de uitwisseling van gegevens tussen de deelnemers, tussen alle nodes, efficiënter te laten verlopen. Open data zijn de vrij beschikbare informatie, die door het semantisch web wordt gebruikt.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Nonsense106607339\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ko.dbpedia.org/resource/시맨틱_웹\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantik\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/v no\n", + "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Semantic_web_stack.svg\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/W3C\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_network\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scholia\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment 시맨틱 웹(Semantic Web)은 '의미론적인 웹'이라는 뜻으로,현재의 인터넷과 같은 분산환경에서 리소스(웹 문서, 각종 파일, 서비스 등)에 대한 정보와 자원 사이의 관계-의미 정보(Semanteme)를 기계(컴퓨터)가 처리할 수 있는 온톨로지 형태로 표현하고, 이를 자동화된 기계(컴퓨터)가 처리하도록 하는 프레임워크이자 기술이다. 웹의 창시자인 팀 버너스리가 1998년 제안했고 현재 W3C에 의해 표준화 작업이 진행 중이다.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://eo.dbpedia.org/resource/Semantika_Reto\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Entity–relationship_model\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_(information_science)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Computable_knowledge\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:'%22\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fr.dbpedia.org/resource/Web_sémantique\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment إن ورود المعلومات على الإنترنت يزداد بشكل كبير، فقد أصبح الإنترنت مكانًا للتعبير عن الأفكار، سرد القصص، إنشاء المدونات ومشاركة الفيديوهات والصور والملفات الصوتية وما إلى ذلك. وهو ما جعل كمّ المعلومات المتوفرة للفرد الواحد أكبر بكثير مما يُمكن له أن يستفيد منه. تعريض العقل البشري لهذا الكم الهائل من المعلومات من شأنه أن يتسبب فيما يُمكن أن نصفه بوصف «الضياع في فضاء المعلومات»، وذلك راجع إلى بقاء المعلومات المفيدة بعيدة المنال بسبب تراكم الكثير من المعلومات غير المفيدة وغير المرتبطة بالموضوع المراد البحث عنه من قبل المستخدم. لحسن الحظ، مثلما يزداد ورود المعلومات، تزداد مقدرات معالجة المعلومات اوتوماتيكياً، لذا يوجد إمكانيات كبيرة للاستفادة من مقدرات الأتمتة هذه بهدف استخراج المعلومات والخدمات من فيضان الويب والمرتبطة بالمستخدم، وتوصيلها إليه عن طريق واجهة مستخدم معيارية (Standardized User In\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Aaron_Swartz\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract 语义网(英语:Semantic Web)是由万维网联盟的蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,它的核心是:通过给万维网上的文档(如: HTML文档)添加能够被计算机所理解的语义(元数据),从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。不过语意网概念实际上是基于很多已有技术的,也依赖于后来和text-and-markup与知识表现的综合。 \"语义\"网是由比现今成熟的网际搜索工具更加行之有效的、更加广泛意义的并且自动聚集和搜集信息的文档组成的。其最基本的元素就是。\n", - "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://he.dbpedia.org/resource/רשת_סמנטית\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Das Semantic Web erweitert das Web, um Daten zwischen Rechnern einfacher austauschbar und für sie einfacher verwertbar zu machen; so kann beispielsweise das Wort „Bremen“ in einem Webdokument um die Information ergänzt werden, ob hier der Begriff des Schiffs-, Familien- oder Stadtnamens gemeint ist. Diese zusätzlichen Informationen explizieren die sonst nur unstrukturiert vorkommenden Daten. Zur Realisierung dienen Standards zur Veröffentlichung und Nutzung maschinenlesbarer Daten (insbesondere RDF).Während Menschen solche Informationen aus dem gegebenen Kontext schließen können (aus dem Gesamttext, über die Art der Publikation oder der Rubrik in selbiger, Bilder etc.) und derartige Verknüpfungen unbewusst aufbauen, muss Maschinen dieser Kontext erst beigebracht werden; hierzu werden die Inhalte mit weiterführenden Informationen verknüpft. Das Semantic Web beschreibt dazu konzeptionell einen „Giant Global Graph“ (engl. ‚gigantischer globaler Graph‘). Dabei werden sämtliche Dinge von Interesse identifiziert und mit einer eindeutigen Adresse versehen als Knoten angelegt, die wiederum durch Kanten (ebenfalls jeweils eindeutig benannt) miteinander verbunden sind. Einzelne Dokumente im Web beschreiben dann eine Reihe von Kanten, und die Gesamtheit all dieser Kanten entspricht dem globalen Graphen.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Emerging_technologies\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Giant_Global_Graph\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://bg.dbpedia.org/resource/Семантична_мрежа\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageLength 48380\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label 语义网\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://rdf.freebase.com/ns/m.0bbv9w2\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tacit_knowledge\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/Person\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/ActivityPub\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Message106598915\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.w3.org/1999/02/22-rdf-syntax-ns%23type%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Семантична павутина (англ. Semantic web) — нова концепція розвитку Всесвітньої павутини і мережі Інтернет, яка створена і впроваджується Консорціумом Всесвітньої павутини (англ. World Wide Web Consortium, W3C). Інші назви — семантичний веб, семантична мережа. Хоча поняття семантична мережа, яке виникло раніше, породило поняття семантична павутина, їх слід відокремлювати. Концепція полягає у впровадженні спільних, стандартних форматів даних у Мережі. Для заохочення впровадження семантичного форматування сторінок, пропонується змінювати структуру вже існуючих, не структурованих чи частково-структурованих сторінок у «мережу даних». Створення семантичної Мережі полягає у застосуванні середовища опису ресурсів (RDF). Термін вперше запровадив Тім Бернерс-Лі в травні 2001 року в журналі «Scientific American»\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract El Web semàntic és un projecte que té com a objectiu crear un medi universal per a l'intercanvi d'informació significativa (semàntica), d'una forma comprensible per a les màquines, del contingut dels documents de la Web. Amb això es pretén ampliar la interoperabilitat dels sistemes informàtics i reduir la mediació dels operadors humans en els processos intel·ligents de flux d'informació. El pare de la idea, Tim Berners-Lee, creador del Web i fundador del W3C, proposa que la Web semàntica serveixi per a ampliar la capacitat de la World Wide Web mitjançant els , els llenguatges d'etiquetatge i altres eines de processament relacionades.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract La web semántica (del inglés semantic web) es un conjunto de actividades desarrolladas en el seno de World Wide Web Consortium con tendencia a la creación de tecnologías para publicar datos legibles por aplicaciones informáticas (máquinas en la terminología de la Web semántica).​ Se basa en la idea de añadir metadatos semánticos y ontológicos a la World Wide Web. Esas informaciones adicionales —que describen el contenido, el significado y la relación de los datos— se deben proporcionar de manera formal, para que así sea posible evaluarlas automáticamente por máquinas de procesamiento. El objetivo es mejorar Internet ampliando la interoperabilidad entre los sistemas informáticos usando \"agentes inteligentes\". Agentes inteligentes son programas en las computadoras que buscan información sin operadores humanos. El precursor de la idea, Tim Berners-Lee, intentó desde el principio incluir información semántica en su creación, la World Wide Web, pero por diferentes causas no fue posible.​ Por ese motivo introdujo el concepto de semántica con la intención de recuperar dicha omisión.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantika Reto\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTML\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_resource\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Uniform_Resource_Identifier\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Extensibility\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://it.dbpedia.org/resource/Web_semantico\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDFa\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Knowledge_engineering\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:About\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:RDF_example_extended.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/World_Wide_Web_Consortium\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/infocom yes\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Spamming\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cascading_Style_Sheets\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hyperdata\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ko.dbpedia.org/resource/시맨틱_웹\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/JSON-LD\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Scholia\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Семанти́ческая паути́на (от англ. semantic web) — общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки. В обычной Всемирной паутине, основанной на HTML-страницах, информация заложена в тексте страниц и предназначена для чтения и понимания человеком. Семантическая паутина состоит из машинно-читаемых элементов — узлов семантической сети, с опорой на онтологии. Благодаря этому программы-клиенты получают возможность непосредственно получать из интернета утверждения вида «предмет — вид взаимосвязи — другой предмет» и вычислять по ним логические заключения. Семантическая паутина работает параллельно с обычной Всемирной паутиной и на её основе, используя протокол HTTP и идентификаторы ресурсов URI. Название «Семантическая паутина» было впервые введено Тимом Бернерсом-Ли (изобретателем Всемирной паутины) в сентябре 1998 года, и называется им «следующим шагом в развитии Всемирной паутины». Позже в своём блоге он предложил в качестве синонима термин «гигантский глобальный граф» (англ. giant global graph, GGG, по аналогии с WWW). Концепция семантической паутины была принята и продвигается консорциумом Всемирной паутины.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/ERDF_(data_format)\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Activity100407535\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://pl.dbpedia.org/resource/Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Knowledge_engineering\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Microdata_(HTML)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_learning\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://tr.dbpedia.org/resource/Anlamsal_ağ\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_HTML\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://simple.dbpedia.org/resource/Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/2002/07/owl#Thing\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Internet_ages\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract إن ورود المعلومات على الإنترنت يزداد بشكل كبير، فقد أصبح الإنترنت مكانًا للتعبير عن الأفكار، سرد القصص، إنشاء المدونات ومشاركة الفيديوهات والصور والملفات الصوتية وما إلى ذلك. وهو ما جعل كمّ المعلومات المتوفرة للفرد الواحد أكبر بكثير مما يُمكن له أن يستفيد منه. تعريض العقل البشري لهذا الكم الهائل من المعلومات من شأنه أن يتسبب فيما يُمكن أن نصفه بوصف «الضياع في فضاء المعلومات»، وذلك راجع إلى بقاء المعلومات المفيدة بعيدة المنال بسبب تراكم الكثير من المعلومات غير المفيدة وغير المرتبطة بالموضوع المراد البحث عنه من قبل المستخدم. لحسن الحظ، مثلما يزداد ورود المعلومات، تزداد مقدرات معالجة المعلومات اوتوماتيكياً، لذا يوجد إمكانيات كبيرة للاستفادة من مقدرات الأتمتة هذه بهدف استخراج المعلومات والخدمات من فيضان الويب والمرتبطة بالمستخدم، وتوصيلها إليه عن طريق واجهة مستخدم معيارية (Standardized User Interface). إن أهمية الحصول على المعلومات بهذه الطريقة التكيفية يزداد بازدياد كتلة المعلومات المتوفرة على الإنترنت. تعتبر شبكة الويب أغنى المصادر المعلوماتية بما تحويه من مستندات ومعلومات ومصادر منوعة يمكن الوصول إليها عن طريق محركات البحث التقليدية. غير أن تنظيم هذه المعلومات والمستندات بصورة تسهل عملية البحث فيها والوصول إليها، يعتبر أمراً غاية في الصعوبة. يضاف إلى ذلك، أنه في ظل التزايد المستمر في حجم المعلومات المنشورة في شبكة الويب أصبح من الصعوبة بمكان قيام محركات البحث بإيجاد المعلومات المناسبة. ومن هذه المشكلة ظهرت فكرة «الويب ذات الدلالات والمعاني اللفظية»، أو ما يطلق عليه بالإنجليزية مصطلح (Semantic Web)، والتي هي امتداد للويب الحالية ولكن تختلف عنها بأنها تتفهم مدلولات الألفاظ والمعاني البشرية.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Sensor_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cryptography\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/s no\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_Ontology_Language\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Calais_(Reuters_product)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Machine-readable_data\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Nonsense106607339\n", - "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Internet_ages\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/MusicGenre\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Entity–attribute–value_model\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Tag\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Timo_Honkela\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantiska webben\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Ο Σημασιολογικός Ιστός (Web 3.0 ή Semantic Web στα αγγλικά) είναι μια επέκταση του σημερινού Ιστού, που θα φέρει δομή στο ουσιαστικό περιεχόμενο των ιστοσελίδων. Η λογική πίσω από αυτό είναι ότι η δημοσιευμένη πληροφορία θα περιέχει μεταδεδομένα, τα οποία θα είναι κοινά για όλους, θα μπορούν να «κατανοούνται» και από μηχανές, οι οποίες θα βοηθήσουν στην καλύτερη συλλογή και επεξεργασία τους. Στον επιχειρηματικό τομέα, θα υπάρχει καλύτερη οργάνωση των εταιριών, καλύτερες εμπειρίες για τους χρήστες στις διαδικτυακές αγορές και καλύτερος συντονισμός μεταξύ διαφορετικών εταιριών.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantiko\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scalability\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Elizabeth_F._Loftus\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Peter_Gärdenfors\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Семантическая паутина\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://simple.dbpedia.org/resource/Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_triple\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/%22\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, « le Web sémantique fournit un modèle qui permet aux données d'être partagées et réutilisées entre plusieurs applications, entreprises et groupes d'utilisateurs ». L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique. Il le définit comme « une toile de données qui peuvent être traitées directement et indirectement par des machines pour aider leurs utilisateurs à créer de nouvelles connaissances ». Pour y parvenir, le Web sémantique met en œuvre le Web des données qui consiste à lier et structurer l'information sur Internet pour accéder simplement à la connaissance qu'elle contient déjà. Alors que ses détracteurs ont mis en doute sa faisabilité, ses promoteurs font valoir que les applications réalisées par les chercheurs dans l'industrie, la biologie et les sciences humaines et sociales ont déjà prouvé la validité de ce nouveau concept. L'article original de Tim Berners-Lee en 2001 dans le Scientific American a décrit une évolution attendue du Web existant vers un Web sémantique, mais cela n'a pas encore eu lieu. En 2006, Tim Berners-Lee et ses collègues ont déclaré : « Cette idée simple… reste largement inexploitée. »\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://bn.dbpedia.org/resource/সেম্যান্টিক_ওয়েব\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Altavista\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://az.dbpedia.org/resource/Semantik_veb\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/q no\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/WikicatBuzzwords\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_crawler\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_Rule_Language\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Cite_book\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_browser\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://is.dbpedia.org/resource/Merkingarvefur\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/XHTML\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_2.0\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Privacy\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_pages\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantic Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikt no\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Internet_of_things\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_data\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Turtle_(syntax)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTTP\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sk.dbpedia.org/resource/Sémantický_web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantic Web (sieci semantyczne) – projekt, który ma przyczynić się do utworzenia i rozpowszechnienia standardów opisywania treści w Internecie w sposób, który umożliwi maszynom i programom (np. tzw. agentom) przetwarzanie informacji w sposób odpowiedni do ich znaczenia. Wśród standardów sieci semantycznych znajdują się m.in. OWL, RDF, RDF Schema (inaczej RDFS). Znaczenia zasobów informacyjnych określa się za pomocą tzw. ontologii. Sieć semantyczna jest wizją Tima Bernersa-Lee (twórcy standardu WWW i pierwszej przeglądarki internetowej, a także przewodniczącego W3C). W swoich założeniach sieć semantyczna ma korzystać z istniejącego protokołu komunikacyjnego, na którym bazuje dzisiejszy Internet. Różnica miałaby polegać na tym, że przesyłane dane mogłyby być 'rozumiane' także przez maszyny. Owo 'rozumienie' polegałoby na tym, że dane przekazywane byłyby w postaci, w której można by powiązać ich znaczenia między sobą, a także w ramach odpowiedniego kontekstu. Informacje przekazywane w ramach sieci semantycznej wymagałyby nie tylko samych danych, ale także informacji o tychże (tzw. meta-danych). To właśnie meta-dane zawierałyby sformułowania dotyczące relacji między danymi oraz prawa logiki, które można do nich zastosować. Dzięki temu można by: \n", + "* powiązać różne dane znajdujące się w Internecie w ramach wspólnych jednostek znaczeniowych (np. strony dotyczące filmów, dziedzin nauki, kuchni francuskiej, etc.) \n", + "* rozróżnić dane, które dla maszyn są w tej chwili nierozróżnialne ze względu na identyczny zapis tekstowy (np. zamek - urządzenie do zamykania drzwi; urządzenie do łączenia w ustalonym położeniu elementów ubrania; okazała budowla mieszkalno-obronna) \n", + "* przeprowadzać na tychże danych wnioskowania, tzn. otrzymywać informacje na ich temat, które nie są zawarte (np. na podstawie danej \"Ewa jest żoną Adama\", możemy też dowiedzieć się, że Ewa jest kobietą, Adam mężczyzną, Adam jest mężem Ewy, żaden inny mężczyzna nie jest mężem Ewy, etc.)\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/PsychologicalFeature100023100\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://zh.dbpedia.org/resource/语义网\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Business_semantics_management\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_triple\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Sister_project_links\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_retrieval\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Web_services\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tag_(metadata)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Italics\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Trust_service\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Principle_of_explosion\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Smart-M3\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_search_engine\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_social_network\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_MediaWiki\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731%22%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Service100577525\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/b Semantic Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract A Web semântica é uma extensão da World Wide Web que permite aos computadores e humanos trabalharem em cooperação. Ela interliga significados de palavras e, neste âmbito, tem como finalidade conseguir atribuir um significado (sentido) aos conteúdos publicados na Internet de modo que seja compreensível tanto pelo humano como pelo computador. A ideia da Web semântica surgiu em 2001, quando Tim Berners-Lee, James Hendler e Ora Lassila publicaram um artigo na revista Scientific American, intitulado: “Web Semântica: um novo formato de conteúdo para a Web que tem significado para computadores vai iniciar uma revolução de novas possibilidades” (The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities). A web semântica é a relação de interatividade do homem e o computador, onde um depende do outro para a conclusão de tarefas, assim ocorrendo a acepção de entendimento do comando estipulado do ser humano à interface operacional da máquina, dando um significado de ordem a ser executada. Sendo desta forma uma espécie de escrita de entendimento tanto para o computador e para usuário, por meio de organização das informações contidas na máquina, através do seu perfil de suas últimas pesquisas realizadas, originando um repositório de dados ligados, como se fosse um verbete de enciclopédia. Podemos fazer uma ligação da web semântica com a Ciência da Informação, pelo fato de possuir a ideia estrutural de arranjo sistêmico, agrupando um conjunto de coleta de análise, classificação, armazenamento, disseminação e recuperação de informação como se fosse uma enciclopédia. Esta ligação, entre a Ciência da Informação e a Web Semântica, pode ser encontrada no projeto da Rede Universal de Documentação de Paul Otlet, que assenta nos mesmos ideais. O objetivo principal da web semântica não é treinar as máquinas para que se comportem como pessoas, mas sim desenvolver tecnologias e linguagens que tornem a informação legível para as máquinas. A finalidade passa pelo desenvolvimento de um modelo tecnológico que permita a partilha global de conhecimento assistido por máquinas. A integração das linguagens ou tecnologias eXtensible Markup Language (XML), Resource Description Framework (RDF), arquiteturas de metadados, ontologias, agentes computacionais, entre outras, favorecerá o aparecimento de serviços Web que garantam a interoperabilidade e cooperação.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Social_Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantic Web (sieci semantyczne) – projekt, który ma przyczynić się do utworzenia i rozpowszechnienia standardów opisywania treści w Internecie w sposób, który umożliwi maszynom i programom (np. tzw. agentom) przetwarzanie informacji w sposób odpowiedni do ich znaczenia. Wśród standardów sieci semantycznych znajdują się m.in. OWL, RDF, RDF Schema (inaczej RDFS). Znaczenia zasobów informacyjnych określa się za pomocą tzw. ontologii.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/OpenAlex\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract 시맨틱 웹(Semantic Web)은 '의미론적인 웹'이라는 뜻으로,현재의 인터넷과 같은 분산환경에서 리소스(웹 문서, 각종 파일, 서비스 등)에 대한 정보와 자원 사이의 관계-의미 정보(Semanteme)를 기계(컴퓨터)가 처리할 수 있는 온톨로지 형태로 표현하고, 이를 자동화된 기계(컴퓨터)가 처리하도록 하는 프레임워크이자 기술이다. 웹의 창시자인 팀 버너스리가 1998년 제안했고 현재 W3C에 의해 표준화 작업이 진행 중이다.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://cs.dbpedia.org/resource/Sémantický_web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sv.dbpedia.org/resource/Semantiska_webben\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/AGRIS\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Defeasible_reasoning\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Resource_Description_Framework\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/W3C\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract セマンティック・ウェブ(英: semantic web)は W3C のティム・バーナーズ=リーによって提唱された、ウェブページの意味を扱うことを可能とする標準やツール群の開発によってワールド・ワイド・ウェブの利便性を向上させるプロジェクト。セマンティック・ウェブの目的はウェブページの閲覧という行為に、データの交換の側面に加えて意味の疎通を付け加えることにある。 現在のワールド・ワイド・ウェブ上のコンテンツは主にHTMLで記述されている。HTMLでは文書構造を伝えることは可能だが、個々の単語の意味をはじめとする詳細な意味を伝えることはできない。これに対し、セマンティック・ウェブはXMLによって記述した文書にRDFやOWLを用いてタグを付け加える。この、データの意味を記述したタグが文書の含む意味を形式化し、コンピュータによる自動的な情報の収集や分析へのアプローチが可能となると期待されている。オントロジーを扱う階層まではW3Cにより標準化されているが、それ以上の階層の開発は難しいため、実現と標準化には長期間掛かると予想されている。また、既存のWebサイトに対するメタデータ付与の作業が必要であるため、Web全域への普及に関しても長期間掛かると予想されている。 セマンティックウェブはXML、XML Schema、RDF、、OWLなどの標準およびツール群から構成されている。「OWL ウェブ・オントロジー言語概要」はセマンティックウェブにおけるこれら標準およびツール群の機能・関連について述べている。 近年では、Google検索のリッチスニペットなどの応用例が存在する。\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Семантична павутина\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semántica\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/Person\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://xmlns.com/foaf/0.1/Person%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://az.dbpedia.org/resource/Semantik_veb\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://data.wordlift.io/wl0216/entity/semantic_web\n", - "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Semantic_web_stack.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Con il termine web semantico, termine coniato dal suo ideatore, Tim Berners-Lee, si intende la trasformazione del World Wide Web in un ambiente dove i documenti pubblicati (pagine HTML, file, immagini, e così via) sono associati ad informazioni e dati (metadati) che ne specificano il contesto semantico in un formato adatto all'interrogazione e all'interpretazione (es. tramite motori di ricerca) e, più in generale, all'elaborazione automatica.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web3\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/List_of_emerging_technologies\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDF_Schema\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Psychologist\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Nextbio\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://schema.org/Person%3E\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scalable_vector_graphics\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Div_col\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment The Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. Berners-Lee originally expressed his vision of the Semantic Web in 1999 as follows:\n", + "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Knowledge_engineering\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semântica\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Aaron_Swartz\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://example.org/semantic-web/%22%3ESemantic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantiska webben är ett begrepp myntat av World Wide Web Consortiums (W3C) chef Tim Berners-Lee, som också är skapare av världswebben (WWW). Begreppet beskriver metoder och teknik för att möjliggöra för maskiner att förstå innebörden eller \"semantiken\" i informationen på webben. Den ursprungliga visionen var att tillgången på maskinläsbara metadata skulle möjliggöra för automatiska agenter och annan programvara att ansluta till internet på ett mer intelligent sätt. Även om termen \"semantiska webben\" inte är formellt definierad, så används den för att beskriva den modell och de tekniker som föreslagits av W3C. Dessa tekniker inkluderar Resource Description Framework (RDF), olika format för datautbyte (till exempel RDF / XML, JSON-LD, Notation 3, Turtle, N-Tripplar och notationer som RDF Schema och Web Ontology Language (OWL), som alla syftar till att ge en formell beskrivning av koncept, termer och relationer inom ett givet kunskapsområde. Många av de tekniker som föreslagits av W3C finns redan och används i olika projekt. Den semantiska webben som en global vision har dock inte ännu realiserats, och dess kritiker har ifrågasatt om tillvägagångssättet är möjligt. Dessutom har andra tekniker med liknande mål, till exempel mikroformat, utvecklats, vilka inte alltid beskrivs som \"den semantiska webben\".\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Distributed_computing\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Sémantický web se má stát novým evolučním stupněm stávajícího webu. Jedná se o web, kde jsou informace strukturovány a uloženy podle standardizovaných pravidel, což usnadňuje jejich vyhledání a zpracování. Staví zejména na Resource Description Framework (RDF) a (OWL). Na specifikacích pro sémantický web pracuje World Wide Web Consortium (W3C).\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_base\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_annotation\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_(journal)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_retrieval\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tim_O'Reilly\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Web semantikoa (semantic web) World Wide Web Consortiumen muinean garatutako jarduera multzo bat da, aplikazio informatikoek datu irakurgarriak argitaratzeko teknologia bermatzen duena. World Wide Webari metadatu ontologiko eta semantikoak gehitzeko ideian oinarritzen da. Helburua interneta hobetzea da sistema informatikoen elkargarritasuna handituz, eragile adimenduak erabiliz. Eragile adimenduak informazioa era automatikoan eta gizakien laguntzarik gabe bilatzen duten programa informatikoak dira.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Simple_Knowledge_Organization_System\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/N-Triples\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantika Reto (Angle:Semantic web) estas nova koncepto pri evoluo de Interreto, kiun alprenis kaj disvastigas Konsorcio de la Tutmonda Teksaĵo. Iufoje oni ĝin nomas Semantika Teksaĵo, Semantika Plekto.Tiu koncepto permesas publikigi, konsulti, kaj speciale aŭtomatigi la traktadon de sciadoj strukturitaj.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Rule_Interchange_Format\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_management\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Tim_Berners-Lee\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_domain\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Identifier\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_translation\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDF/XML\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/EU_Open_Data_Portal\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://hu.dbpedia.org/resource/Szemantikus_web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_(information_science)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Web Semantik (Web Bermakna) merujuk kepada teknik yang memungkinkan konten pada Web untuk dapat lebih dimengerti oleh komputer. Istilah Web Semantik itu sendiri dicetuskan oleh Tim Berners-Lee, penemu World Wide Web. Sekarang, prinsip Web Semantik disebut-sebut akan muncul pada Web 3.0, generasi ketiga dari World Wide Web. Bahkan, Web 3.0 itu sendiri sering disamakan dengan Web Semantik. Teknologi Web Semantik ini antara lain adalah RDF, OWL dan SPARQL.\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Credibility\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Ο Σημασιολογικός Ιστός (Web 3.0 ή Semantic Web στα αγγλικά) είναι μια επέκταση του σημερινού Ιστού, που θα φέρει δομή στο ουσιαστικό περιεχόμενο των ιστοσελίδων. Η λογική πίσω από αυτό είναι ότι η δημοσιευμένη πληροφορία θα περιέχει μεταδεδομένα, τα οποία θα είναι κοινά για όλους, θα μπορούν να «κατανοούνται» και από μηχανές, οι οποίες θα βοηθήσουν στην καλύτερη συλλογή και επεξεργασία τους. Ο Σημασιολογικός Ιστός βασίζεται σε τεχνολογίες που ήδη υπάρχουν (URI και XML) αλλά και σε νέες τεχνολογίες (RDF, RDFS, OWL, κα.), οι οποίες αναπτύσσονται με την βοήθεια της κοινότητας. Δεδομένου ότι ο νέος Ιστός σκοπεύει να είναι μια μεγάλη βάση όπου δεδομένα από διαφορετικά πεδία θα συνδέονται μεταξύ τους, αναμένεται να παίξει μεγάλο ρόλο στη ζωή μας. Μερικά από τα πεδία στα οποία αναμένεται να έχει την μεγαλύτερη επίδραση είναι στην υγεία, στην παιδεία και στις επιχειρήσεις. Υπάρχουν ήδη πολλές προσπάθειες από εταιρίες, ερευνητές και μη κερδοσκοπικές οργανώσεις για να παραγάγουν πρότυπα οντολογιών, κυρίως για τα παραπάνω πεδία, για να υπάρχουν κοινές γλώσσες και περισσότερα δεδομένα τα οποία να μπορούν να συνδυαστούν για καλύτερα αποτελέσματα. Στην υγεία, γίνεται προσπάθεια για τη δημιουργία ενοποιημένων γλωσσών ιατρικής ορολογίας και υπηρεσίες που θα βοηθάνε το ιατρικό προσωπικό και θα κατευθύνουν τους καταναλωτές σε αξιόπιστες πληροφορίες υγείας σχετικά με την κατάστασή τους. Στην εκπαίδευση, ο Σημασιολογικός Ιστός θα συμβάλει σημαντικά στην μάθηση κυρίως στον τρόπο αναζήτησης πληροφοριών, στην οργάνωση των αποτελεσμάτων και στη δημιουργία ενός προγράμματος μάθησης ειδικό για το καθένα. Στον επιχειρηματικό τομέα, θα υπάρχει καλύτερη οργάνωση των εταιριών, καλύτερες εμπειρίες για τους χρήστες στις διαδικτυακές αγορές και καλύτερος συντονισμός μεταξύ διαφορετικών εταιριών. Στην καθημερινότητά θα υπάρχουν επιδράσεις του Web 3.0 στα κοινωνικά δίκτυα και εικονικές κοινότητες. Θα υπάρχουν εφαρμογές, οι οποίες θα δίνουν περισσότερες, πιο έμπιστες, πληροφορίες και θα διευκολύνουν σημαντικά τις διαδικτυακές δραστηριότητες.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikt no\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Semantic_Web?oldid=1124065133&ns=0\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Free_University_of_Berlin\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cryptography\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_domain\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/James_Hendler\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Sister_project_links\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_integration\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantic Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/GRDDL\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageRevisionID 1124065133\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Con il termine web semantico, termine coniato dal suo ideatore, Tim Berners-Lee, si intende la trasformazione del World Wide Web in un ambiente dove i documenti pubblicati (pagine HTML, file, immagini, e così via) sono associati ad informazioni e dati (metadati) che ne specificano il contesto semantico in un formato adatto all'interrogazione e all'interpretazione (es. tramite motori di ricerca) e, più in generale, all'elaborazione automatica. Con l'interpretazione del contenuto dei documenti che il Web semantico impone, saranno possibili ricerche molto più evolute delle attuali, basate sulla presenza nel documento di parole chiave, e altre operazioni specialistiche come la costruzione di reti di relazioni e connessioni tra documenti secondo logiche più elaborate del semplice collegamento ipertestuale.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Frank_van_Harmelen\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://lv.dbpedia.org/resource/Semantiskais_tīmeklis\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_Open_Data\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/RDF_example.svg?width=300\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sk.dbpedia.org/resource/Sémantický_web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://www.wikidata.org/entity/Q54837\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scientific_American\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://www.w3.org/2002/07/owl%23equivalentClass%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Institut_national_de_recherche_en_informatique_et_en_automatique\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_Stack\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fr.dbpedia.org/resource/Web_sémantique\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Intelligent_agent\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/Software\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Das Semantic Web erweitert das Web, um Daten zwischen Rechnern einfacher austauschbar und für sie einfacher verwertbar zu machen; so kann beispielsweise das Wort „Bremen“ in einem Webdokument um die Information ergänzt werden, ob hier der Begriff des Schiffs-, Familien- oder Stadtnamens gemeint ist. Diese zusätzlichen Informationen explizieren die sonst nur unstrukturiert vorkommenden Daten. Zur Realisierung dienen Standards zur Veröffentlichung und Nutzung maschinenlesbarer Daten (insbesondere RDF).Während Menschen solche Informationen aus dem gegebenen Kontext schließen können (aus dem Gesamttext, über die Art der Publikation oder der Rubrik in selbiger, Bilder etc.) und derartige Verknüpfungen unbewusst aufbauen, muss Maschinen dieser Kontext erst beigebracht werden; hierzu werden die I\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract The Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. To enable the encoding of semantics with the data, technologies such as Resource Description Framework (RDF) and Web Ontology Language (OWL) are used. These technologies are used to formally represent metadata. For example, ontology can describe concepts, relationships between entities, and categories of things. These embedded semantics offer significant advantages such as reasoning over data and operating with heterogeneous data sources. These standards promote common data formats and exchange protocols on the Web, fundamentally the RDF. According to the W3C, \"The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries.\" The Semantic Web is therefore regarded as an integrator across different content and information applications and systems. The term was coined by Tim Berners-Lee for a web of data (or data web) that can be processed by machines—that is, one in which much of the meaning is machine-readable. While its critics have questioned its feasibility, proponents argue that applications in library and information science, industry, biology and human sciences research have already proven the validity of the original concept. Berners-Lee originally expressed his vision of the Semantic Web in 1999 as follows: I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. A \"Semantic Web\", which makes this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The \"intelligent agents\" people have touted for ages will finally materialize. The 2001 Scientific American article by Berners-Lee, Hendler, and Lassila described an expected evolution of the existing Web to a Semantic Web. In 2006, Berners-Lee and colleagues stated that: \"This simple idea…remains largely unrealized\".In 2013, more than four million Web domains (out of roughly 250 million total) contained Semantic Web markup.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Human_science\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Ontology_learning\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Library_science\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://archive.org/details/isbn_9780470396797\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_resource\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract إن ورود المعلومات على الإنترنت يزداد بشكل كبير، فقد أصبح الإنترنت مكانًا للتعبير عن الأفكار، سرد القصص، إنشاء المدونات ومشاركة الفيديوهات والصور والملفات الصوتية وما إلى ذلك. وهو ما جعل كمّ المعلومات المتوفرة للفرد الواحد أكبر بكثير مما يُمكن له أن يستفيد منه. تعريض العقل البشري لهذا الكم الهائل من المعلومات من شأنه أن يتسبب فيما يُمكن أن نصفه بوصف «الضياع في فضاء المعلومات»، وذلك راجع إلى بقاء المعلومات المفيدة بعيدة المنال بسبب تراكم الكثير من المعلومات غير المفيدة وغير المرتبطة بالموضوع المراد البحث عنه من قبل المستخدم. لحسن الحظ، مثلما يزداد ورود المعلومات، تزداد مقدرات معالجة المعلومات اوتوماتيكياً، لذا يوجد إمكانيات كبيرة للاستفادة من مقدرات الأتمتة هذه بهدف استخراج المعلومات والخدمات من فيضان الويب والمرتبطة بالمستخدم، وتوصيلها إليه عن طريق واجهة مستخدم معيارية (Standardized User Interface). إن أهمية الحصول على المعلومات بهذه الطريقة التكيفية يزداد بازدياد كتلة المعلومات المتوفرة على الإنترنت. تعتبر شبكة الويب أغنى المصادر المعلوماتية بما تحويه من مستندات ومعلومات ومصادر منوعة يمكن الوصول إليها عن طريق محركات البحث التقليدية. غير أن تنظيم هذه المعلومات والمستندات بصورة تسهل عملية البحث فيها والوصول إليها، يعتبر أمراً غاية في الصعوبة. يضاف إلى ذلك، أنه في ظل التزايد المستمر في حجم المعلومات المنشورة في شبكة الويب أصبح من الصعوبة بمكان قيام محركات البحث بإيجاد المعلومات المناسبة. ومن هذه المشكلة ظهرت فكرة «الويب ذات الدلالات والمعاني اللفظية»، أو ما يطلق عليه بالإنجليزية مصطلح (Semantic Web)، والتي هي امتداد للويب الحالية ولكن تختلف عنها بأنها تتفهم مدلولات الألفاظ والمعاني البشرية.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_pages\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:RDF_example_extended.svg\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment 语义网(英语:Semantic Web)是由万维网联盟的蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,它的核心是:通过给万维网上的文档(如: HTML文档)添加能够被计算机所理解的语义(元数据),从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。不过语意网概念实际上是基于很多已有技术的,也依赖于后来和text-and-markup与知识表现的综合。 \"语义\"网是由比现今成熟的网际搜索工具更加行之有效的、更加广泛意义的并且自动聚集和搜集信息的文档组成的。其最基本的元素就是。\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File_system\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://eu.dbpedia.org/resource/Web_semantiko\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_MediaWiki\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Paraconsistent_logic\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Attribute100024264\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-662-43795-7\n", + "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/WikicatWebServices\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Buzzword106608277\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Business_semantics_management\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/DBpedia\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Act100030358\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Семантична павутина\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Automated_reasoning_system\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fi.dbpedia.org/resource/Semanttinen_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageRevisionID 1124065133\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Citation_needed\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/ActivityPub\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label セマンティック・ウェブ\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantics\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Peter_Gärdenfors\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Schema.org\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Geospatial_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageInterLanguageLink http://commons.dbpedia.org/resource/File:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Семантична павутина (англ. Semantic web) — нова концепція розвитку Всесвітньої павутини і мережі Інтернет, яка створена і впроваджується Консорціумом Всесвітньої павутини (англ. World Wide Web Consortium, W3C). Інші назви — семантичний веб, семантична мережа. Хоча поняття семантична мережа, яке виникло раніше, породило поняття семантична павутина, їх слід відокремлювати. Концепція полягає у впровадженні спільних, стандартних форматів даних у Мережі. Для заохочення впровадження семантичного форматування сторінок, пропонується змінювати структуру вже існуючих, не структурованих чи частково-структурованих сторінок у «мережу даних». Створення семантичної Мережі полягає у застосуванні середовища опису ресурсів (RDF). Термін вперше запровадив Тім Бернерс-Лі в травні 2001 року в журналі «Scientific American»\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:About\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:R\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageID 29123\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://hu.dbpedia.org/resource/Szemantikus_web\n", - "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/RDF_example_extended.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/XML\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Library_science\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Div_col_end\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Unicode\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Resource_(computer_science)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Resource_Description_Framework\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:'%22\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Folksonomy\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Internet_ages\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Sémantický web se má stát novým evolučním stupněm stávajícího webu. Jedná se o web, kde jsou informace strukturovány a uloženy podle standardizovaných pravidel, což usnadňuje jejich vyhledání a zpracování. Staví zejména na Resource Description Framework (RDF) a (OWL). Na specifikacích pro sémantický web pracuje World Wide Web Consortium (W3C). Myšlenku sémantického, neboli významového webu poprvé vyslovil Tim Berners-Lee v roce 2001, kdy upozornil na skutečnost, že současný web je pouze změť webových stránek, která neustále roste a ve které je stále složitější nalézt relevantní informace. Sémantický web je podle něj rozšířením současného webu, v němž informace mají přidělen dobře definovaný význam lépe umožňující počítačům a lidem spolupracovat. Sémantický web představuje reprezentaci dat na WWW. Je založen na technologii Resource Description Framework (RDF), která integruje širokou škálu aplikací využívajících syntaktický zápis v XML a identifikátory URI pro pojmenovávání. Znamená to tedy, že data prezentovaná na Internetu by měla mít přesně definovaný význam a dovolovat do značné míry automatizované (strojové) zpracování, které by se mělo realizovat pomocí softwarových agentů. Základním krokem k vytvoření sémantického webu je konceptualizace dat dostupných na Internetu, jejíž klíčovým nástrojem jsou ontologie, aneb formalizované reprezentace znalostí určené k jejich sdílení a znovupoužití. Sémantický web je dále založen na standardizovaném popisu webových zdrojů (vše, dosažitelné pomocí WWW, tedy textové dokumenty, obrázky, videosekvence, zvukové soubory apod.). Každý zdroj by byl vybaven stejnými charakteristikami údaji (autor, typ zdroje, klíčová slova atd.), což by umožnilo uživatelům Internetu pracovat se sítí WWW jako s relační databází a dotazovat se na její obsah prostřednictvím jazyků podobných SQL. Důraz by se kladl na vysokou přesnost a relevanci odpovědi na vyhledávací dotaz. Technologickým základem sémantického webu by se měl stát standard RDF (Resource Description Framework) - obecný rámec pro popis, výměnu a znovupoužití metadat. Poskytuje jednoduchý model pro popis zdrojů, který není závislý na konkrétní implementaci. Datový model RDF umožní specifikovat trojice (zdroj, vlastnost, hodnota vlastnosti). Tímto se jedná mimo jiné o přiřazení sémantiky webovým zdrojům, což je pro sémantický web klíčové. Sémantický web propaguje Tim Berners-Lee již řadu let, přesto se dosud nedočkal výrazného rozmachu, pravděpodobně protože je oproti stávajícímu webu příliš komplikovaný. Proto vznikají jednodušší způsoby, jak do stávajícího webu snadno přidat sémantickou informaci: Mikroformáty a RDFa.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://id.dbpedia.org/resource/Web_semantik\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://he.dbpedia.org/resource/רשת_סמנטית\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://da.dbpedia.org/resource/Semantisk_web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Meta-data\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Intelligent_agent\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Notation3\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://eu.dbpedia.org/resource/Web_semantiko\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_annotation\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://bn.dbpedia.org/resource/সেম্যান্টিক_ওয়েব\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cory_Doctorow\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/topics yes\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Age104924103\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Web Semantik (Web Bermakna) merujuk kepada teknik yang memungkinkan konten pada Web untuk dapat lebih dimengerti oleh komputer. Istilah Web Semantik itu sendiri dicetuskan oleh Tim Berners-Lee, penemu World Wide Web. Sekarang, prinsip Web Semantik disebut-sebut akan muncul pada Web 3.0, generasi ketiga dari World Wide Web. Bahkan, Web 3.0 itu sendiri sering disamakan dengan Web Semantik. Teknologi Web Semantik ini antara lain adalah RDF, OWL dan SPARQL.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/ERDF_(data_format)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/RDF_example.svg?width=300\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Con il termine web semantico, termine coniato dal suo ideatore, Tim Berners-Lee, si intende la trasformazione del World Wide Web in un ambiente dove i documenti pubblicati (pagine HTML, file, immagini, e così via) sono associati ad informazioni e dati (metadati) che ne specificano il contesto semantico in un formato adatto all'interrogazione e all'interpretazione (es. tramite motori di ricerca) e, più in generale, all'elaborazione automatica. Con l'interpretazione del contenuto dei documenti che il Web semantico impone, saranno possibili ricerche molto più evolute delle attuali, basate sulla presenza nel documento di parole chiave, e altre operazioni specialistiche come la costruzione di reti di relazioni e connessioni tra documenti secondo logiche più elaborate del semplice collegamento ipertestuale.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Calais_(Reuters_product)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/World_Wide_Web_Consortium\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDF_Schema\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Information_science\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://no.dbpedia.org/resource/Semantisk_web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/XML\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_heterogeneity\n", "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantisch web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:Semantic_web_stack.svg\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Description_logic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/James_Hendler\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://d-nb.info/gnd/4688372-1\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://cacm.acm.org/magazines/2021/2/250085-a-review-of-the-semantic-web-field/fulltext%7Cdoi-access=free\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Event100029378\n", - "http://dbpedia.org/resource/Semantic_Web http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Extension\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Property104916342\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Work100575741\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Metacrap\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Wikidata\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract セマンティック・ウェブ(英: semantic web)は W3C のティム・バーナーズ=リーによって提唱された、ウェブページの意味を扱うことを可能とする標準やツール群の開発によってワールド・ワイド・ウェブの利便性を向上させるプロジェクト。セマンティック・ウェブの目的はウェブページの閲覧という行為に、データの交換の側面に加えて意味の疎通を付け加えることにある。 現在のワールド・ワイド・ウェブ上のコンテンツは主にHTMLで記述されている。HTMLでは文書構造を伝えることは可能だが、個々の単語の意味をはじめとする詳細な意味を伝えることはできない。これに対し、セマンティック・ウェブはXMLによって記述した文書にRDFやOWLを用いてタグを付け加える。この、データの意味を記述したタグが文書の含む意味を形式化し、コンピュータによる自動的な情報の収集や分析へのアプローチが可能となると期待されている。オントロジーを扱う階層まではW3Cにより標準化されているが、それ以上の階層の開発は難しいため、実現と標準化には長期間掛かると予想されている。また、既存のWebサイトに対するメタデータ付与の作業が必要であるため、Web全域への普及に関しても長期間掛かると予想されている。 セマンティックウェブはXML、XML Schema、RDF、、OWLなどの標準およびツール群から構成されている。「OWL ウェブ・オントロジー言語概要」はセマンティックウェブにおけるこれら標準およびツール群の機能・関連について述べている。 近年では、Google検索のリッチスニペットなどの応用例が存在する。\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://yago-knowledge.org/resource/Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantic Web\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Amazon_Mechanical_Turk\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Artificial_intelligence\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Mastodon_(software)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Deductive_reasoning\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_Navigator\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731%22%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Sensor_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Semantic Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Notation3\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hyperdata\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_web_service\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/name%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://cs.dbpedia.org/resource/Sémantický_web\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ja.dbpedia.org/resource/セマンティック・ウェブ\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Microformat\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linked_Data\n", "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Emerging_technologies\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Use_American_English\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs https://global.dbpedia.org/id/4jzLX\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_science\n", - "http://dbpedia.org/resource/Semantic_Web http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Semantic_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://lt.dbpedia.org/resource/Semantinis_tinklas\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://www.w3.org/standards/semanticweb/\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/Software\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Branches_of_science\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/E-learning\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment A Web semântica é uma extensão da World Wide Web que permite aos computadores e humanos trabalharem em cooperação. Ela interliga significados de palavras e, neste âmbito, tem como finalidade conseguir atribuir um significado (sentido) aos conteúdos publicados na Internet de modo que seja compreensível tanto pelo humano como pelo computador. A ideia da Web semântica surgiu em 2001, quando Tim Berners-Lee, James Hendler e Ora Lassila publicaram um artigo na revista Scientific American, intitulado: “Web Semântica: um novo formato de conteúdo para a Web que tem significado para computadores vai iniciar uma revolução de novas possibilidades” (The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities).\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Distributed_artificial_intelligence\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/MIT_Press\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/Person%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment La web semántica (del inglés semantic web) es un conjunto de actividades desarrolladas en el seno de World Wide Web Consortium con tendencia a la creación de tecnologías para publicar datos legibles por aplicaciones informáticas (máquinas en la terminología de la Web semántica).​ Se basa en la idea de añadir metadatos semánticos y ontológicos a la World Wide Web. Esas informaciones adicionales —que describen el contenido, el significado y la relación de los datos— se deben proporcionar de manera formal, para que así sea posible evaluarlas automáticamente por máquinas de procesamiento. El objetivo es mejorar Internet ampliando la interoperabilidad entre los sistemas informáticos usando \"agentes inteligentes\". Agentes inteligentes son programas en las computadoras que buscan información sin \n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/File:Semantic_web_stack.svg\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/SNOMED_CT\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/World_Wide_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Schema.org\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/EU_Open_Data_Portal\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_heterogeneity\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label セマンティック・ウェブ\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/%22\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fa.dbpedia.org/resource/وب_معنایی\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantico\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/q no\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_matching\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scalability\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://rdf.freebase.com/ns/m.076k0\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semàntic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Div_col\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-662-43795-7\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ca.dbpedia.org/resource/Web_semàntic\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Wikidata\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Semantic_Web?oldid=1124065133&ns=0\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/RDF/XML\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Class_(computer_programming)\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantic Web (sieci semantyczne) – projekt, który ma przyczynić się do utworzenia i rozpowszechnienia standardów opisywania treści w Internecie w sposób, który umożliwi maszynom i programom (np. tzw. agentom) przetwarzanie informacji w sposób odpowiedni do ich znaczenia. Wśród standardów sieci semantycznych znajdują się m.in. OWL, RDF, RDF Schema (inaczej RDFS). Znaczenia zasobów informacyjnych określa się za pomocą tzw. ontologii. Sieć semantyczna jest wizją Tima Bernersa-Lee (twórcy standardu WWW i pierwszej przeglądarki internetowej, a także przewodniczącego W3C). W swoich założeniach sieć semantyczna ma korzystać z istniejącego protokołu komunikacyjnego, na którym bazuje dzisiejszy Internet. Różnica miałaby polegać na tym, że przesyłane dane mogłyby być 'rozumiane' także przez maszyny. Owo 'rozumienie' polegałoby na tym, że dane przekazywane byłyby w postaci, w której można by powiązać ich znaczenia między sobą, a także w ramach odpowiedniego kontekstu. Informacje przekazywane w ramach sieci semantycznej wymagałyby nie tylko samych danych, ale także informacji o tychże (tzw. meta-danych). To właśnie meta-dane zawierałyby sformułowania dotyczące relacji między danymi oraz prawa logiki, które można do nich zastosować. Dzięki temu można by: \n", - "* powiązać różne dane znajdujące się w Internecie w ramach wspólnych jednostek znaczeniowych (np. strony dotyczące filmów, dziedzin nauki, kuchni francuskiej, etc.) \n", - "* rozróżnić dane, które dla maszyn są w tej chwili nierozróżnialne ze względu na identyczny zapis tekstowy (np. zamek - urządzenie do zamykania drzwi; urządzenie do łączenia w ustalonym położeniu elementów ubrania; okazała budowla mieszkalno-obronna) \n", - "* przeprowadzać na tychże danych wnioskowania, tzn. otrzymywać informacje na ich temat, które nie są zawarte (np. na podstawie danej \"Ewa jest żoną Adama\", możemy też dowiedzieć się, że Ewa jest kobietą, Adam mężczyzną, Adam jest mężem Ewy, żaden inny mężczyzna nie jest mężem Ewy, etc.)\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web sémantique\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/commons Category:Semantic Web\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_Web_Stack\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.wikidata.org/entity/Q1731%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://pl.dbpedia.org/resource/Semantic_Web\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Scientific_American\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Hypertext\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, « le Web sémantique fournit un modèle qui permet aux données d'être partagées et réutilisées entre plusieurs applications, entreprises et groupes d'utilisateurs ». L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique. Il le définit comme « une toile de données qui peuvent être traitées directement et indirectement par des machines pour aider leurs utilisateurs à créer de nouvelles connaissances ». Pour y parvenir, le Web sémantique met en œuvre le Web des données qui consiste à lier et structurer l'information sur Internet pour accéder simplement à la connaissance qu'elle contient déjà. Alors que ses détracteurs ont mis en doute sa faisabilité, ses promoteurs font valoir que les applications réalisées par les chercheurs dans l'industrie, la biologie et les sciences humaines et sociales ont déjà prouvé la validité de ce nouveau concept. L'article original de Tim Berners-Lee en 2001 dans le Scientific American a décrit une évolution attendue du Web existant vers un Web sémantique, mais cela n'a pas encore eu lieu. En 2006, Tim Berners-Lee et ses collègues ont déclaré : « Cette idée simple… reste largement inexploitée. »\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Semantika Reto (Angle:Semantic web) estas nova koncepto pri evoluo de Interreto, kiun alprenis kaj disvastigas Konsorcio de la Tutmonda Teksaĵo. Iufoje oni ĝin nomas Semantika Teksaĵo, Semantika Plekto.Tiu koncepto permesas publikigi, konsulti, kaj speciale aŭtomatigi la traktadon de sciadoj strukturitaj.\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label Web semantik\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/v no\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Linguistics\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Intelligent_text_analysis\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Short_description\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://fi.dbpedia.org/resource/Semanttinen_Web\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Het semantisch web verschaft een framework waarmee gegevens kunnen worden gedeeld en hergebruikt. Het is een samenwerking onder leiding van het internationale orgaan voor internetstandaarden, het World Wide Web Consortium W3C. Het semantisch web is een uitbreiding van het internet, om de uitwisseling van gegevens tussen de deelnemers, tussen alle nodes, efficiënter te laten verlopen. Open data zijn de vrij beschikbare informatie, die door het semantisch web wordt gebruikt.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://uk.dbpedia.org/resource/Семантична_павутина\n", + "http://dbpedia.org/resource/Semantic_Web http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Web_services\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract La web semántica (del inglés semantic web) es un conjunto de actividades desarrolladas en el seno de World Wide Web Consortium con tendencia a la creación de tecnologías para publicar datos legibles por aplicaciones informáticas (máquinas en la terminología de la Web semántica).​ Se basa en la idea de añadir metadatos semánticos y ontológicos a la World Wide Web. Esas informaciones adicionales —que describen el contenido, el significado y la relación de los datos— se deben proporcionar de manera formal, para que así sea posible evaluarlas automáticamente por máquinas de procesamiento. El objetivo es mejorar Internet ampliando la interoperabilidad entre los sistemas informáticos usando \"agentes inteligentes\". Agentes inteligentes son programas en las computadoras que buscan información sin operadores humanos. El precursor de la idea, Tim Berners-Lee, intentó desde el principio incluir información semántica en su creación, la World Wide Web, pero por diferentes causas no fue posible.​ Por ese motivo introdujo el concepto de semántica con la intención de recuperar dicha omisión.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract 语义网(英语:Semantic Web)是由万维网联盟的蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,它的核心是:通过给万维网上的文档(如: HTML文档)添加能够被计算机所理解的语义(元数据),从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。不过语意网概念实际上是基于很多已有技术的,也依赖于后来和text-and-markup与知识表现的综合。 \"语义\"网是由比现今成熟的网际搜索工具更加行之有效的、更加广泛意义的并且自动聚集和搜集信息的文档组成的。其最基本的元素就是。\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/HTML_element\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment El Web semàntic és un projecte que té com a objectiu crear un medi universal per a l'intercanvi d'informació significativa (semàntica), d'una forma comprensible per a les màquines, del contingut dels documents de la Web. Amb això es pretén ampliar la interoperabilitat dels sistemes informàtics i reduir la mediació dels operadors humans en els processos intel·ligents de flux d'informació. El pare de la idea, Tim Berners-Lee, creador del Web i fundador del W3C, proposa que la Web semàntica serveixi per a ampliar la capacitat de la World Wide Web mitjançant els , els llenguatges d'etiquetatge i altres eines de processament relacionades.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://www.w3.org/1999/02/22-rdf-syntax-ns%23type%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://lv.dbpedia.org/resource/Semantiskais_tīmeklis\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/AGRIS\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Cite_book\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Cascading_Style_Sheets\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ru.dbpedia.org/resource/Семантическая_паутина\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantically-Interlinked_Online_Communities\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment إن ورود المعلومات على الإنترنت يزداد بشكل كبير، فقد أصبح الإنترنت مكانًا للتعبير عن الأفكار، سرد القصص، إنشاء المدونات ومشاركة الفيديوهات والصور والملفات الصوتية وما إلى ذلك. وهو ما جعل كمّ المعلومات المتوفرة للفرد الواحد أكبر بكثير مما يُمكن له أن يستفيد منه. تعريض العقل البشري لهذا الكم الهائل من المعلومات من شأنه أن يتسبب فيما يُمكن أن نصفه بوصف «الضياع في فضاء المعلومات»، وذلك راجع إلى بقاء المعلومات المفيدة بعيدة المنال بسبب تراكم الكثير من المعلومات غير المفيدة وغير المرتبطة بالموضوع المراد البحث عنه من قبل المستخدم. لحسن الحظ، مثلما يزداد ورود المعلومات، تزداد مقدرات معالجة المعلومات اوتوماتيكياً، لذا يوجد إمكانيات كبيرة للاستفادة من مقدرات الأتمتة هذه بهدف استخراج المعلومات والخدمات من فيضان الويب والمرتبطة بالمستخدم، وتوصيلها إليه عن طريق واجهة مستخدم معيارية (Standardized User In\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Anchor\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Tag\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Emerging_technologies\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantika Reto (Angle:Semantic web) estas nova koncepto pri evoluo de Interreto, kiun alprenis kaj disvastigas Konsorcio de la Tutmonda Teksaĵo. Iufoje oni ĝin nomas Semantika Teksaĵo, Semantika Plekto.Tiu koncepto permesas publikigi, konsulti, kaj speciale aŭtomatigi la traktadon de sciadoj strukturitaj.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Web semantikoa (semantic web) World Wide Web Consortiumen muinean garatutako jarduera multzo bat da, aplikazio informatikoek datu irakurgarriak argitaratzeko teknologia bermatzen duena. World Wide Webari metadatu ontologiko eta semantikoak gehitzeko ideian oinarritzen da. Helburua interneta hobetzea da sistema informatikoen elkargarritasuna handituz, eragile adimenduak erabiliz. Eragile adimenduak informazioa era automatikoan eta gizakien laguntzarik gabe bilatzen duten programa informatikoak dira. Ideia honen aitzindaria, Tim Berners-Lee, hasieratik saiatu zen informazio semantikoa sartzen haren sorkuntzan (World Wide Web), baina arazo desberdinengatik ez zuen lortu. Arrazoi horrengatik landu zuen semantika.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/FOAF_(software)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Rule_Interchange_Format\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/class/yago/Event100029378\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Psychologist\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Inference\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label 시맨틱 웹\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Fuzzy_logic\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Semantic_computing\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/s no\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://xmlns.com/foaf/0.1/Person%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Class_(computer_programming)\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Smart-M3\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://sv.dbpedia.org/resource/Semantiska_webben\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Usability\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink http://www.w3.org/standards/semanticweb/\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://tr.dbpedia.org/resource/Anlamsal_ağ\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_engineering\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/property/d Q54837\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Web_engineering\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageExternalLink https://schema.org/itemtype%3E\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Knowledge_management\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/World_Wide_Web\n", "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Database\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://ja.dbpedia.org/resource/セマンティック・ウェブ\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Distributed_computing\n", - "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantiska webben är ett begrepp myntat av World Wide Web Consortiums (W3C) chef Tim Berners-Lee, som också är skapare av världswebben (WWW). Begreppet beskriver metoder och teknik för att möjliggöra för maskiner att förstå innebörden eller \"semantiken\" i informationen på webben. Den ursprungliga visionen var att tillgången på maskinläsbara metadata skulle möjliggöra för automatiska agenter och annan programvara att ansluta till internet på ett mer intelligent sätt.\n", - "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/SPARQL\n" + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#label 语义网\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://rdf.freebase.com/ns/m.076k0\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://www.wikidata.org/entity/Q54837\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2002/07/owl#sameAs http://vi.dbpedia.org/resource/Mạng_ngữ_nghĩa\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/abstract Das Semantic Web erweitert das Web, um Daten zwischen Rechnern einfacher austauschbar und für sie einfacher verwertbar zu machen; so kann beispielsweise das Wort „Bremen“ in einem Webdokument um die Information ergänzt werden, ob hier der Begriff des Schiffs-, Familien- oder Stadtnamens gemeint ist. Diese zusätzlichen Informationen explizieren die sonst nur unstrukturiert vorkommenden Daten. Zur Realisierung dienen Standards zur Veröffentlichung und Nutzung maschinenlesbarer Daten (insbesondere RDF).Während Menschen solche Informationen aus dem gegebenen Kontext schließen können (aus dem Gesamttext, über die Art der Publikation oder der Rubrik in selbiger, Bilder etc.) und derartige Verknüpfungen unbewusst aufbauen, muss Maschinen dieser Kontext erst beigebracht werden; hierzu werden die Inhalte mit weiterführenden Informationen verknüpft. Das Semantic Web beschreibt dazu konzeptionell einen „Giant Global Graph“ (engl. ‚gigantischer globaler Graph‘). Dabei werden sämtliche Dinge von Interesse identifiziert und mit einer eindeutigen Adresse versehen als Knoten angelegt, die wiederum durch Kanten (ebenfalls jeweils eindeutig benannt) miteinander verbunden sind. Einzelne Dokumente im Web beschreiben dann eine Reihe von Kanten, und die Gesamtheit all dieser Kanten entspricht dem globalen Graphen.\n", + "http://dbpedia.org/resource/Semantic_Web http://www.w3.org/2000/01/rdf-schema#comment Semantic Web (sieci semantyczne) – projekt, który ma przyczynić się do utworzenia i rozpowszechnienia standardów opisywania treści w Internecie w sposób, który umożliwi maszynom i programom (np. tzw. agentom) przetwarzanie informacji w sposób odpowiedni do ich znaczenia. Wśród standardów sieci semantycznych znajdują się m.in. OWL, RDF, RDF Schema (inaczej RDFS). Znaczenia zasobów informacyjnych określa się za pomocą tzw. ontologii.\n", + "http://dbpedia.org/resource/Semantic_Web http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Nextbio\n" ] } ], @@ -531,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "id": "vhpFtnqF57x9" }, @@ -552,7 +569,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "id": "66dQYVV46BLH" }, @@ -576,24 +593,24 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { - "id": "G-zlPMs36LF3", - "outputId": "f3f5b261-cb06-4640-e15e-94cb221a43c7", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "G-zlPMs36LF3", + "outputId": "db3d3e78-fd84-4f55-e56d-be28dd990191" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - ")>" + ")>" ] }, + "execution_count": 7, "metadata": {}, - "execution_count": 6 + "output_type": "execute_result" } ], "source": [ @@ -617,7 +634,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "id": "XXVr_m726aGX" }, @@ -639,18 +656,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { - "id": "VBiHxQ8I6ckC", - "outputId": "2be09542-6dc2-4f6d-e3ce-528d206213aa", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "VBiHxQ8I6ckC", + "outputId": "4bad19d3-f29a-4740-c0d3-e1278f9156a6" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "@prefix foaf: .\n", "@prefix xsd: .\n", @@ -677,7 +694,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "id": "g9y5vAR96m5J" }, @@ -694,30 +711,30 @@ "id": "KnQifktFAxHx" }, "source": [ - "# Create a Temporary ArangoDB Cloud Instance" + "# Setup ArangoDB" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ETS8l_NSAv0F", - "outputId": "65dea44e-200b-4b35-a70f-ff165148fb61" + "outputId": "e4242d73-6443-4292-9977-c3e9670d17ee" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Log: requesting new credentials...\n", "Succcess: new credentials acquired\n", "{\n", - " \"dbName\": \"TUTxfevvzm7lvczk545y3p8v\",\n", - " \"username\": \"TUT6evhebxvstnc8tazb033l7\",\n", - " \"password\": \"TUThxrcxgshd2itj4izw07l9l\",\n", + " \"dbName\": \"TUTphtgz1t47nl7cpqy3mym\",\n", + " \"username\": \"TUTj7a06zoicmtl7z0v36ncp\",\n", + " \"password\": \"TUTzfqnb7rmud8seknasx1nnr\",\n", " \"hostname\": \"tutorials.arangodb.cloud\",\n", " \"port\": 8529,\n", " \"url\": \"https://tutorials.arangodb.cloud:8529\"\n", @@ -731,139 +748,63 @@ "print(json.dumps(con, indent=2))\n", "\n", "# Connect to the db via the python-arango driver\n", - "db = ArangoClient(hosts=con[\"url\"]).db(con[\"dbName\"], con[\"username\"], con[\"password\"], verify=True)" + "db = ArangoClient(hosts=con[\"url\"]).db(\n", + " con[\"dbName\"],\n", + " con[\"username\"],\n", + " con[\"password\"],\n", + " verify=True\n", + " )" ] }, { "cell_type": "markdown", "metadata": { - "id": "7y81WHO8eG8_" + "id": "QfE_tKxneG9A" }, "source": [ - "# Data Import" + "# Instantiate ArangoRDF" ] }, { "cell_type": "markdown", "metadata": { - "id": "BM0iRYPDeG8_" + "id": "kGfhzPT9eG9A" }, "source": [ - "For demo purposes, we will be using the [ArangoDB Game Of Thrones Dataset](https://github.com/arangodb/example-datasets/tree/master/GameOfThrones)." + "Connect ArangoRDF to our temporary ArangoDB instance:" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "7bgGJ3QkeG8_", - "outputId": "364c875a-7db6-42ea-9c18-96f6fb00748c" + "id": "oG496kBeeG9A", + "outputId": "ca895acc-a9ad-4287-8364-7591618b8b5b" }, "outputs": [ { + "name": "stderr", "output_type": "stream", - "name": "stdout", "text": [ - "\u001b[0m2023-12-20T15:45:49Z [621] INFO [05c30] {restore} Connected to ArangoDB 'http+ssl://tutorials.arangodb.cloud:8529'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:49Z [621] INFO [abeb4] {restore} Database name in source dump is '_system'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:49Z [621] INFO [9b414] {restore} # Re-creating document collection 'Characters'...\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:53Z [621] INFO [9b414] {restore} # Re-creating document collection 'Locations'...\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:57Z [621] INFO [9b414] {restore} # Re-creating document collection 'Traits'...\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:57Z [621] INFO [9b414] {restore} # Re-creating edge collection 'ChildOf'...\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:57Z [621] INFO [f723c] {restore} # Creating views...\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [6d69f] {restore} # Dispatched 4 job(s), using 2 worker(s)\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [94913] {restore} # Loading data into document collection 'Locations', data size: 361 byte(s)\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [94913] {restore} # Loading data into document collection 'Characters', data size: 1277 byte(s)\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [6ae09] {restore} # Successfully restored document collection 'Characters'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [94913] {restore} # Loading data into document collection 'Traits', data size: 444 byte(s)\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [6ae09] {restore} # Successfully restored document collection 'Locations'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [94913] {restore} # Loading data into edge collection 'ChildOf', data size: 399 byte(s)\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [6ae09] {restore} # Successfully restored document collection 'Traits'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [6ae09] {restore} # Successfully restored edge collection 'ChildOf'\n", - "\u001b[0m\u001b[0m2023-12-20T15:45:58Z [621] INFO [a66e1] {restore} Processed 4 collection(s) in 8.906876 s, read 10815 byte(s) from datafiles, sent 4 data batch(es) of 10811 byte(s) total size\n", - "\u001b[0m" + "[2024/01/23 00:51:08 +0000] [252] [INFO] - arango_rdf: Instantiated ArangoRDF with database 'TUTphtgz1t47nl7cpqy3mym'\n", + "INFO:arango_rdf:Instantiated ArangoRDF with database 'TUTphtgz1t47nl7cpqy3mym'\n" ] } ], "source": [ - "!chmod -R 755 ArangoRDF/\n", - "!./ArangoRDF/tests/tools/arangorestore -c none --server.endpoint http+ssl://{con[\"hostname\"]}:{con[\"port\"]} --server.username {con[\"username\"]} --server.database {con[\"dbName\"]} --server.password {con[\"password\"]} --replication-factor 3 --input-directory \"ArangoRDF/tests/data/adb/got_dump\"" + "adbrdf = ArangoRDF(db)" ] }, { - "cell_type": "code", - "execution_count": 12, + "cell_type": "markdown", "metadata": { - "id": "IkWQ9W4UZcIz" + "id": "znQCjOwt7zBz" }, - "outputs": [], "source": [ - "if not db.has_graph(\"GameOfThrones\"):\n", - " db.create_graph(\n", - " \"GameOfThrones\",\n", - " edge_definitions=[\n", - " {\n", - " \"edge_collection\": \"ChildOf\",\n", - " \"from_vertex_collections\": [\"Characters\"],\n", - " \"to_vertex_collections\": [\"Characters\"],\n", - " },\n", - " ],\n", - " orphan_collections=[\"Traits\", \"Locations\"],\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QfE_tKxneG9A" - }, - "source": [ - "# Instantiate ArangoRDF" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kGfhzPT9eG9A" - }, - "source": [ - "Connect ArangoRDF to our temporary ArangoDB cluster:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "oG496kBeeG9A", - "outputId": "1349178c-54df-4cdf-9d7c-55bd27e49b29" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "[2023/12/20 15:45:58 +0000] [306] [INFO] - arango_rdf: Instantiated ArangoRDF with database 'TUTxfevvzm7lvczk545y3p8v'\n", - "INFO:arango_rdf:Instantiated ArangoRDF with database 'TUTxfevvzm7lvczk545y3p8v'\n" - ] - } - ], - "source": [ - "adbrdf = ArangoRDF(db)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "znQCjOwt7zBz" - }, - "source": [ - "# RDF to ArangoDB" + "# RDF to ArangoDB" ] }, { @@ -872,7 +813,8 @@ "id": "0qry3Bcy-160" }, "source": [ - "#### RPT vs PGT" + "#### ❗ RPT vs PGT ❗\n", + "\n" ] }, { @@ -881,16 +823,19 @@ "id": "0ONWNS6t8x7A" }, "source": [ - "RDF-to-ArangoDB functionality has been implemented using concepts described in the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781).\n", + "ArangoRDF's RDF-to-ArangoDB functionality has been implemented using concepts described in the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781).\n", "\n", - "In other words, ArangoRDF offers 2 RDF-to-ArangoDB transformation methods:\n", + "**TL;DR**:\n", "\n", - "1. RDF-topology Preserving Transformation (RPT): `ArangoRDF.rdf_to_arangodb_by_rpt()`\n", - "2. Property Graph Transformation (PGT): `ArangoRDF.rdf_to_arangodb_by_pgt()`\n", + "ArangoRDF has 2 RDF-to-ArangoDB transformation methods:\n", + "\n", + "1. **RDF-topology Preserving Transformation** (RPT): `ArangoRDF.rdf_to_arangodb_by_rpt()`\n", + "\n", + "2. **Property Graph Transformation** (PGT): `ArangoRDF.rdf_to_arangodb_by_pgt()`\n", "\n", "RPT preserves the RDF Graph structure by transforming each RDF Statement into an ArangoDB Edge.\n", "\n", - "PGT on the other hand ensures that Datatype Property Statements are mapped as ArangoDB Document Properties." + "PGT ensures that Datatype Property Statements (i.e Literal Statements) are mapped as ArangoDB Document Properties." ] }, { @@ -919,4601 +864,53527 @@ "id": "mRutdKii-Pk5" }, "source": [ - "#### Simple RPT & PGT Examples" + "#### Cases" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2PWrF6C5VByv" + }, + "source": [ + "RDF Graph Cases taken from the paper [*Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches*](https://arxiv.org/abs/2210.05781)" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": { - "id": "cy_BWXK2AX5n", - "outputId": "78bb23af-af29-45f2-8cc2-ff47d05f6a0c", "colab": { "base_uri": "https://localhost:8080/", - "height": 82, + "height": 134, "referenced_widgets": [ - "b7fc8abdf6814a58bd2fa09ae4421720", - "8392609e27f64746bd7cb584b43c9872", - "01f90b74e45242d6b630726096ced105", - "070a0cf984774302b8afaf5cf0a321bd", - "5a4cf49e7d584df18700cbb9b9415b4b", - "2761dd724d38425b8595176fff7853b5" + "fc377f11c10c4d968c8a6caac22e0012", + "06aca56f72fb4329b49cfcc532ac8116", + "358dc9cbaa2f47f6aa3b14963b022222", + "fb6fc4469af9424c9c8eaaec53ddf478", + "2ddfd1e64d4747f8b3cc576d462d5f56", + "c1a0f2be84cd45749b0043f6510a4bfa", + "eee2941003754994b27156607ed4d79a", + "1d6d26d7b5a642529791ac860d335e29", + "999885ce87084d309d1c8c0972124094", + "d867c72e97bd48b686aac05d789729fe", + "e28d9f03ff10486fbe6f47ea396bc610", + "2cd5ecb36d81498595f558f842e23c05", + "9b60d80acd1140eb91da4ee24e3aec65", + "edc4bc9e70c3451299599dc199951288", + "407cfb7d093540daa3e77ed151028666", + "e849e373b5fd4798b5efae255bba65e7", + "ecf4cf0278e4442188384c7e7c2d7e56", + "4353e4aefa3b4d9a9d57249b27df4932", + "6df2082e6f484dc79472fccacc27c996", + "0d86bf821be447f4ab655cd136af247d", + "1ba7a0ca8b0646b8a5d9cb4ec400e03b", + "024dbdf4ef6d411f8f8a6e25603c68a7", + "3675e6b10c0748e387629f471847295a", + "ac58fe66dce145f0be7f770a26039acf" ] - } + }, + "id": "cy_BWXK2AX5n", + "outputId": "2ace5ff0-1603-4719-fe13-dcace5f832bf" }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "fc377f11c10c4d968c8a6caac22e0012", "version_major": 2, - "version_minor": 0, - "model_id": "b7fc8abdf6814a58bd2fa09ae4421720" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "01f90b74e45242d6b630726096ced105"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "358dc9cbaa2f47f6aa3b14963b022222", "version_major": 2, - "version_minor": 0, - "model_id": "5a4cf49e7d584df18700cbb9b9415b4b" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 14 - } - ], - "source": [ - "# Case 1: Standard RDF statement\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "\n", - "ex:alice a ex:Person .\n", - "ex:bob a ex:Person .\n", - "ex:alice ex:meets ex:bob .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "id": "9BFNRAzLDmzU", - "outputId": "5de73940-3c91-4518-bc9f-1152fc6c1d6a", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 82, - "referenced_widgets": [ - "63d916b573c74a8b8bab9292113e70fe", - "ab91635eae8b44f293e8498b34af26c7", - "a6f2feceec124ed7acefe4e82a9b4f35", - "c7709f76676146d09d595b62b3186fdb", - "05b7c291aa4d4b54becbb0d09dc0e592", - "fc4fb9041d4343c1806556411b7aeb8c" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "2ddfd1e64d4747f8b3cc576d462d5f56", "version_major": 2, - "version_minor": 0, - "model_id": "63d916b573c74a8b8bab9292113e70fe" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "eee2941003754994b27156607ed4d79a",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "a6f2feceec124ed7acefe4e82a9b4f35"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "999885ce87084d309d1c8c0972124094",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "05b7c291aa4d4b54becbb0d09dc0e592"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 15 - } - ], - "source": [ - "# Case 2: The predicate of an RDF statement is subject in another statement\n", - "# Case 2.1: Predicate as subject and literal as object\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdfs: .\n", - "\n", - "ex:Sam ex:mentor ex:Lee .\n", - "ex:mentor rdfs:label \"project supervisor\" .\n", - "ex:mentor ex:name \"mentor's name\" .\n", - "\n", - "ex:Sam a ex:Person .\n", - "ex:Lee a ex:Person .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "E6t4VRcsD2m7", - "outputId": "74229a6d-bcd0-4324-ba42-0d506ad3ed14", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 82, - "referenced_widgets": [ - "a62666647d2b425aaa2822b0f2a5e661", - "a8ff7f2a8ed54d6e8896c8afc8bd9a7a", - "6fce329f1acc437eb5143b953cd0b7c8", - "f8c85c4dcb33421aaa10b481a5562a2a", - "6d1cbe4d1bb64a9194a03e88c6b1e5f3", - "ca680d45310b44de8dde511fb2bf9586" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "e28d9f03ff10486fbe6f47ea396bc610", "version_major": 2, - "version_minor": 0, - "model_id": "a62666647d2b425aaa2822b0f2a5e661" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "9b60d80acd1140eb91da4ee24e3aec65", "version_major": 2, - "version_minor": 0, - "model_id": "6fce329f1acc437eb5143b953cd0b7c8" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "407cfb7d093540daa3e77ed151028666", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ecf4cf0278e4442188384c7e7c2d7e56",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "6d1cbe4d1bb64a9194a03e88c6b1e5f3"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 16 - } - ], - "source": [ - "# Case 2: The predicate of an RDF statement is subject in another statement\n", - "# Case 2.2: Predicate as subject and RDF resource as object\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "\n", - "ex:Martin ex:mentorJoe ex:Joe.\n", - "ex:mentorJoe ex:alias ex:teacher .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "NEDGhDfzEEhg", - "outputId": "6d4a3687-a733-40e1-9dde-ea286ecb81c5", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "84925f8f31824052ad993a42f966491f", - "79d0ebdd2a89415980760d64f679aa7b", - "28f9688942a248e288fbb727e7eebc62", - "11c4e7e954b44c4c86a9cc955be5ae1e", - "5c491da14b26454dacc151d691dc8cda", - "637ca5bdeda34c628e155eb845822f7e" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "6df2082e6f484dc79472fccacc27c996", "version_major": 2, - "version_minor": 0, - "model_id": "84925f8f31824052ad993a42f966491f" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1ba7a0ca8b0646b8a5d9cb4ec400e03b",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "28f9688942a248e288fbb727e7eebc62"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3675e6b10c0748e387629f471847295a",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "5c491da14b26454dacc151d691dc8cda"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              ""
-            ]
+            ],
+            "text/plain": []
           },
           "metadata": {},
-          "execution_count": 17
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "# Case 2: The predicate of an RDF statement is subject in another statement\n",
-        "# Case 2.3: Predicate as subject and RDF property as object - rdfs:subPropertyOf\n",
+        "# Case 1: Standard RDF statement\n",
         "\n",
         "data = \"\"\"\n",
-        "@prefix rdfs:  .\n",
         "@prefix ex:  .\n",
         "\n",
-        "ex:Jan a ex:Person .\n",
-        "ex:Leo a ex:Person .\n",
-        "ex:Jan ex:supervise ex:Leo .\n",
-        "\n",
-        "ex:supervise rdfs:subPropertyOf ex:administer .\n",
+        "ex:alice a ex:Person .\n",
+        "ex:bob a ex:Person .\n",
+        "ex:alice ex:meets ex:bob .\n",
         "\"\"\"\n",
         "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
-        "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)"
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 18,
+      "execution_count": 14,
       "metadata": {
-        "id": "WraNcreKcJ35",
-        "outputId": "80a19c1b-4de4-4cd1-b315-355058ca9b42",
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 82,
+          "height": 150,
           "referenced_widgets": [
-            "14043b1e5a024c2c9de96dc1ef80cc69",
-            "c9bc8a0c2e2948349479061cb80f0634",
-            "645c43cc66e74996980bf761878dc058",
-            "378aa87bb1204456b3c458d5d7eb2451",
-            "8b9f1ace152146efb018a69ffa44a923",
-            "bc2462ca91b245f5bc783e89af1be952"
+            "34082cf6eb994d0e8dc1c5a32103e6a8",
+            "a601dcef909d423d89e184f7afefd15c",
+            "39bbccb261f74e9696665119136f35ee",
+            "89d11dbcd6e34779a029e0cca10286a5",
+            "03740e7e6199495cbaebf039d6fea20a",
+            "e9d399758a9c466188e5ed4c7076832a",
+            "7f35f5dbf07e47f78d51f42f62c42258",
+            "013737bac24c4fc19871485909ee3d44",
+            "82621e9cb2ba47baafa2c1580d91740b",
+            "99fbd40f55514a0087206be19f5b96db",
+            "a2b0b7c7cc6a4057b8743464c0fb33a8",
+            "7c95cb7b6bbf4f018a598a9ec2e7d8c9",
+            "d66eb2a7b7f943e2b9bc8f3c3567da79",
+            "d911bd1cb75941509e9f3578e037785b",
+            "b5aaff1d7205458b8a9ef5457d2e3600",
+            "f2c7dcc0c0c848e18722c628f78b8676",
+            "54182c5e13f84178b64673a1ddfc3a42",
+            "52c95751c36a41249e00de51f9280ed5",
+            "9cd12ef1fe0c467cb7f31ce82200f9e6",
+            "9e955e0fd94e4b388da05e1056c13e1e",
+            "367eabfb0fd24998835426983d7565a1",
+            "89e21dfb027c495f9a9524ec26ff204e",
+            "e8be2a32f6d341998985b2c1f4e3d9c9",
+            "95d6f533e8a240c3b0d4aad2e9580335"
           ]
-        }
+        },
+        "id": "9BFNRAzLDmzU",
+        "outputId": "5038bf6e-b8be-410f-afe4-3dcdca407898"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "34082cf6eb994d0e8dc1c5a32103e6a8",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "14043b1e5a024c2c9de96dc1ef80cc69"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "645c43cc66e74996980bf761878dc058"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "39bbccb261f74e9696665119136f35ee", "version_major": 2, - "version_minor": 0, - "model_id": "8b9f1ace152146efb018a69ffa44a923" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 18 - } - ], - "source": [ - "# Case 2: The predicate of an RDF statement is subject in another statement\n", - "# Case 2.4: Predicate as subject and RDF class as object - rdf:type\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "ex:Tom ex:friend ex:Chris .\n", - "ex:friend rdf:type ex:relation .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "id": "00ooim92Ekxv", - "outputId": "f5ef499c-da4f-4037-d595-bb889dbc3f72", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "ad273e4bc37141e894b7aa9b3944c2ad", - "90ded7fa35bf4d7b9158a6245254bd61", - "bbd05eae3a9c4a87abfb89b2fa305df1", - "fb5ba4b4ac504bbcae9d2f87e29fae08", - "187eb516a1ae418b9f5599e5388a6c54", - "f57975d49e7a49d0a7c4bac35af2e707" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "03740e7e6199495cbaebf039d6fea20a", "version_major": 2, - "version_minor": 0, - "model_id": "ad273e4bc37141e894b7aa9b3944c2ad" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7f35f5dbf07e47f78d51f42f62c42258",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "bbd05eae3a9c4a87abfb89b2fa305df1"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "82621e9cb2ba47baafa2c1580d91740b",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "187eb516a1ae418b9f5599e5388a6c54"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 19 - } - ], - "source": [ - "# Case 3: Data types and language tags\n", - "# Case 3.1: Datatype property statements with different data types of the literal objects\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix xsd: .\n", - "\n", - "ex:book ex:publish_date \"1963-03-22\" .\n", - "ex:book ex:pages \"100\"^^xsd:integer .\n", - "ex:book ex:cover 20 .\n", - "ex:book ex:index \"55\" .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "id": "UmIn_SZWccN2", - "outputId": "af2e57d7-a7b8-4c2a-a1ab-9e543c68d6a6", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "e6cabf8b877c4a529dc06c11d2799dc7", - "4dab918581ac47f19d87c6ed4b5510d6", - "5d24e5e2c2c94bd7be68cab18ed0d54a", - "1dbd5f86325c4634a3646a811d0c5b79", - "9d7882a570e544f6984d5cd65db8e30f", - "917bdaff66d44d7584c83a15c825b348" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "a2b0b7c7cc6a4057b8743464c0fb33a8", "version_major": 2, - "version_minor": 0, - "model_id": "e6cabf8b877c4a529dc06c11d2799dc7" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "5d24e5e2c2c94bd7be68cab18ed0d54a" - } + "text/plain": [ + "\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], - "text/html": [ - "
\n"
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d66eb2a7b7f943e2b9bc8f3c3567da79",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
             ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "9d7882a570e544f6984d5cd65db8e30f"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b5aaff1d7205458b8a9ef5457d2e3600", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + "Output()" ] }, "metadata": {}, - "execution_count": 20 - } - ], - "source": [ - "# Case 3: Data types and language tags\n", - "# Case 3.2: Datatype property statements with different language tags of the literal objects\n", - "# NOTE: PGT will currently discard the language tags!\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "\n", - "ex:book ex:title \"Book\"@en.\n", - "ex:book ex:title \"Bog\"@da.\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "id": "SQaaqperccbA", - "outputId": "48c00702-8148-4f5f-b2ab-18dee10e9e2e", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 82, - "referenced_widgets": [ - "eb7475d731a944c9b81f63b8590ff3f5", - "4b99b0630ce440dfb3de98cbea514472", - "39975c741ff64d7daa6606fbbb56cb8f", - "970332934439402cbd8b34fa470e696a", - "19ffc23068b44fb791f18c3ca93f255c", - "c58529b8b756480fb8a7177b1b4f446c" - ] - } - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Output()" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "eb7475d731a944c9b81f63b8590ff3f5" - } - }, - "metadata": {} + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "54182c5e13f84178b64673a1ddfc3a42",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "39975c741ff64d7daa6606fbbb56cb8f"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [],
-            "text/html": [
-              "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
+              "version_minor": 0
+            },
             "text/plain": [
               "Output()"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "19ffc23068b44fb791f18c3ca93f255c"
-            }
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 21 - } - ], - "source": [ - "# Case 4: RDF list\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "\n", - "ex:List1 ex:contents (\"one\" \"two\" \"three\").\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "id": "r0kHJogZFEKO", - "outputId": "9d11c893-78f8-46da-e46a-26a801e7bc2b", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 66, - "referenced_widgets": [ - "6b9f73dfe80f47459fb99e11ca099d45", - "20ffded7a8164953ac6427b81f48d700", - "f4604c4e93634d4eb397a73656b84428", - "a6aba994741c478db57553f48f0862e1", - "8e67325edc404ea0a3ea5831b402f2ba", - "257df207329b4db3a6dcfe3488f44707" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "9cd12ef1fe0c467cb7f31ce82200f9e6", "version_major": 2, - "version_minor": 0, - "model_id": "6b9f73dfe80f47459fb99e11ca099d45" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "367eabfb0fd24998835426983d7565a1",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "f4604c4e93634d4eb397a73656b84428"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e8be2a32f6d341998985b2c1f4e3d9c9",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "8e67325edc404ea0a3ea5831b402f2ba"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              ""
-            ]
+            ],
+            "text/plain": []
           },
           "metadata": {},
-          "execution_count": 22
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "# Case 5: Blank nodes\n",
+        "# Case 2: The predicate of an RDF statement is subject in another statement\n",
+        "# Case 2.1: Predicate as subject and literal as object\n",
         "\n",
         "data = \"\"\"\n",
         "@prefix ex:  .\n",
+        "@prefix rdfs:  .\n",
         "\n",
-        "ex:bob ex:nationality _:c .\n",
-        "_:c ex:country \"Canada\" .\n",
-        "\"\"\"\n",
+        "ex:Sam ex:mentor ex:Lee .\n",
+        "ex:mentor rdfs:label \"project supervisor\" .\n",
+        "ex:mentor ex:name \"mentor's name\" .\n",
         "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
+        "ex:Sam a ex:Person .\n",
+        "ex:Lee a ex:Person .\n",
+        "\"\"\"\n",
         "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)"
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 23,
+      "execution_count": 15,
       "metadata": {
-        "id": "noAXcHOJFJvG",
-        "outputId": "f235d415-e325-434c-e4c4-09379cb4439a",
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 82,
+          "height": 134,
           "referenced_widgets": [
-            "c99dce27f0bd45d486888c8594159d7a",
-            "d1b248b830bc4de2be55d9e00c555cf1",
-            "f73ac361e1a6496399a7e6ef8f536ed9",
-            "3e5ce57a43c44682ab27b341725c9cdc",
-            "18f971e8a5564de3a443aeee11506522",
-            "1d2224ef32a2471390016c487eebdc03"
+            "36998aa1db0d4404a02bef5abfa995c8",
+            "f529a9ce3a0a4fdf832eae87d164d458",
+            "52cbbdbb898f48deae681ff01d1468c8",
+            "4f58d9bac09c404c9f2b1f7d6007109d",
+            "b54aeadd1028418a9c44d660dd9a44f9",
+            "d61fc357d96646cbacbf74a072e3b738",
+            "8f588230f1de4c58a2e8dbc1b466f0e6",
+            "6c5dc20ab389471e993a2407b20e01cc",
+            "5c8ea494175c47e1b55304e2730df295",
+            "9d506f434f5d4df7be610f8b40fcd390",
+            "1f9945bbb3924f15999d790fed89863f",
+            "03a99f41fc0a4353bfc5efb093e552ac",
+            "de8a98213fa542af9f90496371ce7058",
+            "bb8162c2ad224fbc87044aa6b7dca2a9",
+            "41c5ae5ef1f1453ba249725f961f6b47",
+            "f433163973a148f7ae20eaa83425e8b9",
+            "663d9df312bf4c44994eca45cc5dcf93",
+            "7f8a2efde7f242f4af578c23d5d72004",
+            "442ab928de054d89834465fa7d3f6c90",
+            "7aac7eecd5364b3d976a3a7c108cde46",
+            "5474d353569b4aa99ca7b0cfba1a3a45",
+            "7a61723dadad4e29858db789b0befedd",
+            "324aaf266fbe4a73a48096790b2b3a8a",
+            "bcaf27bfd2b94b088aee76f8c1c0b394"
           ]
-        }
+        },
+        "id": "E6t4VRcsD2m7",
+        "outputId": "40d573e1-c1fc-449c-88c7-4ad8e1c44f29"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "36998aa1db0d4404a02bef5abfa995c8",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "c99dce27f0bd45d486888c8594159d7a"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "f73ac361e1a6496399a7e6ef8f536ed9"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "52cbbdbb898f48deae681ff01d1468c8", "version_major": 2, - "version_minor": 0, - "model_id": "18f971e8a5564de3a443aeee11506522" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 23 - } - ], - "source": [ - "# Case 6: Named graphs\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "@prefix rdfs: .\n", - "\n", - "ex:Monica ex:employer ex:ArangoDB .\n", - "\n", - "ex:Graph1 {\n", - " ex:Monica a ex:Entity .\n", - " ex:Management a ex:Skill .\n", - " ex:Monica ex:name \"Monica\" .\n", - " ex:Monica ex:homepage .\n", - " ex:Monica ex:hasSkill ex:Management .\n", - "}\n", - "\n", - "ex:Graph2 {\n", - " ex:Programming a ex:Skill .\n", - " a ex:Website .\n", - " ex:Monica a ex:Person .\n", - " ex:Person rdfs:subClassOf ex:Entity .\n", - " ex:Monica ex:hasSkill ex:Programming .\n", - "}\n", - "\"\"\"\n", - "\n", - "cg = ConjunctiveGraph()\n", - "cg.parse(data=data, format='trig')\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", cg, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", cg, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "id": "gtHKG7PiGyyF", - "outputId": "ab8631f6-a2f2-496f-ff39-d95b727d041e", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "3cf793a681e54b49af833c758869e646", - "fb292dca1c644e00be5203be17eb9b09", - "1edeb3a3438645c790a213a859131f95", - "da18f12264f94c8781507ed587f9fb53", - "024794f3124547ec9826e3a94407a545", - "74c1efb3701d4a0983f6c5eea22402a6" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "b54aeadd1028418a9c44d660dd9a44f9", "version_major": 2, - "version_minor": 0, - "model_id": "3cf793a681e54b49af833c758869e646" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8f588230f1de4c58a2e8dbc1b466f0e6",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "1edeb3a3438645c790a213a859131f95"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5c8ea494175c47e1b55304e2730df295",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "024794f3124547ec9826e3a94407a545"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 24 - } - ], - "source": [ - "# Case 7: Multiple types for resources - rdf:type\n", - "\n", - "data = \"\"\"\n", - "@prefix : .\n", - "@prefix rdfs: .\n", - "@prefix adb: .\n", - "@prefix owl: .\n", - "\n", - ":alice a :Arson .\n", - ":alice a :Author .\n", - "\n", - ":Zenkey rdfs:subClassOf :Zebra .\n", - ":Zenkey rdfs:subClassOf :Donkey .\n", - ":Donkey rdfs:subClassOf :Animal .\n", - ":Zebra rdfs:subClassOf :Animal .\n", - ":Human rdfs:subClassOf :Animal .\n", - ":Animal rdfs:subClassOf :LivingThing .\n", - ":LivingThing rdfs:subClassOf :Thing .\n", - ":Thing rdfs:subClassOf :Object .\n", - "\n", - ":charlie a :LivingThing .\n", - ":charlie a :Animal .\n", - ":charlie a :Zenkey .\n", - "\n", - ":marty a :LivingThing .\n", - ":marty a :Animal .\n", - ":marty a :Human .\n", - "\n", - ":john a :Singer .\n", - ":john a :Writer .\n", - ":john a :Guitarist .\n", - ":john adb:collection \"Artist\" .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7ZeZNno5k3XW" - }, - "source": [ - "Cases 8 - 15: RDF-Star\n", - "\n", - "`rdflib` has yet to introduce support for [Quoted Triples](https://www.w3.org/TR/rdf12-concepts/#dfn-quoted-triple), so ArangoRDF's support for RDF-star is based on [Triple Reification](https://www.w3.org/wiki/RdfReification)." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "4d596c6378df440a8a752ce055c26c1c", - "d641f7f4975947d5ad4a9d473a3b6d45", - "083e78190707493a8fd6edf09b97b0cd", - "3bcca6a235ec46d491c9ccd7feb43335", - "9054e242c46c4851b6fa80e61212c7ac", - "a4ca952e39824fdf8391419fa05a79b5" - ] + "output_type": "display_data" }, - "id": "XevGMv7qdPgI", - "outputId": "a9eb3046-1933-4ddb-8dc1-1080905ae87c" - }, - "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "1f9945bbb3924f15999d790fed89863f", "version_major": 2, - "version_minor": 0, - "model_id": "4d596c6378df440a8a752ce055c26c1c" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "de8a98213fa542af9f90496371ce7058", "version_major": 2, - "version_minor": 0, - "model_id": "083e78190707493a8fd6edf09b97b0cd" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41c5ae5ef1f1453ba249725f961f6b47", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "663d9df312bf4c44994eca45cc5dcf93",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "9054e242c46c4851b6fa80e61212c7ac"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 25 - } - ], - "source": [ - "# Case 8: Embedded object property statement in subject position\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "<< ex:alice ex:likes ex:bob >> ex:certainty 0.5 .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:alice;\n", - " rdf:predicate ex:likes;\n", - " rdf:object ex:bob ;\n", - " ex:certainty 0.5 .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "id": "KAs-MpmAp8_c", - "outputId": "ee68d39c-3b2c-45c0-9684-8d90df1e5e40", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 66, - "referenced_widgets": [ - "ae8d8107b06e44ca93dea02970a9f249", - "b0921c20c9064e24af4cc089d8391449" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "442ab928de054d89834465fa7d3f6c90", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5474d353569b4aa99ca7b0cfba1a3a45",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "ae8d8107b06e44ca93dea02970a9f249"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "324aaf266fbe4a73a48096790b2b3a8a",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
-              ""
+              "Output()"
             ]
           },
           "metadata": {},
-          "execution_count": 26
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "# Case 9: Embedded datatype property statement in subject position\n",
-        "# Note: PGT does not support this case\n",
-        "\n",
-        "\"\"\"\n",
-        "@prefix ex:  .\n",
-        "<< ex:Mark ex:age 28 >> ex:certainty 1 .\n",
-        "\"\"\"\n",
+        "# Case 2: The predicate of an RDF statement is subject in another statement\n",
+        "# Case 2.2: Predicate as subject and RDF resource as object\n",
         "\n",
         "data = \"\"\"\n",
         "@prefix ex:  .\n",
-        "@prefix rdf:  .\n",
-        "\n",
-        "[] a rdf:Statement;\n",
-        "    rdf:subject ex:Mark;\n",
-        "    rdf:predicate ex:age;\n",
-        "    rdf:object 28 ;\n",
-        "    ex:certainty 1 .\n",
         "\n",
+        "ex:Martin ex:mentorJoe ex:Joe.\n",
+        "ex:mentorJoe ex:alias ex:teacher .\n",
         "\"\"\"\n",
         "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
-        "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)"
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 27,
+      "execution_count": 16,
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 98,
+          "height": 134,
           "referenced_widgets": [
-            "37b3248d6772424eb60a7e971ecd02b1",
-            "f634630cea00413faaa7b0411b55f795",
-            "7ab128ea18a746f4969526ebb3171a27",
-            "4e8d612cd3af44248421dc9dce4ae418",
-            "154e7c01b36e4a6f8f6b6c95ae930fbe",
-            "da3673541a9a43d790679a1cd27b1e35"
+            "d09c5ec60dce44c1a554ab5708e1a06a",
+            "4e9d7516d4b447e9af814d0ef8e1a33e",
+            "299cedcd596747f7a8837d2ef1a25f5c",
+            "2f3cc4e6401444d1a3154659afc9efab",
+            "5498eaee5d4147e7837cb6c6c563dfbc",
+            "a8d4da8fc9f9471e9bc5d328b4ca8d90",
+            "62199c1525d34669b32ec33744030077",
+            "554c15b9173641b199741a03138c3ec5",
+            "17719aef6c534bddabefe7a8842e743b",
+            "fbc6745df8724e9e9379e3ab3b07b2c5",
+            "ccbc35240b3648ae9b30318be78f7b79",
+            "f3bb03a8be4645cfa5f39fecdee44057",
+            "b81d313da9914c0dbc9401bb61e36cd2",
+            "306ec886b3264c6fa6df970754f7f603",
+            "e9c373c0a0b14537bcca1d43a4aa7d58",
+            "6bd89d16c4d649538dc7213f8abc7aed",
+            "06838a4ca6e3487abf98d48ac909f144",
+            "746745f6f03543e08fd4429cc5cc900f",
+            "1656f5d65cf74bc09f36c42d6805e634",
+            "db682b0171354a50bc8e7ae48d5d49f1",
+            "e108a1590816436995542b612fedce0c",
+            "f777d49fe0d0408f8df7051c16a726e5",
+            "094c0ec357ef44c395c39ae90dd66e7a",
+            "f6ddbd6c083449d1b675b1829c5b682f"
           ]
         },
-        "id": "_ZWrGS9Uqoc1",
-        "outputId": "38d7ce36-5ef3-48fc-e4a6-0aeccba1faae"
+        "id": "NEDGhDfzEEhg",
+        "outputId": "e3e7726e-f2fa-44c0-9f4a-0923128887a3"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d09c5ec60dce44c1a554ab5708e1a06a",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "37b3248d6772424eb60a7e971ecd02b1"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "7ab128ea18a746f4969526ebb3171a27" - } + "text/plain": [ + "\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], - "text/html": [ - "
\n"
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "299cedcd596747f7a8837d2ef1a25f5c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
             ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "154e7c01b36e4a6f8f6b6c95ae930fbe"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5498eaee5d4147e7837cb6c6c563dfbc", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + "Output()" ] }, "metadata": {}, - "execution_count": 27 - } - ], - "source": [ - "# Case 10: Embedded object property statement in object position\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "ex:bobshomepage ex:source << ex:mainPage ex:writer ex:alice >> .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "_:x a rdf:Statement;\n", - " rdf:subject ex:mainPage;\n", - " rdf:predicate ex:writer;\n", - " rdf:object ex:alice .\n", - "\n", - "ex:bobshomepage ex:source _:x .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 82, - "referenced_widgets": [ - "80bf39d6f8d24250b39ac0a599968566", - "48fc42804d1f4c39ab5c121c804c15db", - "59396ffe39ea4b93beffcaf1107a99e7", - "2554a40b9c0145cabf9b130ce942e09e", - "024fb25b58194b49ad15c2ad689300fc", - "7f8f299bbac840688fb806012e52afb2" - ] + "output_type": "display_data" }, - "id": "E_iK33XDSiml", - "outputId": "a6b46de1-b08f-4e4c-973a-da1eca899e0a" - }, - "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "62199c1525d34669b32ec33744030077",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "80bf39d6f8d24250b39ac0a599968566"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "17719aef6c534bddabefe7a8842e743b",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "59396ffe39ea4b93beffcaf1107a99e7"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "ccbc35240b3648ae9b30318be78f7b79", "version_major": 2, - "version_minor": 0, - "model_id": "024fb25b58194b49ad15c2ad689300fc" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 28 - } - ], - "source": [ - "# Case 11: Embedded object property statement in subject position and non-literal object\n", - "# Case 11.1: Asserted statement with non-literal object\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "<< ex:mainPage ex:writer ex:alice >> ex:source ex:bobshomepage .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:mainPage;\n", - " rdf:predicate ex:writer;\n", - " rdf:object ex:alice ;\n", - " ex:source ex:bobshomepage .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 98, - "referenced_widgets": [ - "643e339e031842f0907dc830b6ee151a", - "f160e75392014b2c9ac8141dd6d429a3", - "e9ce05ba301a42029120497a2856ce2c", - "2fc5d453ea01439589427d19fcb8a908", - "e4b9fdeb356d4317900435592a2cce8f", - "2e1a3dad266c4481a88f8e97cf89a1a6" - ] + "output_type": "display_data" }, - "id": "0oZbDeLeS6ll", - "outputId": "95aa2c20-d50c-4b4c-b64e-c7caeb0a2ffc" - }, - "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "b81d313da9914c0dbc9401bb61e36cd2", "version_major": 2, - "version_minor": 0, - "model_id": "643e339e031842f0907dc830b6ee151a" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e9c373c0a0b14537bcca1d43a4aa7d58", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "06838a4ca6e3487abf98d48ac909f144",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "e9ce05ba301a42029120497a2856ce2c"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1656f5d65cf74bc09f36c42d6805e634", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e108a1590816436995542b612fedce0c",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "e4b9fdeb356d4317900435592a2cce8f"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "094c0ec357ef44c395c39ae90dd66e7a",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
-              ""
+              "Output()"
             ]
           },
           "metadata": {},
-          "execution_count": 29
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "# Case 11: Embedded object property statement in subject position and non-literal object\n",
-        "# Case 11.2: Asserted statement with non-literal object that appears in another asserted statement\n",
-        "\n",
-        "\"\"\"\n",
-        "@prefix ex:  .\n",
-        "ex:alex ex:age 25 .\n",
-        "<< ex:alice ex:friend ex:bob >> ex:mentionedBy ex:alex .\n",
-        "\"\"\"\n",
+        "# Case 2: The predicate of an RDF statement is subject in another statement\n",
+        "# Case 2.3: Predicate as subject and RDF property as object - rdfs:subPropertyOf\n",
         "\n",
         "data = \"\"\"\n",
+        "@prefix rdfs:  .\n",
         "@prefix ex:  .\n",
-        "@prefix rdf:  .\n",
-        "\n",
-        "ex:alex ex:age 25 .\n",
         "\n",
-        "[] a rdf:Statement;\n",
-        "    rdf:subject ex:alice;\n",
-        "    rdf:predicate ex:friend;\n",
-        "    rdf:object ex:bob ;\n",
-        "    ex:mentionedBy ex:alex .\n",
+        "ex:Jan a ex:Person .\n",
+        "ex:Leo a ex:Person .\n",
+        "ex:Jan ex:supervise ex:Leo .\n",
         "\n",
+        "ex:supervise rdfs:subPropertyOf ex:administer .\n",
         "\"\"\"\n",
         "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
-        "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)"
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 30,
+      "execution_count": 17,
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 82,
+          "height": 134,
           "referenced_widgets": [
-            "cca8a65fe7964b40b1b3903fd13a9ccc",
-            "9ad6a405ec67438d83837fa952e92912",
-            "1521b81d67b44c878d14c9fca516442f",
-            "8329cfb128b5412fa37e8449a3dcd1ed",
-            "112e6b19eccb4d7d926a22e7ee4711ad",
-            "0d158161a3864a12b3bf3e5606653884"
+            "4cb8bd60a6174fdaa24c09f9a852fa18",
+            "14139b121edc4b42bf05b1bf35f232ef",
+            "59c0abf74b4d4276ba5bc305f28d26a8",
+            "5382e4076e9d4b058082df8c722e0668",
+            "5eb7089127fb481a93e44a1468c01914",
+            "260648c894104cb092ede5d76ef44111",
+            "e97722a842234f0da935308222ef07af",
+            "037bf3dcddc04024ab27ab2c67c6e494",
+            "ee08f8a0423141508d6163d09448e7a4",
+            "3f2f2a4d7c484682bf12ded64a1ceee7",
+            "19f32708e8e148a4a38ea7d27b931a2e",
+            "b213dfe9dbe6485ba9ce050603aa69f4",
+            "56a5349593d642ebaf100d6a50abf506",
+            "bb3de533a75145bba916c21d660249ce",
+            "b7c35383db9149c0bd7bc1b6c845e7c7",
+            "908de16ce10a496b991f81cfa695f0e4",
+            "31cdeffecb6e4de199d9b8925ec7a567",
+            "86cabf0aa5da4a2bb523713b7f70e2c8",
+            "c3e8856f18d64146a238e5ec533ba596",
+            "81b1364ffbd34ef688fb059f9e80afd1",
+            "518456cbb9b743f38914894954dd8777",
+            "bea5ba1e9db740a29147d2a2f105c8a9",
+            "a68461a127d2438fabf18b90f0e7a0f3",
+            "b9a655403dd74da18f452ca364b843d7"
           ]
         },
-        "id": "woNfHiZ5S__t",
-        "outputId": "3e247f94-6aee-44c4-b036-becfb543073e"
+        "id": "WraNcreKcJ35",
+        "outputId": "0007a8f1-d9bf-4895-daf6-7366bef50ae4"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4cb8bd60a6174fdaa24c09f9a852fa18",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "cca8a65fe7964b40b1b3903fd13a9ccc"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "1521b81d67b44c878d14c9fca516442f"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "59c0abf74b4d4276ba5bc305f28d26a8", "version_major": 2, - "version_minor": 0, - "model_id": "112e6b19eccb4d7d926a22e7ee4711ad" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 30 - } - ], - "source": [ - "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n", - "# Case 12.1: Asserted statement with rdf:type as predicate\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:mainPage ex:writer ex:alice >> rdf:type ex:bobshomepage .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:mainPage;\n", - " rdf:predicate ex:writer;\n", - " rdf:object ex:alice ;\n", - " rdf:type ex:bobshomepage .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "943dbdccdee14f9181cd6ddb5649ba6e", - "9d2fc8f153f6417199bff4da8ff1da9d", - "e9532a22334d4cb58d467aea26a078bd", - "64953fecd79344a288fe45e239340586", - "37aa954141534869942a355e348d1bc5", - "8c3d7146d54949aa8fe26416f332a39e" - ] + "output_type": "display_data" }, - "id": "lbbdb2lwS_2M", - "outputId": "d529b9db-32ee-45f7-9d5b-ac07875c4d18" - }, - "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "5eb7089127fb481a93e44a1468c01914", "version_major": 2, - "version_minor": 0, - "model_id": "943dbdccdee14f9181cd6ddb5649ba6e" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e97722a842234f0da935308222ef07af",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "e9532a22334d4cb58d467aea26a078bd"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ee08f8a0423141508d6163d09448e7a4",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "37aa954141534869942a355e348d1bc5"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 31 - } - ], - "source": [ - "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n", - "# Case 12.2: Embedded statement with rdf:type as predicate\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:lara rdf:type ex:writer >> ex:owner ex:journal .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:lara;\n", - " rdf:predicate rdf:type;\n", - " rdf:object ex:writer ;\n", - " ex:owner ex:journal .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "id": "4TwIzKZ4S_tN", - "outputId": "a82197b5-247c-4f98-977a-a68f5cf6c1bb", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "7a195dd506874f14b6ea7fdcb3e17d5c", - "f6059df303154670a928b198a0091d0a", - "0e1a16d9193541d6828cc29365915a45", - "6fee3fa7e01e45a89733e4ac0f084a27", - "4853f718f1d644ba8c2831dde6ecf641", - "fabb5e3ab845455c85f9d3d6e1345bdc" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "19f32708e8e148a4a38ea7d27b931a2e", "version_major": 2, - "version_minor": 0, - "model_id": "7a195dd506874f14b6ea7fdcb3e17d5c" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "56a5349593d642ebaf100d6a50abf506", "version_major": 2, - "version_minor": 0, - "model_id": "0e1a16d9193541d6828cc29365915a45" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "b7c35383db9149c0bd7bc1b6c845e7c7", "version_major": 2, - "version_minor": 0, - "model_id": "4853f718f1d644ba8c2831dde6ecf641" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "31cdeffecb6e4de199d9b8925ec7a567",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
-              ""
+              "Output()"
             ]
           },
           "metadata": {},
-          "execution_count": 32
-        }
-      ],
-      "source": [
-        "# Case 13: Double nested RDF-star statement in subject position\n",
-        "\n",
-        "\"\"\"\n",
-        "@prefix ex:  .\n",
-        "@prefix rdf:  .\n",
-        "\n",
-        "<< << ex:Steve ex:position ex:CEO >> ex:mentionedBy ex:book >> ex:source ex:Journal .\n",
-        "\"\"\"\n",
-        "\n",
-        "data = \"\"\"\n",
-        "@prefix ex:  .\n",
-        "@prefix rdf:  .\n",
-        "\n",
-        "_:x a rdf:Statement;\n",
-        "    rdf:subject ex:Steve;\n",
-        "    rdf:predicate ex:position;\n",
-        "    rdf:object ex:CEO .\n",
-        "\n",
-        "[] a rdf:Statement;\n",
-        "    rdf:subject _:x;\n",
-        "    rdf:predicate ex:mentionedBy;\n",
-        "    rdf:object ex:book;\n",
-        "    ex:source ex:Journal .\n",
-        "\n",
-        "\"\"\"\n",
-        "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
-        "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": 33,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 0,
-          "referenced_widgets": [
-            "4b38704a488949bcb63948eef58eb730",
-            "51b70484aef7409eb48c1ea0c17250dd",
-            "57b393748251483d8c654588ae791281",
-            "e848cf868d484e5f9481f558c2cb3258",
-            "c2a362f33de74b39826d2fd604cf0d31",
-            "4e7fd35dbbbb4f9daacf07b88db681a0"
-          ]
+          "output_type": "display_data"
         },
-        "id": "yZDLiPMkS_kG",
-        "outputId": "2ad7c732-7477-4b54-a4e0-ba54595fa23d"
-      },
-      "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "4b38704a488949bcb63948eef58eb730"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "c3e8856f18d64146a238e5ec533ba596", "version_major": 2, - "version_minor": 0, - "model_id": "57b393748251483d8c654588ae791281" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "518456cbb9b743f38914894954dd8777",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "c2a362f33de74b39826d2fd604cf0d31"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a68461a127d2438fabf18b90f0e7a0f3",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
-              ""
+              "Output()"
             ]
           },
           "metadata": {},
-          "execution_count": 33
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "# Case 14: Multi-valued properties\n",
-        "# Case 14.1: RDF statements with same subject and predicate and different objects\n",
+        "# Case 2: The predicate of an RDF statement is subject in another statement\n",
+        "# Case 2.4: Predicate as subject and RDF class as object - rdf:type\n",
         "\n",
         "data = \"\"\"\n",
         "@prefix ex:  .\n",
+        "@prefix rdf: .\n",
         "\n",
-        "ex:college_page ex:subject \"Info_Page\";\n",
-        "    ex:subject \"aau_page\" .\n",
+        "ex:Tom ex:friend ex:Chris .\n",
+        "ex:friend rdf:type ex:relation .\n",
         "\"\"\"\n",
         "\n",
         "g = Graph()\n",
         "g.parse(data=data)\n",
         "\n",
-        "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n"
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 34,
+      "execution_count": 18,
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 0,
+          "height": 134,
           "referenced_widgets": [
-            "ced8ec6902a64643bbbb60c6ea26d614",
-            "8bf27d1fd914448f963c8712a4b45e5d",
-            "d7c6faacc1ad440ca7cb2cd85d73fcea",
-            "e915b6a5e59d4d0e9216696a0c62b4ba",
-            "c5014016a5d146e9890bf9e3c2d4ba66",
-            "9f08e2fde54b435491cc851d1bd8252f"
+            "ed9195442d784e6d8550886ee8d67aa5",
+            "8e09ff0eb87345a88389b0a6780c1167",
+            "40ba8687516e4923a56bd8354dc97838",
+            "ccaa03e4315e4945b5fd1c01e084369d",
+            "117b18d0bbc142ccb0fe1f5598a3cd1b",
+            "9f28ee10e68c4eb4b4b82076d5324212",
+            "e9716ce6050143ad814e61e4be7c29c4",
+            "fa8313cdc1884277a8b7b627d7873f75",
+            "a5878d1b00ea420a80da1504a988cebd",
+            "90cb248476934ee496a5c8e1ef2b5c31",
+            "160f5882af964f5887dc015b767426c4",
+            "37fc823816794e83a098931026bde2ec",
+            "b759d7fc0b0143e2bb2b1ca418deca36",
+            "1efe1b9781934efc9bf72d2632310f77",
+            "ca414902580045019738e070dd4d345b",
+            "defc0ab1aa6f4534b882322c9809cabf",
+            "05a0ce7410fc476085ef3a25bf49cc79",
+            "d02585418dad49a89330b587b87e9c5a",
+            "45c23924820f4dc28941d54522152446",
+            "ec967562785641e6b0c0aaedd4946827",
+            "b4187694d84a486c96214682fa0b06e8",
+            "b2212838b5dc498cb7f633a7ceae77f6",
+            "e5b22f764cb549bea4bafbbab1c80313",
+            "f4c3e03b26e84299a72432247e3211c2"
           ]
         },
-        "id": "X_qBsxffS_br",
-        "outputId": "ca01d1d9-912b-4e18-c7d4-91e6da8ebe10"
+        "id": "00ooim92Ekxv",
+        "outputId": "ee60ee36-1fa1-4118-c3c8-842e79f1c364"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ed9195442d784e6d8550886ee8d67aa5",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "ced8ec6902a64643bbbb60c6ea26d614"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "d7c6faacc1ad440ca7cb2cd85d73fcea"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "40ba8687516e4923a56bd8354dc97838", "version_major": 2, - "version_minor": 0, - "model_id": "c5014016a5d146e9890bf9e3c2d4ba66" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 34 - } - ], - "source": [ - "# Case 14: Multi-valued properties\n", - "# Case 14.2: RDF-star statements with the same subject and predicate and different objects\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 .\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 1 .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "@prefix xsd: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:Mary;\n", - " rdf:predicate ex:likes;\n", - " rdf:object ex:Matt ;\n", - " ex:certainty 0.5 .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:Mary;\n", - " rdf:predicate ex:likes;\n", - " rdf:object ex:Matt ;\n", - " ex:certainty 1 .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "549aa1199ec24346a2a3dbd9345538b5", - "c28750b44fd341e79a4f5115b38fa405", - "9df9935236354a1eb485cca94f84d49b", - "438cec8683814d69ad6c93ee234038df", - "e812902851574e0399a9c8b9127a464d", - "4060b9b79c4e45ae9030259327cf4ebd" - ] + "output_type": "display_data" }, - "id": "cD-S3cZ-S_Ta", - "outputId": "630ab417-6b8b-49e2-aa72-cc02dd141a9f" - }, - "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "117b18d0bbc142ccb0fe1f5598a3cd1b", "version_major": 2, - "version_minor": 0, - "model_id": "549aa1199ec24346a2a3dbd9345538b5" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e9716ce6050143ad814e61e4be7c29c4",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "9df9935236354a1eb485cca94f84d49b"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a5878d1b00ea420a80da1504a988cebd",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "e812902851574e0399a9c8b9127a464d"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 35 - } - ], - "source": [ - "# Case 15: Identical embedded RDF-star statements with different asserted statements\n", - "\n", - "\"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "\n", - "<< ex:Mary ex:likes ex:Matt >> ex:certainty 0.5 .\n", - "<< ex:Mary ex:likes ex:Matt >> ex:source \"text\" .\n", - "\"\"\"\n", - "\n", - "data = \"\"\"\n", - "@prefix ex: .\n", - "@prefix rdf: .\n", - "@prefix xsd: .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:Mary;\n", - " rdf:predicate ex:likes;\n", - " rdf:object ex:Matt;\n", - " ex:certainty 0.5 .\n", - "\n", - "[] a rdf:Statement;\n", - " rdf:subject ex:Mary;\n", - " rdf:predicate ex:likes;\n", - " rdf:object ex:Matt;\n", - " ex:source \"text\" .\n", - "\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0SWi4e3wIMtw" - }, - "source": [ - "#### RDF to ArangoDB w/ Graph Contextualization" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vec21mb9MkhR" - }, - "source": [ - "Contextualizing an RDF Graph within ArangoDB is a work-in-progress feature that attempts to enhance the Terminology Box of the original RDF Graph. This is done by:\n", - "\n", - "1. Loading the OWL, RDF, and RDFS Ontologies as 3 sub-graphs via `ArangoRDF.load_meta_ontology()`\n", - "2. Setting the `contextualize_graph` flag to `True` in any of the `rdf_to_arangodb` methods.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dUOCXzn5Owhj" - }, - "source": [ - "Enabling the `contextualize_graph` flag currently provides the following features:\n", - "\n", - "1. Process RDF Predicates within the RDF Graph as their own ArangoDB Document, and cast a (predicate RDF.type RDF.Property) edge relationship into the ArangoDB graph for every RDF predicate used in the form (subject predicate object) within the RDF Graph.\n", - "\n", - "2. Provide RDFS.Domain & RDFS.Range Inference on all RDF Resources within the RDF Graph, so long that no RDF.Type statement already exists in RDF Graph for the given resource.\n", - "\n", - "3. Provide RDFS.Domain & RDFS.Range Introspection on all RDF Predicates within the RDF Graph, so long that no RDFS.Domain or RDFS.Range statement already exists for the given predicate." - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "id": "P9oGi91RJbAI", - "outputId": "46c3f959-540f-4d24-afce-ccd4286fd499", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "592121dd0a6e4ffcb7ed98e2bc34cfcc", - "f97f8e9c73964e49b702b95425bfd8ce", - "08d34c739434405f978686d42aeeb19f", - "959e973b22064935a4049e2abf3fcae9", - "f3f4df888914429991fc99815945eec3", - "93015aba6cd44f658d916ae5438215d4" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "160f5882af964f5887dc015b767426c4", "version_major": 2, - "version_minor": 0, - "model_id": "592121dd0a6e4ffcb7ed98e2bc34cfcc" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "b759d7fc0b0143e2bb2b1ca418deca36", "version_major": 2, - "version_minor": 0, - "model_id": "08d34c739434405f978686d42aeeb19f" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ca414902580045019738e070dd4d345b", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "05a0ce7410fc476085ef3a25bf49cc79",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "f3f4df888914429991fc99815945eec3"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "execute_result",
           "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], "text/plain": [ - "" + "\n" ] }, "metadata": {}, - "execution_count": 36 - } - ], - "source": [ - "data = \"\"\"\n", - "PREFIX : \n", - "PREFIX rdf: \n", - "PREFIX rdfs: \n", - "PREFIX xsd: \n", - "\n", - ":The_Beatles rdf:type :Band .\n", - ":The_Beatles :name \"The Beatles\" .\n", - ":The_Beatles :member :John_Lennon .\n", - ":The_Beatles :member :Paul_McCartney .\n", - ":The_Beatles :member :Ringo_Starr .\n", - ":The_Beatles :member :George_Harrison .\n", - ":John_Lennon rdf:type :SoloArtist .\n", - ":Paul_McCartney rdf:type :SoloArtist .\n", - ":Ringo_Starr rdf:type :SoloArtist .\n", - ":George_Harrison rdf:type :SoloArtist .\n", - ":Please_Please_Me rdf:type :Album .\n", - ":Please_Please_Me :name \"Please Please Me\" .\n", - ":Please_Please_Me :date \"1963-03-22\"^^xsd:date .\n", - ":Please_Please_Me :artist :The_Beatles .\n", - ":Please_Please_Me :track :Love_Me_Do .\n", - ":Love_Me_Do rdf:type :Song .\n", - ":Love_Me_Do :name \"Love Me Do\" .\n", - ":Love_Me_Do :length 125 .\n", - ":Love_Me_Do :writer :John_Lennon .\n", - ":Love_Me_Do :writer :Paul_McCartney .\n", - "\n", - ":McCartney rdf:type :Album .\n", - ":McCartney :name \"McCartney\" .\n", - ":McCartney :date \"1970-04-17\"^^xsd:date .\n", - ":McCartney :artist :Paul_McCartney .\n", - "\n", - ":Imagine rdf:type :Album .\n", - ":Imagine :name \"Imagine\" .\n", - ":Imagine :date \"1971-10-11\"^^xsd:date .\n", - ":Imagine :artist :John_Lennon .\n", - "\"\"\"\n", - "\n", - "g = Graph()\n", - "g.parse(data=data)\n", - "\n", - "g = adbrdf.load_meta_ontology(g)\n", - "\n", - "adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, contextualize_graph=True, overwrite_graph=True)\n", - "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, contextualize_graph=True, overwrite_graph=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9gBg-hDs77i7" - }, - "source": [ - "# ArangoDB to RDF" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_kkM4P0fWR4e" - }, - "source": [ - "The `arangodb_graph_to_rdf` and `arangodb_collections_to_rdf` methods return two objects:\n", - "\n", - "1. The RDF representation of the ArangoDB Graph, i.e `rdf_graph`\n", - "2. Another RDF Graph mapping the RDF Resources to their designated ArangoDB Collection, i.e `adb_mapping`.\n", - "\n", - "The second graph, `adb_mapping`, can be re-used in the RDF to ArangoDB (PGT) process to maintain the Document-to-Collection mappings." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UCQ9ppnUQa7e" - }, - "source": [ - "#### Non-native" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mYZIEAzhQ5CO" - }, - "source": [ - "Non-native: An ArangoDB Graph that originates from an RDF Context, which has been brought over via one of the `rdf_to_arangodb` methods (RPT/PGT)." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "id": "orwoPEIOQjHO", - "outputId": "5dcd046c-b97e-453a-8b9a-42ba1ae4980c", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "b1cf0e4931b146aa80a042d5ed5a40eb", - "3ea41bbbaf13430abeacec550f35db15", - "da99d4ce9fcf46849c180ddc91b56d74", - "32c7178c7ede492bb3640eb6840df54c", - "5e7049f740dc48e3a043096f8cf210d7", - "01de28d679514165b0dfab5caca30ccd", - "4a3cb1d982804f9da9d52c3f51ae5848", - "dd71c676c2d4402babc5a36eaa7c1dc3", - "91b2d0ebba5e4e60a6b5af29c62d0934", - "d32cb14a98fa473f806e5aa2df849bd0", - "37a20406c9e5446597d98c3d20c39bcd", - "7e7385eb03874dd8b82abae0e45bd190", - "76167581df114302aa01459efd638b45", - "2e918c84645442bc8157a1b0007b44b8", - "a87f8d8d02ad4d43b4c2d50af33c190e", - "5ba8741dc8e84ba29ac165632f1338b4", - "da01125aa5a2460580d7f3e93c4b3337", - "3d5840265d25455ba6c31be393495166", - "040f782f0d1246ebb4d063aaca760a30", - "725a546ad4204ba9bbe123595f1fd2eb", - "1693936c80574039baabe485bf9e8c30", - "ab34b34d32b44f068a3db30f10161375", - "db29617659e4471a8c6da3867488e0c0", - "3f68478dc6ca4de0836c2f076a662db6", - "aeb95feadd7c4a2ea7ab68e4cef4769e", - "915a778f31594b388a70246762b0057b", - "68106dfc027d4fe1b68156727f3bae0b", - "421d813ceee343b9928d8fe028d1db5b", - "e77bdee916364cf89751153cb4db42d2", - "11eadb79690041718e237c0d3f02e4b0", - "999e52c9cf694d38a0e1a97d7a39f123", - "782c4ad9a2294bba9114794e10b300fb", - "19cf8acb80354d00bd7eee5247c2b140", - "d43c050a27ae4c5ea162a8853b9baa54", - "4ed1c45eca21411ab21ac14d326cea64", - "3b216fedf7524d4eac8dea7027d2722e", - "ece557abbd214ce2a29e8aed9eed02bb", - "6ab1331544f344b48e509c58a1ef9aff", - "dac740443d1b4936b1c7d6e0025dab60", - "215999732cca4a9e9237fea97da41c7c", - "dcad9642f34e48ac95831e47bebb71ab", - "c023cf980df348049a6eb21a1a2bafbf", - "e316eb6e5fe04a018a13296628dd2a05", - "0cf06485b1e64de893b6741e8a9a0b02", - "f596dd62da294dd08dc3832b6a250c6b", - "c6d902dd709e4ff0813ee13024cafc8b", - "262cd26af17341e788a08be05ef71580", - "6b6d00aa500348c887cc807117d44c8f", - "ab70def2b20c4aa98ac4b314c1b22725", - "8050c7a1096f4d5da7c33fcf46b2beb8" - ] - } - }, - "outputs": [ + "output_type": "display_data" + }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "45c23924820f4dc28941d54522152446", "version_major": 2, - "version_minor": 0, - "model_id": "b1cf0e4931b146aa80a042d5ed5a40eb" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b4187694d84a486c96214682fa0b06e8",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "da99d4ce9fcf46849c180ddc91b56d74"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e5b22f764cb549bea4bafbbab1c80313",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "5e7049f740dc48e3a043096f8cf210d7"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 3: Data types and language tags\n",
+        "# Case 3.1: Datatype property statements with different data types of the literal objects\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "ex:book ex:publish_date \"1963-03-22\" .\n",
+        "ex:book ex:pages \"100\"^^xsd:integer .\n",
+        "ex:book ex:cover 20 .\n",
+        "ex:book ex:index \"55\" .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 19,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 134,
+          "referenced_widgets": [
+            "573e8e1ec5794c519349919b0c644e0c",
+            "841e9c1810c640d1bec6c739f60f11a8",
+            "d2188b7ea4ec494591acd144708bd77a",
+            "f43396b324cf46b4b10c0f21e3917631",
+            "8526056c9dfe43f9942f53afdd79152d",
+            "5d47d305fe12407cbc727cfa15ea56b2",
+            "a3a87aebeb7e47e393ed6e73309d0368",
+            "fc64965fc2bb4303a2605992562de2df",
+            "edba16230f7c4f9db1cbaa9ad78b8bbc",
+            "562c5eb6af7b48cab01a04d36df6d8a0",
+            "73467dd00a6a45398be0e336a67e3379",
+            "a27f4bc191244980a4569f1380509b24",
+            "38e4ec950dfb48c1b86dfa51b59bd9f6",
+            "52737430028e42b493963e2ef404902d",
+            "e8a65707044c47cea44e778d77ecd8a5",
+            "ab8cd606859e4bfe8bb71c6096f8aa33",
+            "b8b1c716475e4043af7919e06253f606",
+            "8008d0fc5ee848c5a60ae9fc6e0af2ca",
+            "9c73cea9af174a978ed87abd757dd466",
+            "7ed46570893d4123a718f77890e84081",
+            "075b504f72064efaaaa1ee09afdc6a9f",
+            "0700821fd3764f7da3e204d15601d063",
+            "a96caf05dfcf41cb848229c08969a36b",
+            "906fe2e4e22940bc9fd816cefc70277a"
+          ]
         },
+        "id": "UmIn_SZWccN2",
+        "outputId": "a320ec95-f1af-450b-a706-0d49abb9e12f"
+      },
+      "outputs": [
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "573e8e1ec5794c519349919b0c644e0c",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "4a3cb1d982804f9da9d52c3f51ae5848"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "91b2d0ebba5e4e60a6b5af29c62d0934"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "d2188b7ea4ec494591acd144708bd77a", "version_major": 2, - "version_minor": 0, - "model_id": "37a20406c9e5446597d98c3d20c39bcd" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Output()"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "76167581df114302aa01459efd638b45"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "8526056c9dfe43f9942f53afdd79152d", "version_major": 2, - "version_minor": 0, - "model_id": "a87f8d8d02ad4d43b4c2d50af33c190e" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a3a87aebeb7e47e393ed6e73309d0368",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "da01125aa5a2460580d7f3e93c4b3337"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "edba16230f7c4f9db1cbaa9ad78b8bbc",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "040f782f0d1246ebb4d063aaca760a30"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "1693936c80574039baabe485bf9e8c30" - } + "text/plain": [ + "\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], - "text/html": [ - "
\n"
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "73467dd00a6a45398be0e336a67e3379",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
             ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n"
             ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "db29617659e4471a8c6da3867488e0c0"
-            }
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
-              "
\n"
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Output()" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "38e4ec950dfb48c1b86dfa51b59bd9f6", "version_major": 2, - "version_minor": 0, - "model_id": "aeb95feadd7c4a2ea7ab68e4cef4769e" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "e8a65707044c47cea44e778d77ecd8a5", "version_major": 2, - "version_minor": 0, - "model_id": "68106dfc027d4fe1b68156727f3bae0b" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b8b1c716475e4043af7919e06253f606",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "e77bdee916364cf89751153cb4db42d2"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "9c73cea9af174a978ed87abd757dd466", "version_major": 2, - "version_minor": 0, - "model_id": "999e52c9cf694d38a0e1a97d7a39f123" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
-            ],
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "075b504f72064efaaaa1ee09afdc6a9f",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "19cf8acb80354d00bd7eee5247c2b140"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a96caf05dfcf41cb848229c08969a36b",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
               "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 3: Data types and language tags\n",
+        "# Case 3.2: Datatype property statements with different language tags of the literal objects\n",
+        "# NOTE: PGT will currently discard the language tags!\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "\n",
+        "ex:book ex:title \"Book\"@en.\n",
+        "ex:book ex:title \"Bog\"@da.\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 20,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 134,
+          "referenced_widgets": [
+            "18a76eb8f00b4c9d93eb862457c93604",
+            "be38c1c4704e42eaab72fa917a31551f",
+            "5819a9a679784e53979fe59ac6fdc6c8",
+            "ea91f40791f247118cbfd30f0a8e0209",
+            "1368dab9ca5d48baabedaa27e63a6608",
+            "cf1f8b24c7b64859b87bfea6a16f7dd6",
+            "1118d6ebf1f74180b2a3fb95d17d5f57",
+            "34f212a9207b4395a7ab6cee9990ba5a",
+            "b4b3ea80874b4f6da320f1c11cf08363",
+            "5a74235176fb4af3831eb25cd2e97262",
+            "99edc92ed36a4566890b4da4ed68c123",
+            "0f786717b0094fe785ea05fec93bdf06",
+            "03b0d5a081d84381929c663657fa266e",
+            "694a30f6080d488cbc087bdb2d91e91e",
+            "aaf936790e47461386f187f15e2fb58c",
+            "c9f80d60eb294a449579d9673201b333",
+            "e9dcbbb06e584549ba0adbf846ad8999",
+            "8ae0c9e3aa7841308a73424fa9fac059",
+            "c050e033d5614e97a63b09513cb6eb10",
+            "9575b3b304784e31a335e371c2d5f3a5",
+            "a43f6762475244aabdff63426a9e1423",
+            "5772089896234e52aa40e3daadc38d30",
+            "1611c20c4e834c76ae76a4f119db71c8",
+            "3b81b38993c14de68df2ff40f0a4f590"
+          ]
+        },
+        "id": "SQaaqperccbA",
+        "outputId": "f35afe70-71d0-498c-a08f-b2ba28b5e9a5"
+      },
+      "outputs": [
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "18a76eb8f00b4c9d93eb862457c93604",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "4ed1c45eca21411ab21ac14d326cea64"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "5819a9a679784e53979fe59ac6fdc6c8", "version_major": 2, - "version_minor": 0, - "model_id": "ece557abbd214ce2a29e8aed9eed02bb" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "1368dab9ca5d48baabedaa27e63a6608", "version_major": 2, - "version_minor": 0, - "model_id": "dac740443d1b4936b1c7d6e0025dab60" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1118d6ebf1f74180b2a3fb95d17d5f57",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
               "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b4b3ea80874b4f6da320f1c11cf08363",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "dcad9642f34e48ac95831e47bebb71ab"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "99edc92ed36a4566890b4da4ed68c123", "version_major": 2, - "version_minor": 0, - "model_id": "e316eb6e5fe04a018a13296628dd2a05" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [
-              "Output()"
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "03b0d5a081d84381929c663657fa266e", "version_major": 2, - "version_minor": 0, - "model_id": "f596dd62da294dd08dc3832b6a250c6b" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aaf936790e47461386f187f15e2fb58c", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e9dcbbb06e584549ba0adbf846ad8999",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "262cd26af17341e788a08be05ef71580"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c050e033d5614e97a63b09513cb6eb10", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a43f6762475244aabdff63426a9e1423",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "ab70def2b20c4aa98ac4b314c1b22725"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "28 21\n",
-            "28 21\n",
-            "--------------------\n",
-            "@prefix ns1:  .\n",
-            "@prefix xsd:  .\n",
-            "\n",
-            "ns1:Imagine a ns1:Album ;\n",
-            "    ns1:artist ns1:John_Lennon ;\n",
-            "    ns1:date \"1971-10-11\" ;\n",
-            "    ns1:name \"Imagine\" .\n",
-            "\n",
-            "ns1:McCartney a ns1:Album ;\n",
-            "    ns1:artist ns1:Paul_McCartney ;\n",
-            "    ns1:date \"1970-04-17\" ;\n",
-            "    ns1:name \"McCartney\" .\n",
-            "\n",
-            "ns1:Please_Please_Me a ns1:Album ;\n",
-            "    ns1:artist ns1:The_Beatles ;\n",
-            "    ns1:date \"1963-03-22\" ;\n",
-            "    ns1:name \"Please Please Me\" ;\n",
-            "    ns1:track ns1:Love_Me_Do .\n",
-            "\n",
-            "ns1:George_Harrison a ns1:SoloArtist .\n",
-            "\n",
-            "ns1:Love_Me_Do a ns1:Song ;\n",
-            "    ns1:length 125 ;\n",
-            "    ns1:name \"Love Me Do\" ;\n",
-            "    ns1:writer ns1:John_Lennon,\n",
-            "        ns1:Paul_McCartney .\n",
-            "\n",
-            "ns1:Ringo_Starr a ns1:SoloArtist .\n",
-            "\n",
-            "ns1:The_Beatles a ns1:Band ;\n",
-            "    ns1:member ns1:George_Harrison,\n",
-            "        ns1:John_Lennon,\n",
-            "        ns1:Paul_McCartney,\n",
-            "        ns1:Ringo_Starr ;\n",
-            "    ns1:name \"The Beatles\" .\n",
-            "\n",
-            "ns1:John_Lennon a ns1:SoloArtist .\n",
-            "\n",
-            "ns1:Paul_McCartney a ns1:SoloArtist .\n",
-            "\n",
-            "\n",
-            "--------------------\n",
-            "@prefix adb:  .\n",
-            "@prefix rdf:  .\n",
-            "\n",
-            " adb:collection \"Class\" .\n",
-            "\n",
-            " adb:collection \"Class\" .\n",
-            "\n",
-            " adb:collection \"SoloArtist\" .\n",
-            "\n",
-            " adb:collection \"Album\" .\n",
-            "\n",
-            " adb:collection \"SoloArtist\" .\n",
-            "\n",
-            " adb:collection \"Song\" .\n",
-            "\n",
-            " adb:collection \"Album\" .\n",
-            "\n",
-            " adb:collection \"SoloArtist\" .\n",
-            "\n",
-            " adb:collection \"Album\" .\n",
-            "\n",
-            " adb:collection \"SoloArtist\" .\n",
-            "\n",
-            " adb:collection \"Class\" .\n",
-            "\n",
-            " adb:collection \"Class\" .\n",
-            "\n",
-            " adb:collection \"Band\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            " adb:collection \"Property\" .\n",
-            "\n",
-            "rdf:type adb:collection \"Property\" .\n",
-            "\n",
-            "\n",
-            "--------------------\n"
-          ]
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1611c20c4e834c76ae76a4f119db71c8",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "data = \"\"\"\n",
-        "PREFIX : \n",
-        "PREFIX rdf: \n",
-        "PREFIX rdfs: \n",
-        "PREFIX xsd: \n",
-        "\n",
-        ":The_Beatles      rdf:type  :Band .\n",
-        ":The_Beatles      :name     \"The Beatles\" .\n",
-        ":The_Beatles      :member   :John_Lennon .\n",
-        ":The_Beatles      :member   :Paul_McCartney .\n",
-        ":The_Beatles      :member   :Ringo_Starr .\n",
-        ":The_Beatles      :member   :George_Harrison .\n",
-        ":John_Lennon      rdf:type  :SoloArtist .\n",
-        ":Paul_McCartney   rdf:type  :SoloArtist .\n",
-        ":Ringo_Starr      rdf:type  :SoloArtist .\n",
-        ":George_Harrison  rdf:type  :SoloArtist .\n",
-        ":Please_Please_Me rdf:type  :Album .\n",
-        ":Please_Please_Me :name     \"Please Please Me\" .\n",
-        ":Please_Please_Me :date     \"1963-03-22\"^^xsd:date .\n",
-        ":Please_Please_Me :artist   :The_Beatles .\n",
-        ":Please_Please_Me :track    :Love_Me_Do .\n",
-        ":Love_Me_Do       rdf:type  :Song .\n",
-        ":Love_Me_Do       :name     \"Love Me Do\" .\n",
-        ":Love_Me_Do       :length   125 .\n",
-        ":Love_Me_Do       :writer   :John_Lennon .\n",
-        ":Love_Me_Do       :writer   :Paul_McCartney .\n",
+        "# Case 4: RDF list\n",
         "\n",
-        ":McCartney        rdf:type  :Album .\n",
-        ":McCartney        :name     \"McCartney\" .\n",
-        ":McCartney        :date     \"1970-04-17\"^^xsd:date .\n",
-        ":McCartney        :artist   :Paul_McCartney .\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
         "\n",
-        ":Imagine          rdf:type  :Album .\n",
-        ":Imagine          :name     \"Imagine\" .\n",
-        ":Imagine          :date     \"1971-10-11\"^^xsd:date .\n",
-        ":Imagine          :artist   :John_Lennon .\n",
+        "ex:List1 ex:contents (\"one\" \"two\" \"three\").\n",
         "\"\"\"\n",
         "\n",
-        "g = Graph()\n",
-        "g.parse(data=data)\n",
-        "\n",
-        "# Selecting RPT or PGT for this example does not matter, as the\n",
-        "# end-result is the same.\n",
-        "adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", g, overwrite_graph=True)\n",
-        "# adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", g, overwrite_graph=True)\n",
-        "\n",
-        "# ArangoDB to RDF via Graph Name\n",
-        "g2, adb_mapping_2 = adbrdf.arangodb_graph_to_rdf(\"DataPGT\", Graph())\n",
-        "\n",
-        "# ArangoDB to RDF via Collection Names\n",
-        "g3, adb_mapping_3 = adbrdf.arangodb_collections_to_rdf(\n",
-        "    \"DataPGT\",\n",
-        "    Graph(),\n",
-        "    v_cols={\"Album\", \"Band\", \"Class\", \"Property\", \"SoloArtist\", \"Song\"},\n",
-        "    e_cols={\"artist\", \"member\", \"track\", \"type\", \"writer\"},\n",
-        ")\n",
-        "\n",
-        "print(len(g2), len(adb_mapping_2))\n",
-        "print(len(g3), len(adb_mapping_3))\n",
-        "\n",
-        "print('--------------------')\n",
-        "print(g2.serialize())\n",
-        "print('--------------------')\n",
-        "print(adb_mapping_2.serialize())\n",
-        "print('--------------------')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "uxp9AW7kQkM5"
-      },
-      "source": [
-        "#### Native"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "xoza5AvUVqWP"
-      },
-      "source": [
-        "Native: ArangoDB Graphs that originate from an ArangoDB context. We'll be using the [ArangoDB Game Of Thrones Dataset](https://github.com/arangodb/example-datasets/tree/master/GameOfThrones).\n",
-        "\n",
-        "Since we are dealing with a \"native\" ArangoDB Graph, we can rely on the `infer_type_from_adb_col` flag to indicate that `rdf:type` statements of the form (adb_doc rdf:type adb_col) should be inferred upon transferring ArangoDB Documents into RDF.\n",
-        "\n",
-        "We can also take advantage of the `include_adb_key_statements` flag to indicate that `adb:key` statements of the form (adb_doc adb:key adb_doc[\"key\"]) should be generated upon transferring ArangoDB Documents into RDF.\n",
-        "\n",
-        "Note that enabling `infer_type_from_adb_col` `include_adb_key_statements` is only recommended if your ArangoDB graph is \"native\" to ArangoDB. That is, the ArangoDB graph does not originate from an RDF context.\n",
-        "\n",
-        "Finally, we set the `list_conversion_mode` flag to `collection` to indicate that JSON Lists within ArangoDB Documents should be converted into RDF Collections (other options include `container`, and `static`)."
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 38,
+      "execution_count": 21,
       "metadata": {
-        "id": "yQ85OY7paqMM",
-        "outputId": "1bc7a190-20b9-43dc-cf16-037acb10afc4",
         "colab": {
           "base_uri": "https://localhost:8080/",
-          "height": 0,
+          "height": 150,
           "referenced_widgets": [
-            "5feb64f8e7384251bf4b677e4a0a5930",
-            "f4d04444620a4d7db41411775b828cf8",
-            "19c036100dfc4aaa8e1dd3d976a686cb",
-            "9ffd32b73aef47809181329a473a4cb7",
-            "13e499e94c244d22aceff1fc56f07252",
-            "cb1d1da12c334be7b7409ae7653023d7",
-            "4702e1b0f1e949c6991c1dfc391040d4",
-            "a8473ae663be4d8d96df2dcbe31c3f99"
+            "eeaeab711cca4776bbf9d852b61d2744",
+            "f65b348bdebe446ab8381f928147bb67",
+            "c643b1c5505f4f0c83895c0b3e726657",
+            "900ea2b6683f4dbc89aa1360936bad45",
+            "8cf060d8fc7f4ecf80b318a11473c020",
+            "b04978aca95e428ab04c656b3d39fdc5",
+            "4f691259e5674b3da1f46f11075d5428",
+            "456a8dd834234dbabcc65cc4b98f2b2d",
+            "6a78b165f4aa4e04bb0a40d531d1facc",
+            "d544f1ae4c1c4355b02b6b58ffe4e227",
+            "7628cbddf01341e0ad612263dba3ed06",
+            "1167bf2328584950a2fe44c959d88a85",
+            "13a2bad0545b4813b411dd2059dcdaab",
+            "23537334ef5f4bf7871e86250eab22c9",
+            "b5e30a4917db413081b1003aac893141",
+            "8add49e7aff949c8b6aa86ecf1b8404c",
+            "750e03bd0e7340ea94112bb5971b556d",
+            "5871fa9c17ca4dbbad7c110842b1c43c",
+            "85eb298ec6d649c4bef732d7776e1936",
+            "be66a8a9c8544a8c9fa4d86468c57d05",
+            "341b818f59ba43d4b69166e655dd9765",
+            "4624a85e55f54bbf9488a44dcb872a06",
+            "283c95e105104ea6a5b235ede8a1a2ab",
+            "d4f26543a05649eab36d2d2e430bf868"
           ]
-        }
+        },
+        "id": "r0kHJogZFEKO",
+        "outputId": "790750bc-b180-4bf4-e847-ac279c59f5dc"
       },
       "outputs": [
         {
-          "output_type": "display_data",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "eeaeab711cca4776bbf9d852b61d2744",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
               "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "c643b1c5505f4f0c83895c0b3e726657", "version_major": 2, - "version_minor": 0, - "model_id": "5feb64f8e7384251bf4b677e4a0a5930" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8cf060d8fc7f4ecf80b318a11473c020", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
             ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
             "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4f691259e5674b3da1f46f11075d5428",
               "version_major": 2,
-              "version_minor": 0,
-              "model_id": "19c036100dfc4aaa8e1dd3d976a686cb"
-            }
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
-            "text/plain": [],
             "text/html": [
               "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "display_data",
           "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "6a78b165f4aa4e04bb0a40d531d1facc",
+              "version_major": 2,
+              "version_minor": 0
+            },
             "text/plain": [
               "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "7628cbddf01341e0ad612263dba3ed06", "version_major": 2, - "version_minor": 0, - "model_id": "13e499e94c244d22aceff1fc56f07252" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13a2bad0545b4813b411dd2059dcdaab", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "application/vnd.jupyter.widget-view+json": { + "model_id": "b5e30a4917db413081b1003aac893141", "version_major": 2, - "version_minor": 0, - "model_id": "4702e1b0f1e949c6991c1dfc391040d4" - } + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [], "text/html": [ "
\n"
-            ]
+            ],
+            "text/plain": []
           },
-          "metadata": {}
+          "metadata": {},
+          "output_type": "display_data"
         },
         {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "@prefix GameOfThrones:  .\n",
-            "@prefix adb:  .\n",
-            "@prefix ns1:  .\n",
-            "@prefix rdf:  .\n",
-            "@prefix xsd:  .\n",
-            "\n",
-            "GameOfThrones:1926083 a rdf:Statement ;\n",
-            "    adb:key \"1926083\" ;\n",
-            "    rdf:object GameOfThrones:NedStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:RobbStark ;\n",
-            "    GameOfThrones:foo \"bar_1\" .\n",
-            "\n",
-            "GameOfThrones:1926084 a rdf:Statement ;\n",
-            "    adb:key \"1926084\" ;\n",
-            "    rdf:object GameOfThrones:NedStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:SansaStark ;\n",
-            "    GameOfThrones:foo \"bar_2\" .\n",
-            "\n",
-            "GameOfThrones:1926085 a rdf:Statement ;\n",
-            "    adb:key \"1926085\" ;\n",
-            "    rdf:object GameOfThrones:NedStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:AryaStark ;\n",
-            "    GameOfThrones:foo \"bar_3\" .\n",
-            "\n",
-            "GameOfThrones:1926086 a rdf:Statement ;\n",
-            "    adb:key \"1926086\" ;\n",
-            "    rdf:object GameOfThrones:NedStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:BranStark ;\n",
-            "    GameOfThrones:foo true .\n",
-            "\n",
-            "GameOfThrones:1926087 a rdf:Statement ;\n",
-            "    adb:key \"1926087\" ;\n",
-            "    rdf:object GameOfThrones:CatelynStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:RobbStark ;\n",
-            "    GameOfThrones:foo false .\n",
-            "\n",
-            "GameOfThrones:1926088 a rdf:Statement ;\n",
-            "    adb:key \"1926088\" ;\n",
-            "    rdf:object GameOfThrones:CatelynStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:SansaStark ;\n",
-            "    GameOfThrones:foo 6 .\n",
-            "\n",
-            "GameOfThrones:1926089 a rdf:Statement ;\n",
-            "    adb:key \"1926089\" ;\n",
-            "    rdf:object GameOfThrones:CatelynStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:AryaStark ;\n",
-            "    GameOfThrones:foo 7 .\n",
-            "\n",
-            "GameOfThrones:1926090 a rdf:Statement ;\n",
-            "    adb:key \"1926090\" ;\n",
-            "    rdf:object GameOfThrones:CatelynStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:BranStark ;\n",
-            "    GameOfThrones:foo 8 .\n",
-            "\n",
-            "GameOfThrones:1926091 a rdf:Statement ;\n",
-            "    adb:key \"1926091\" ;\n",
-            "    rdf:object GameOfThrones:NedStark ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:JonSnow ;\n",
-            "    GameOfThrones:foo 9 .\n",
-            "\n",
-            "GameOfThrones:1926092 a rdf:Statement ;\n",
-            "    adb:key \"1926092\" ;\n",
-            "    rdf:object GameOfThrones:TywinLannister ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:JaimeLannister ;\n",
-            "    GameOfThrones:foo 1e-01 .\n",
-            "\n",
-            "GameOfThrones:1926093 a rdf:Statement ;\n",
-            "    adb:key \"1926093\" ;\n",
-            "    rdf:object GameOfThrones:TywinLannister ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:CerseiLannister ;\n",
-            "    GameOfThrones:foo 1.1e-01 .\n",
-            "\n",
-            "GameOfThrones:1926094 a rdf:Statement ;\n",
-            "    adb:key \"1926094\" ;\n",
-            "    rdf:object GameOfThrones:TywinLannister ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:TyrionLannister ;\n",
-            "    GameOfThrones:foo 1.2e-01 .\n",
-            "\n",
-            "GameOfThrones:1926095 a rdf:Statement ;\n",
-            "    adb:key \"1926095\" ;\n",
-            "    rdf:object GameOfThrones:CerseiLannister ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:JoffreyBaratheon ;\n",
-            "    GameOfThrones:foo ( \"bar_13\" ) .\n",
-            "\n",
-            "GameOfThrones:1926096 a rdf:Statement ;\n",
-            "    adb:key \"1926096\" ;\n",
-            "    rdf:object GameOfThrones:JaimeLannister ;\n",
-            "    rdf:predicate GameOfThrones:ChildOf ;\n",
-            "    rdf:subject GameOfThrones:JoffreyBaratheon ;\n",
-            "    GameOfThrones:foo ( ( \"bar_14\" ) ( \"bar_15\" ( \"bar_16\" ) ) ) .\n",
-            "\n",
-            "GameOfThrones:1926098 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Dragonstone\" ;\n",
-            "    adb:key \"1926098\" ;\n",
-            "    GameOfThrones:coordinate ( 5.51678e+01 -6.815096e+00 ) .\n",
-            "\n",
-            "GameOfThrones:1926099 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"King's Landing\" ;\n",
-            "    adb:key \"1926099\" ;\n",
-            "    GameOfThrones:coordinate ( 4.263975e+01 1.811019e+01 ) .\n",
-            "\n",
-            "GameOfThrones:1926100 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"The Red Keep\" ;\n",
-            "    adb:key \"1926100\" ;\n",
-            "    GameOfThrones:coordinate ( 3.589645e+01 1.444644e+01 ) .\n",
-            "\n",
-            "GameOfThrones:1926101 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Yunkai\" ;\n",
-            "    adb:key \"1926101\" ;\n",
-            "    GameOfThrones:coordinate ( 3.104664e+01 -7.129532e+00 ) .\n",
-            "\n",
-            "GameOfThrones:1926102 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Astapor\" ;\n",
-            "    adb:key \"1926102\" ;\n",
-            "    GameOfThrones:coordinate ( 3.150974e+01 -9.774249e+00 ) .\n",
-            "\n",
-            "GameOfThrones:1926103 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Winterfell\" ;\n",
-            "    adb:key \"1926103\" ;\n",
-            "    GameOfThrones:coordinate ( 5.436832e+01 -5.581312e+00 ) .\n",
-            "\n",
-            "GameOfThrones:1926104 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Vaes Dothrak\" ;\n",
-            "    adb:key \"1926104\" ;\n",
-            "    GameOfThrones:coordinate ( 5.416776e+01 -6.096125e+00 ) .\n",
-            "\n",
-            "GameOfThrones:1926105 a GameOfThrones:Locations ;\n",
-            "    ns1:name \"Beyond the wall\" ;\n",
-            "    adb:key \"1926105\" ;\n",
-            "    GameOfThrones:coordinate ( 6.426547e+01 -2.109409e+01 ) .\n",
-            "\n",
-            "GameOfThrones:A a GameOfThrones:Traits ;\n",
-            "    adb:key \"A\" ;\n",
-            "    GameOfThrones:de \"stark\" ;\n",
-            "    GameOfThrones:en \"strong\" .\n",
-            "\n",
-            "GameOfThrones:B a GameOfThrones:Traits ;\n",
-            "    adb:key \"B\" ;\n",
-            "    GameOfThrones:de \"freundlich\" ;\n",
-            "    GameOfThrones:en \"polite\" .\n",
-            "\n",
-            "GameOfThrones:BrienneTarth a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Brienne\" ;\n",
-            "    adb:key \"BrienneTarth\" ;\n",
-            "    GameOfThrones:age 32 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Tarth\" ;\n",
-            "    GameOfThrones:traits ( \"P\" \"C\" \"A\" \"K\" ) .\n",
-            "\n",
-            "GameOfThrones:Bronn a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Bronn\" ;\n",
-            "    adb:key \"Bronn\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"K\" \"E\" \"C\" ) .\n",
-            "\n",
-            "GameOfThrones:C a GameOfThrones:Traits ;\n",
-            "    adb:key \"C\" ;\n",
-            "    GameOfThrones:de \"loyal\" ;\n",
-            "    GameOfThrones:en \"loyal\" .\n",
-            "\n",
-            "GameOfThrones:D a GameOfThrones:Traits ;\n",
-            "    adb:key \"D\" ;\n",
-            "    GameOfThrones:de \"schön\" ;\n",
-            "    GameOfThrones:en \"beautiful\" .\n",
-            "\n",
-            "GameOfThrones:DaarioNaharis a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Daario\" ;\n",
-            "    adb:key \"DaarioNaharis\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Naharis\" ;\n",
-            "    GameOfThrones:traits ( \"K\" \"P\" \"A\" ) .\n",
-            "\n",
-            "GameOfThrones:DaenerysTargaryen a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Daenerys\" ;\n",
-            "    adb:key \"DaenerysTargaryen\" ;\n",
-            "    GameOfThrones:age 16 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Targaryen\" ;\n",
-            "    GameOfThrones:traits ( \"D\" \"H\" \"C\" ) .\n",
-            "\n",
-            "GameOfThrones:DavosSeaworth a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Davos\" ;\n",
-            "    adb:key \"DavosSeaworth\" ;\n",
-            "    GameOfThrones:age 49 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Seaworth\" ;\n",
-            "    GameOfThrones:traits ( \"C\" \"K\" \"P\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:E a GameOfThrones:Traits ;\n",
-            "    adb:key \"E\" ;\n",
-            "    GameOfThrones:de \"hinterlistig\" ;\n",
-            "    GameOfThrones:en \"sneaky\" .\n",
-            "\n",
-            "GameOfThrones:EllariaSand a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Ellaria\" ;\n",
-            "    adb:key \"EllariaSand\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Sand\" ;\n",
-            "    GameOfThrones:traits ( \"P\" \"O\" \"A\" \"E\" ) .\n",
-            "\n",
-            "GameOfThrones:F a GameOfThrones:Traits ;\n",
-            "    adb:key \"F\" ;\n",
-            "    GameOfThrones:de \"erfahren\" ;\n",
-            "    GameOfThrones:en \"experienced\" .\n",
-            "\n",
-            "GameOfThrones:G a GameOfThrones:Traits ;\n",
-            "    adb:key \"G\" ;\n",
-            "    GameOfThrones:de \"korrupt\" ;\n",
-            "    GameOfThrones:en \"corrupt\" .\n",
-            "\n",
-            "GameOfThrones:Gendry a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Gendry\" ;\n",
-            "    adb:key \"Gendry\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:traits ( \"K\" \"C\" \"A\" ) .\n",
-            "\n",
-            "GameOfThrones:Gilly a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Gilly\" ;\n",
-            "    adb:key \"Gilly\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"L\" \"J\" ) .\n",
-            "\n",
-            "GameOfThrones:H a GameOfThrones:Traits ;\n",
-            "    adb:key \"H\" ;\n",
-            "    GameOfThrones:de \"einflussreich\" ;\n",
-            "    GameOfThrones:en \"powerful\" .\n",
-            "\n",
-            "GameOfThrones:I a GameOfThrones:Traits ;\n",
-            "    adb:key \"I\" ;\n",
-            "    GameOfThrones:de \"naiv\" ;\n",
-            "    GameOfThrones:en \"naive\" .\n",
-            "\n",
-            "GameOfThrones:J a GameOfThrones:Traits ;\n",
-            "    adb:key \"J\" ;\n",
-            "    GameOfThrones:de \"unverheiratet\" ;\n",
-            "    GameOfThrones:en \"unmarried\" .\n",
-            "\n",
-            "GameOfThrones:JaqenHghar a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Jaqen\" ;\n",
-            "    adb:key \"JaqenHghar\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"H'ghar\" ;\n",
-            "    GameOfThrones:traits ( \"H\" \"F\" \"K\" ) .\n",
-            "\n",
-            "GameOfThrones:JeorMormont a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Jeor\" ;\n",
-            "    adb:key \"JeorMormont\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Mormont\" ;\n",
-            "    GameOfThrones:traits ( \"C\" \"H\" \"M\" \"P\" ) .\n",
-            "\n",
-            "GameOfThrones:JorahMormont a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Jorah\" ;\n",
-            "    adb:key \"JorahMormont\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Mormont\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"B\" \"C\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:K a GameOfThrones:Traits ;\n",
-            "    adb:key \"K\" ;\n",
-            "    GameOfThrones:de \"geschickt\" ;\n",
-            "    GameOfThrones:en \"skillful\" .\n",
-            "\n",
-            "GameOfThrones:KhalDrogo a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Khal\" ;\n",
-            "    adb:key \"KhalDrogo\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Drogo\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"C\" \"O\" \"P\" ) .\n",
-            "\n",
-            "GameOfThrones:L a GameOfThrones:Traits ;\n",
-            "    adb:key \"L\" ;\n",
-            "    GameOfThrones:de \"jung\" ;\n",
-            "    GameOfThrones:en \"young\" .\n",
-            "\n",
-            "GameOfThrones:M a GameOfThrones:Traits ;\n",
-            "    adb:key \"M\" ;\n",
-            "    GameOfThrones:de \"klug\" ;\n",
-            "    GameOfThrones:en \"smart\" .\n",
-            "\n",
-            "GameOfThrones:MargaeryTyrell a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Margaery\" ;\n",
-            "    adb:key \"MargaeryTyrell\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Tyrell\" ;\n",
-            "    GameOfThrones:traits ( \"M\" \"D\" \"B\" ) .\n",
-            "\n",
-            "GameOfThrones:Melisandre a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Melisandre\" ;\n",
-            "    adb:key \"Melisandre\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"G\" \"E\" \"H\" ) .\n",
-            "\n",
-            "GameOfThrones:Missandei a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Missandei\" ;\n",
-            "    adb:key \"Missandei\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"D\" \"L\" \"C\" \"M\" ) .\n",
-            "\n",
-            "GameOfThrones:N a GameOfThrones:Traits ;\n",
-            "    adb:key \"N\" ;\n",
-            "    GameOfThrones:de \"rational\" ;\n",
-            "    GameOfThrones:en \"rational\" .\n",
-            "\n",
-            "GameOfThrones:O a GameOfThrones:Traits ;\n",
-            "    adb:key \"O\" ;\n",
-            "    GameOfThrones:de \"skrupellos\" ;\n",
-            "    GameOfThrones:en \"ruthless\" .\n",
-            "\n",
-            "GameOfThrones:P a GameOfThrones:Traits ;\n",
-            "    adb:key \"P\" ;\n",
-            "    GameOfThrones:de \"mutig\" ;\n",
-            "    GameOfThrones:en \"brave\" .\n",
-            "\n",
-            "GameOfThrones:PetyrBaelish a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Petyr\" ;\n",
-            "    adb:key \"PetyrBaelish\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Baelish\" ;\n",
-            "    GameOfThrones:traits ( \"E\" \"G\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:Q a GameOfThrones:Traits ;\n",
-            "    adb:key \"Q\" ;\n",
-            "    GameOfThrones:de \"mächtig\" ;\n",
-            "    GameOfThrones:en \"mighty\" .\n",
-            "\n",
-            "GameOfThrones:R a GameOfThrones:Traits ;\n",
-            "    adb:key \"R\" ;\n",
-            "    GameOfThrones:de \"schwach\" ;\n",
-            "    GameOfThrones:en \"weak\" .\n",
-            "\n",
-            "GameOfThrones:RamsayBolton a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Ramsay\" ;\n",
-            "    adb:key \"RamsayBolton\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Bolton\" ;\n",
-            "    GameOfThrones:traits ( \"E\" \"O\" \"G\" \"A\" ) .\n",
-            "\n",
-            "GameOfThrones:RobertBaratheon a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Robert\" ;\n",
-            "    adb:key \"RobertBaratheon\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Baratheon\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"H\" \"C\" ) .\n",
-            "\n",
-            "GameOfThrones:RooseBolton a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Roose\" ;\n",
-            "    adb:key \"RooseBolton\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Bolton\" ;\n",
-            "    GameOfThrones:traits ( \"H\" \"E\" \"F\" \"A\" ) .\n",
-            "\n",
-            "GameOfThrones:SamwellTarly a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Samwell\" ;\n",
-            "    adb:key \"SamwellTarly\" ;\n",
-            "    GameOfThrones:age 17 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Tarly\" ;\n",
-            "    GameOfThrones:traits ( \"C\" \"L\" \"I\" ) .\n",
-            "\n",
-            "GameOfThrones:SandorClegane a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Sandor\" ;\n",
-            "    adb:key \"SandorClegane\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Clegane\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"P\" \"K\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:Shae a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Shae\" ;\n",
-            "    adb:key \"Shae\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:traits ( \"M\" \"D\" \"G\" ) .\n",
-            "\n",
-            "GameOfThrones:StannisBaratheon a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Stannis\" ;\n",
-            "    adb:key \"StannisBaratheon\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Baratheon\" ;\n",
-            "    GameOfThrones:traits ( \"H\" \"O\" \"P\" \"M\" ) .\n",
-            "\n",
-            "GameOfThrones:TalisaMaegyr a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Talisa\" ;\n",
-            "    adb:key \"TalisaMaegyr\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Maegyr\" ;\n",
-            "    GameOfThrones:traits ( \"D\" \"C\" \"B\" ) .\n",
-            "\n",
-            "GameOfThrones:TheHighSparrow a GameOfThrones:Characters ;\n",
-            "    ns1:name \"The High Sparrow\" ;\n",
-            "    adb:key \"TheHighSparrow\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"H\" \"M\" \"F\" \"O\" ) .\n",
-            "\n",
-            "GameOfThrones:TheonGreyjoy a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Theon\" ;\n",
-            "    adb:key \"TheonGreyjoy\" ;\n",
-            "    GameOfThrones:age 16 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Greyjoy\" ;\n",
-            "    GameOfThrones:traits ( \"E\" \"R\" \"K\" ) .\n",
-            "\n",
-            "GameOfThrones:TommenBaratheon a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Tommen\" ;\n",
-            "    adb:key \"TommenBaratheon\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Baratheon\" ;\n",
-            "    GameOfThrones:traits ( \"I\" \"L\" \"B\" ) .\n",
-            "\n",
-            "GameOfThrones:TormundGiantsbane a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Tormund\" ;\n",
-            "    adb:key \"TormundGiantsbane\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Giantsbane\" ;\n",
-            "    GameOfThrones:traits ( \"C\" \"P\" \"A\" \"I\" ) .\n",
-            "\n",
-            "GameOfThrones:Varys a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Varys\" ;\n",
-            "    adb:key \"Varys\" ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:traits ( \"M\" \"F\" \"N\" \"E\" ) .\n",
-            "\n",
-            "GameOfThrones:ViserysTargaryen a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Viserys\" ;\n",
-            "    adb:key \"ViserysTargaryen\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Targaryen\" ;\n",
-            "    GameOfThrones:traits ( \"O\" \"L\" \"N\" ) .\n",
-            "\n",
-            "GameOfThrones:Ygritte a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Ygritte\" ;\n",
-            "    adb:key \"Ygritte\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:traits ( \"A\" \"P\" \"K\" ) .\n",
-            "\n",
-            "GameOfThrones:JonSnow a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Jon\" ;\n",
-            "    adb:key \"JonSnow\" ;\n",
-            "    GameOfThrones:age 16 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Snow\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"B\" \"C\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:TyrionLannister a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Tyrion\" ;\n",
-            "    adb:key \"TyrionLannister\" ;\n",
-            "    GameOfThrones:age 32 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Lannister\" ;\n",
-            "    GameOfThrones:traits ( \"F\" \"K\" \"M\" \"N\" ) .\n",
-            "\n",
-            "GameOfThrones:AryaStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Arya\" ;\n",
-            "    adb:key \"AryaStark\" ;\n",
-            "    GameOfThrones:age 11 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"C\" \"K\" \"L\" ) .\n",
-            "\n",
-            "GameOfThrones:BranStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Bran\" ;\n",
-            "    adb:key \"BranStark\" ;\n",
-            "    GameOfThrones:age 10 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"L\" \"J\" ) .\n",
-            "\n",
-            "GameOfThrones:CerseiLannister a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Cersei\" ;\n",
-            "    adb:key \"CerseiLannister\" ;\n",
-            "    GameOfThrones:age 36 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Lannister\" ;\n",
-            "    GameOfThrones:traits ( \"H\" \"E\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:JaimeLannister a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Jaime\" ;\n",
-            "    adb:key \"JaimeLannister\" ;\n",
-            "    GameOfThrones:age 36 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Lannister\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"F\" \"B\" ) .\n",
-            "\n",
-            "GameOfThrones:JoffreyBaratheon a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Joffrey\" ;\n",
-            "    adb:key \"JoffreyBaratheon\" ;\n",
-            "    GameOfThrones:age 19 ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Baratheon\" ;\n",
-            "    GameOfThrones:traits ( \"I\" \"L\" \"O\" ) .\n",
-            "\n",
-            "GameOfThrones:RobbStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Robb\" ;\n",
-            "    adb:key \"RobbStark\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"B\" \"C\" \"K\" ) .\n",
-            "\n",
-            "GameOfThrones:SansaStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Sansa\" ;\n",
-            "    adb:key \"SansaStark\" ;\n",
-            "    GameOfThrones:age 13 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"D\" \"I\" \"J\" ) .\n",
-            "\n",
-            "GameOfThrones:TywinLannister a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Tywin\" ;\n",
-            "    adb:key \"TywinLannister\" ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Lannister\" ;\n",
-            "    GameOfThrones:traits ( \"O\" \"M\" \"H\" \"F\" ) .\n",
-            "\n",
-            "GameOfThrones:CatelynStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Catelyn\" ;\n",
-            "    adb:key \"CatelynStark\" ;\n",
-            "    GameOfThrones:age 40 ;\n",
-            "    GameOfThrones:alive false ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"D\" \"H\" \"C\" ) .\n",
-            "\n",
-            "GameOfThrones:NedStark a GameOfThrones:Characters ;\n",
-            "    ns1:name \"Ned\" ;\n",
-            "    adb:key \"NedStark\" ;\n",
-            "    GameOfThrones:age 41 ;\n",
-            "    GameOfThrones:alive true ;\n",
-            "    GameOfThrones:surname \"Stark\" ;\n",
-            "    GameOfThrones:traits ( \"A\" \"H\" \"C\" \"N\" \"P\" ) .\n",
-            "\n",
-            "\n"
-          ]
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "750e03bd0e7340ea94112bb5971b556d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85eb298ec6d649c4bef732d7776e1936", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "341b818f59ba43d4b69166e655dd9765",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "283c95e105104ea6a5b235ede8a1a2ab",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
         }
       ],
       "source": [
-        "rdf_graph, adb_mapping = adbrdf.arangodb_graph_to_rdf(\"GameOfThrones\", rdf_graph=Graph(), list_conversion_mode=\"collection\", infer_type_from_adb_v_col=True, include_adb_key_statements=True)\n",
-        "print(rdf_graph.serialize())"
+        "# Case 5: Blank nodes\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "\n",
+        "ex:bob ex:nationality _:c .\n",
+        "_:c ex:country \"Canada\" .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
       ]
-    }
-  ],
-  "metadata": {
-    "colab": {
-      "collapsed_sections": [
-        "44mc2EvIAzDy",
-        "yRuJ3OIGE2Yr",
-        "KnQifktFAxHx",
-        "7y81WHO8eG8_",
-        "QfE_tKxneG9A",
-        "znQCjOwt7zBz",
-        "0qry3Bcy-160",
-        "mRutdKii-Pk5",
-        "0SWi4e3wIMtw",
-        "9gBg-hDs77i7",
-        "UCQ9ppnUQa7e",
-        "uxp9AW7kQkM5"
-      ],
-      "provenance": []
-    },
-    "gpuClass": "standard",
-    "kernelspec": {
-      "display_name": "Python 3",
-      "name": "python3"
-    },
-    "language_info": {
-      "name": "python"
     },
-    "widgets": {
-      "application/vnd.jupyter.widget-state+json": {
-        "b7fc8abdf6814a58bd2fa09ae4421720": {
+    {
+      "cell_type": "code",
+      "execution_count": 22,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 150,
+          "referenced_widgets": [
+            "1fc43d8d945449ff8bf650a7168f3175",
+            "c06094c52f354bf887b9573ef728ba6f",
+            "597dc766da6d4c65a6e526f29d8001ad",
+            "6c9fda1cf8f441649b19421140844eca",
+            "222ddec771e2487088f38f5d8abc93d6",
+            "ca9ee619db5145a7b14ef9eaf7b282ef",
+            "90c5c0ba3d0b4e8e8194dc0bc254b191",
+            "d773e247a00b40f592d2b8a355d67eae",
+            "5f82c603b82e424daed6d81cc12810b3",
+            "94d0232fdf1a46b8ad11059dbf8162dc",
+            "cb0587dfec79428a8171b6e29aa7b75c",
+            "a8a41f5965ec45ed90c876c0b309b044",
+            "fca5445e52624e6aabf3acea3b614d1a",
+            "d793b865039d47fa966eb68c790b62a6",
+            "afd95022a638474ebd254a4e365e0f5f",
+            "787d5500e7da4133a75f8df78b8466fa",
+            "b98c2692fc3c4837a405d58e2cb2aede",
+            "a05e21f6174647dca22307a6ae256d40",
+            "549cc0eeb21e4816af1ce48c6992db04",
+            "863bb5095d89492cb6153b3bbde5b104",
+            "ba683955f5904919ad09b805dbbf6a5c",
+            "ddf39a4764c84bafb454073773b0b5f3",
+            "48867504843843389281e9c6c12953c4",
+            "84276bda9c6c4c7280423540f4695001"
+          ]
+        },
+        "id": "noAXcHOJFJvG",
+        "outputId": "554e4310-e28b-40a7-a701-a2ac91affdaf"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1fc43d8d945449ff8bf650a7168f3175",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "597dc766da6d4c65a6e526f29d8001ad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "222ddec771e2487088f38f5d8abc93d6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "90c5c0ba3d0b4e8e8194dc0bc254b191",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5f82c603b82e424daed6d81cc12810b3",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cb0587dfec79428a8171b6e29aa7b75c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fca5445e52624e6aabf3acea3b614d1a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afd95022a638474ebd254a4e365e0f5f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b98c2692fc3c4837a405d58e2cb2aede",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "549cc0eeb21e4816af1ce48c6992db04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ba683955f5904919ad09b805dbbf6a5c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "48867504843843389281e9c6c12953c4",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 6: Named graphs\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix rdfs:  .\n",
+        "\n",
+        "ex:Monica ex:employer ex:ArangoDB .\n",
+        "\n",
+        "ex:Graph1 {\n",
+        "    ex:Monica a ex:Entity .\n",
+        "    ex:Management a ex:Skill .\n",
+        "    ex:Monica ex:name \"Monica\" .\n",
+        "    ex:Monica ex:homepage  .\n",
+        "    ex:Monica ex:hasSkill ex:Management .\n",
+        "    ex:Monica ex:dateOfBirth \"1963-03-22\".\n",
+        "}\n",
+        "\n",
+        "ex:Graph2 {\n",
+        "    ex:Programming a ex:Skill .\n",
+        "     a ex:Website .\n",
+        "    ex:Monica a ex:Person .\n",
+        "    ex:Person rdfs:subClassOf ex:Entity .\n",
+        "    ex:Monica ex:hasSkill ex:Programming .\n",
+        "}\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 23,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 134,
+          "referenced_widgets": [
+            "7f4735b6532b44bf9e2a4deb1385e677",
+            "e86234b816a148f482c6f0d7fc241675",
+            "fbb89f7404f644b4adcb2e011bd39a2f",
+            "d2a5ec6f84244ed58b1cbf3fadcffe9d",
+            "f3091863c2ce495b8846ca16c240bac6",
+            "3c6e454224c346ae820de03d069583ad",
+            "1d6a2e9d98e6431db87f0f20de68a2db",
+            "ef946e47d6e74ed6a4441e6aeba6ac07",
+            "3559d4b574044e0e8bace41211b1649f",
+            "2b8042363eca490d9be41f7876e0aab0",
+            "a7ba9072d835401592f843ed6fe9a334",
+            "47bee386693546e4906a547ff5556cb2",
+            "14c1ae08e37343c683e4a8a3f8173d79",
+            "f5b15a86202840cca452980125b90c48",
+            "de3bbb53c6704b888d9b9754434bfdb9",
+            "ee7a0a507eae44e192b9d10ffdaf26de",
+            "a2798e676ae644a0bc091c23c1e7c5c1",
+            "ffc83e4385534117bc664c291338f355",
+            "5fdae6f5461e462dad3e5309fffe4cc3",
+            "db4f225255194d17bb18112c8a4d10e6",
+            "ea833033e1c24a8faf3bec5e29418b5e",
+            "b9c6b47990fe48aab0970677ab004b46",
+            "ea9cbfeffdc64559af9b768846b634a5",
+            "326423bae4c54057ad221e7c3077ad64",
+            "05cf4bc8861048029fcf6df306e7c8d0",
+            "c62a384e50324db581016107e3a22952"
+          ]
+        },
+        "id": "gtHKG7PiGyyF",
+        "outputId": "5bd57d09-d663-4156-9df3-3725eeb33aee"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7f4735b6532b44bf9e2a4deb1385e677",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fbb89f7404f644b4adcb2e011bd39a2f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f3091863c2ce495b8846ca16c240bac6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1d6a2e9d98e6431db87f0f20de68a2db",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3559d4b574044e0e8bace41211b1649f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a7ba9072d835401592f843ed6fe9a334", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "14c1ae08e37343c683e4a8a3f8173d79", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de3bbb53c6704b888d9b9754434bfdb9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a2798e676ae644a0bc091c23c1e7c5c1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5fdae6f5461e462dad3e5309fffe4cc3",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ea833033e1c24a8faf3bec5e29418b5e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ea9cbfeffdc64559af9b768846b634a5",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "05cf4bc8861048029fcf6df306e7c8d0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 7: Multiple types for resources - rdf:type\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix :  .\n",
+        "@prefix rdfs:  .\n",
+        "@prefix adb:  .\n",
+        "@prefix owl:  .\n",
+        "\n",
+        ":alice a :Arson .\n",
+        ":alice a :Author .\n",
+        "\n",
+        ":Zenkey rdfs:subClassOf :Zebra .\n",
+        ":Zenkey rdfs:subClassOf :Donkey .\n",
+        ":Donkey rdfs:subClassOf :Animal .\n",
+        ":Zebra rdfs:subClassOf :Animal .\n",
+        ":Human rdfs:subClassOf :Animal .\n",
+        ":Animal rdfs:subClassOf :LivingThing .\n",
+        ":LivingThing rdfs:subClassOf :Thing .\n",
+        ":Thing rdfs:subClassOf :Object .\n",
+        "\n",
+        ":charlie a :LivingThing .\n",
+        ":charlie a :Animal .\n",
+        ":charlie a :Zenkey .\n",
+        "\n",
+        ":marty a :LivingThing .\n",
+        ":marty a :Animal .\n",
+        ":marty a :Human .\n",
+        ":marty a :Author .\n",
+        "\n",
+        ":john a :Singer .\n",
+        ":john a :Writer .\n",
+        ":john a :Guitarist .\n",
+        ":john adb:collection \"Artist\" .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7ZeZNno5k3XW"
+      },
+      "source": [
+        "Cases 8 - 15: RDF-Star\n",
+        "\n",
+        "The [rdflib](https://github.com/RDFLib/rdflib) package hasn't introduced support for [Quoted Triples](https://www.w3.org/TR/rdf12-concepts/#dfn-quoted-triple) yet, so ArangoRDF's support for RDF-star is based on [Triple Reification](https://www.w3.org/wiki/RdfReification)."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 25,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "cbd2e6e8012d489da9a645a46a5c86e6",
+            "5fe9196bb6434bc4a410828e6d966c1d",
+            "1153c63c0eaa41ec8e041d18aa60bb1e",
+            "07dca4c78ef047919da9e857902cc9fe",
+            "f546c39ec32440478213a3d65d4bc56f",
+            "377819d3b19240fbb1afdbe5b5cc3d19",
+            "ece3c57da50247d28899dbc8f3178856",
+            "68a631ba14a04579a21076e608113f5b",
+            "3048cf5c63824a339a17d275ba6f5dbb",
+            "fbdd9315fee8499b9445d1d41ff052ba",
+            "5a1c4b8078e94b92ae912eeb9b9ee02b",
+            "fa0b56ec689c405d9903de685af4e39e",
+            "dd548245268443c9b84ad36e2b7659e0",
+            "e4e29c64dbaf484b9d4d2ee2e820445e",
+            "a49f012e93be46ddb68a33c2fce2760b",
+            "fab556deb44348ee88db08d6e4166484",
+            "09e6afa357fd4803be75a3378a16668f",
+            "2c2e6463d20f4b6ab097a09ee4a38b5a",
+            "00769c4ddffe45caaf3d6b25b36dbc1e",
+            "19970b3954634ea4b51383a554c939d6",
+            "df96d0217860475fb2115fd656c8e075",
+            "3ecde2ba048344a9877afe06fae66e02",
+            "cbf2ac2f71e24256bcae1e4321e39d58",
+            "88337681b0304b969bbad61c5ec0c3b4"
+          ]
+        },
+        "id": "XevGMv7qdPgI",
+        "outputId": "a562dae2-048f-4d80-8d28-e5ed1fdb0649"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "cbd2e6e8012d489da9a645a46a5c86e6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1153c63c0eaa41ec8e041d18aa60bb1e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f546c39ec32440478213a3d65d4bc56f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ece3c57da50247d28899dbc8f3178856",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3048cf5c63824a339a17d275ba6f5dbb",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5a1c4b8078e94b92ae912eeb9b9ee02b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd548245268443c9b84ad36e2b7659e0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a49f012e93be46ddb68a33c2fce2760b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "09e6afa357fd4803be75a3378a16668f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "00769c4ddffe45caaf3d6b25b36dbc1e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "df96d0217860475fb2115fd656c8e075",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "cbf2ac2f71e24256bcae1e4321e39d58",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 8:  Embedded object property statement in subject position\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:alice;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:bob ;\n",
+        "    ex:certainty \"0.5\"^^xsd:double .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 26,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 84,
+          "referenced_widgets": [
+            "b69a1ecf8f1447ddb4f04e55212f6d97",
+            "5f98553c1f4f4594a4b04d519700c077",
+            "b669c7e6ace146ba8a5b4a2acd29064f",
+            "da95283e26034646ad205320aa8900ad",
+            "eb609f79887b4c7b9c796b802290f645",
+            "3983a55e940b4729869ddcc63b83bb51",
+            "abdad6f869ba40529d63e6ca8d4b854c",
+            "09c18b9e1bfa46e297e2476df6de6349"
+          ]
+        },
+        "id": "KAs-MpmAp8_c",
+        "outputId": "ef925d15-c87d-44af-fc8d-f879adb94592"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b69a1ecf8f1447ddb4f04e55212f6d97",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b669c7e6ace146ba8a5b4a2acd29064f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb609f79887b4c7b9c796b802290f645", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "abdad6f869ba40529d63e6ca8d4b854c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 9: Embedded datatype property statement in subject position\n",
+        "# Note: PGT does not support this case yet\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:mark;\n",
+        "    rdf:predicate ex:age;\n",
+        "    rdf:object 28 ;\n",
+        "    ex:certainty 1 .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 27,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 184,
+          "referenced_widgets": [
+            "f500a92dca614fbe97190ea07b76f391",
+            "1980f083a8a24d118d4929daae64b05d",
+            "b4da93b0d8664c74bfffcd2fdf727d01",
+            "8182af5eea8247f38b41d468c10b2ce5",
+            "68ed047e78784348b8478e06f36498da",
+            "841e8ab2c5f044b4a1fadd8c2acd4a89",
+            "a32bca072f5c491cae9947d2b4cd5de9",
+            "6583d4fa4e8e465dbd8a6f7e903f9766",
+            "0e59fe845b1f474181c50e61c986780c",
+            "ba49567d52134f59be958023a178943e",
+            "5feded6877d94084a1426ceec3d0baca",
+            "31f235ab96ac4c3e866a1f42525bbf08",
+            "2da044ff861542359703ca9ae6c0d56b",
+            "a7a62d0a2adb4945bbff664966216d33",
+            "e91a8d9c045142c88600528a20845161",
+            "8de688d21cf147988f21e29a740ff08c",
+            "1b529365878647f980449bb9b38b9460",
+            "e34293eb4991417b9519a1029276803a",
+            "5a62d99ec49d4d2181f4296e97334516",
+            "4499a8f97cc4412db02dbe138ccf9357",
+            "2f40386b3fd1461b91d3809794504b5c",
+            "2d502c4cd2ce41cfa6e35eff82ebe098",
+            "51c97d40286f4bd9b922aedf3fd912a2",
+            "9134cccccc79418d887f13938c68d35e"
+          ]
+        },
+        "id": "_ZWrGS9Uqoc1",
+        "outputId": "c150db3c-418d-45f7-ba26-0b5fb44a5eb6"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f500a92dca614fbe97190ea07b76f391",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b4da93b0d8664c74bfffcd2fdf727d01", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "68ed047e78784348b8478e06f36498da", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a32bca072f5c491cae9947d2b4cd5de9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0e59fe845b1f474181c50e61c986780c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5feded6877d94084a1426ceec3d0baca", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2da044ff861542359703ca9ae6c0d56b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e91a8d9c045142c88600528a20845161", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1b529365878647f980449bb9b38b9460",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5a62d99ec49d4d2181f4296e97334516", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "2f40386b3fd1461b91d3809794504b5c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "51c97d40286f4bd9b922aedf3fd912a2",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 10: Embedded object property statement in object position\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "_:x a rdf:Statement;\n",
+        "    rdf:subject ex:mainPage;\n",
+        "    rdf:predicate ex:writer;\n",
+        "    rdf:object ex:alice;\n",
+        "    ex:1 \"1\";\n",
+        "    ex:2 \"2\";\n",
+        "    ex:3 \"3\" .\n",
+        "\n",
+        "ex:bobshomepage ex:source _:x .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 28,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "0f9c78460dd242fb8aae8d90beb5de1e",
+            "7c318d14e6f34bfd8c415f6d3c395f1a",
+            "d2f6d27d78f943a38a86a253e8b445de",
+            "8998ed5dbfd44af287e21c401cf9d209",
+            "7713d7ed396c4fb3852c1513ae59a7a6",
+            "db06c3e74e6b4d0e87aba61e4386e521",
+            "ebd4df3b9f144ea18b91234936f1b6a2",
+            "6198ee915b6148259ac259d5d8709217",
+            "896ec3cb702c4e8693939179306da04b",
+            "fb7b8319d8c44e17b1e72f964c5a319b",
+            "7a9da186117340f18f557f39131f3ab3",
+            "811ac8febf1846ed9e2db9cfc2a6aeb7",
+            "31c785fe99cb45488b2370510428f2f9",
+            "9af45bf1246244c9bede98ed124371ae",
+            "2184f8202fbe4d359a0d611cdedb70c7",
+            "29ebc2c2cc8349c7ad0c33e8772a202d",
+            "f2ea318f46fa4045898a74adb4282073",
+            "d8f70e21fa5d4ef0a8185dd8537c8c42",
+            "ae2da01ed0d642abb114323e9f67d829",
+            "99b484013ed3422c9c5bd2d5bfcdbb47",
+            "c0e10fa9eeac4a66ab0a90c7b3c2fe80",
+            "ea6b9fdbcaa14135be29b6980706130f",
+            "f3738174a0b445429dc6942b109d7b23",
+            "3ec735ec0be8406e93b98c8fc5faa94d"
+          ]
+        },
+        "id": "E_iK33XDSiml",
+        "outputId": "584aa990-7441-40b5-edc9-a8bb86022143"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0f9c78460dd242fb8aae8d90beb5de1e",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d2f6d27d78f943a38a86a253e8b445de", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7713d7ed396c4fb3852c1513ae59a7a6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ebd4df3b9f144ea18b91234936f1b6a2",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "896ec3cb702c4e8693939179306da04b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7a9da186117340f18f557f39131f3ab3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31c785fe99cb45488b2370510428f2f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2184f8202fbe4d359a0d611cdedb70c7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f2ea318f46fa4045898a74adb4282073",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ae2da01ed0d642abb114323e9f67d829", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c0e10fa9eeac4a66ab0a90c7b3c2fe80",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f3738174a0b445429dc6942b109d7b23",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 11: Embedded object property statement in subject position and non-literal object\n",
+        "# Case 11.1: Asserted statement with non-literal object\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:mainPage;\n",
+        "    rdf:predicate ex:writer;\n",
+        "    rdf:object ex:alice ;\n",
+        "    ex:source ex:bobshomepage .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 29,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 184,
+          "referenced_widgets": [
+            "92282a6db94f41f79fe9e13b9354aadf",
+            "4a397ba17bd747a185a82cf1a1fb4637",
+            "223f64295def4d82b07989a0e9171191",
+            "eff7fd5f3f574ed38cfcafb5495e83c0",
+            "56658e42d18f4db7b09c3dff62b0e7cf",
+            "d7e349f506e34b12b72bc284c874c515",
+            "ce2a57c811794249afb7fa5c49af992b",
+            "b29eb50fc0bc4a7b9abf6a7da3042f72",
+            "f63d3988a9ce4174bd5e85f2f87b29b9",
+            "393a3b2b1fab47b3836ce742c9491594",
+            "10b486782c364980b39db66ee20b7834",
+            "82153626f6e34225908e5d49fa73d5b1",
+            "f98fd73455d24b718e6c0217cacc5ebb",
+            "d8ee71ebbae045fd82b67ed6fcb1d2ca",
+            "af5d50833aa74fec9e5916a7ee76fcac",
+            "666b5be3143e4d1aad23ead3f9ce53ea",
+            "2ff255c0ad7f4b6db1681395395073e6",
+            "5dc5238380194b4fb0726733020ce9a9",
+            "f12398082c0d4dd3961a166418f65f51",
+            "e097249a1e6c484f9d1c54e8e76bf5a4",
+            "aa947d9e955b476686905afb94bd9a30",
+            "ac20f1f535434e80b9db35fdf03f4c60",
+            "3735f9c2a9924655ae67398428eb9c14",
+            "e39bf2d80ac94271bdeabee0c0c3cbb1"
+          ]
+        },
+        "id": "0oZbDeLeS6ll",
+        "outputId": "aae04df7-3caf-4278-f11f-5d0e1c243895"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "92282a6db94f41f79fe9e13b9354aadf",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "223f64295def4d82b07989a0e9171191", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "56658e42d18f4db7b09c3dff62b0e7cf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ce2a57c811794249afb7fa5c49af992b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f63d3988a9ce4174bd5e85f2f87b29b9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10b486782c364980b39db66ee20b7834", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f98fd73455d24b718e6c0217cacc5ebb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "af5d50833aa74fec9e5916a7ee76fcac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "2ff255c0ad7f4b6db1681395395073e6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f12398082c0d4dd3961a166418f65f51", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "aa947d9e955b476686905afb94bd9a30",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3735f9c2a9924655ae67398428eb9c14",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 11: Embedded object property statement in subject position and non-literal object\n",
+        "# Case 11.2: Asserted statement with non-literal object that appears in another asserted statement\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "ex:alex ex:age 25 .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:alice;\n",
+        "    rdf:predicate ex:friend;\n",
+        "    rdf:object ex:bob ;\n",
+        "    ex:mentionedBy ex:alex .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 30,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "510794a7ae37442f8b66a3a74661de66",
+            "c9855520f70e4202956e0d0c5dcfac69",
+            "63544062794940b8a60ec50c3d8fd5df",
+            "32c2bf3fe02f4b2b9f6e32cf8496a83e",
+            "a32dc9b3892f4087a3b824b3bab6486f",
+            "b1f35477806840a8b8a54799fe8e1398",
+            "60c5ddd64d9347f590e71a185604f117",
+            "49f447ea948b4d3cb29a19d0ac248815",
+            "1562b02158f14e2585764860276d7daa",
+            "2ca5014106714ad0a571daed220fe8a3",
+            "06f7a6f1943c403c96aca9b2be8cd920",
+            "cf53bc54ba0745639e93548d2d70a5f7",
+            "c9de6aa0f8464e86b5746365dff1bd28",
+            "0d9071e019d242b8835bd761a1e7ccb6",
+            "9e6876611736455caa8d7810419c28cf",
+            "d6e781982c5f44fcba3fbd679e951358",
+            "6ddbd53f84c04a808dbfda79308b5291",
+            "259234af91af41e5a00ff6dd69de6abb",
+            "9eac31d5717d4ca696ea683f4776987c",
+            "bce8c14036354838975daf20e8437b41",
+            "1eecac5b4e75476abeaea6ec99823841",
+            "8e496993198046a5ad9ecb6a7cfc358b",
+            "d711c89e86da452ba56a5d0fa177fc6e",
+            "bafb6c71b2174ce5a3b261d3c48cf0b4"
+          ]
+        },
+        "id": "woNfHiZ5S__t",
+        "outputId": "b547b01d-724e-4c65-de21-68ccb631ca48"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "510794a7ae37442f8b66a3a74661de66",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "63544062794940b8a60ec50c3d8fd5df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a32dc9b3892f4087a3b824b3bab6486f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "60c5ddd64d9347f590e71a185604f117",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1562b02158f14e2585764860276d7daa",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "06f7a6f1943c403c96aca9b2be8cd920", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c9de6aa0f8464e86b5746365dff1bd28", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e6876611736455caa8d7810419c28cf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "6ddbd53f84c04a808dbfda79308b5291",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9eac31d5717d4ca696ea683f4776987c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1eecac5b4e75476abeaea6ec99823841",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d711c89e86da452ba56a5d0fa177fc6e",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n",
+        "# Case 12.1: Asserted statement with rdf:type as predicate\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:mainPage;\n",
+        "    rdf:predicate ex:writer;\n",
+        "    rdf:object ex:alice ;\n",
+        "    rdf:type ex:bobshomepage .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 31,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "31d64688e87848b5b582bf5c46dd4dd9",
+            "b4aeebce09de4f76b56757c293f765e4",
+            "82bb77ad205b41b18346d25c709bfb04",
+            "46356aae8ddc45ffa519a783411ed5c3",
+            "b1664273e12e42fe9ffc87283ee1ac17",
+            "3b77a9b7d5a54d0bb587666d26fe9638",
+            "9f871650a7f9452a972e3fb359f6202c",
+            "acc2faa48c3347c3b4f58272b0119048",
+            "95531688a8654c2fa47d740cd92b338f",
+            "2ebcb5a1f513410f8f703da16b3f44c1",
+            "de930ca00f7d4853afa6d2cd832ecd06",
+            "78ac12ef772441a49ab15c1a583efed1",
+            "7516668d476a4ad296e457ed2dce582c",
+            "f8e863f9e8d445b9a9f70a3ebe71cc22",
+            "f27e93a7fb054bc68b2030ed0d7a01a2",
+            "52d16d34612d42a5ace968d4104c89ed",
+            "03929fe528d24f6d8dca2511a18a02b1",
+            "6ae66ff0e0a84581b6c836c7b9df5472",
+            "8d7e37c4a725424cab94706f7c149b68",
+            "8c983236500b40628285ef1c5ffc4486",
+            "07ab0f2d3ee94fe0a63ce1df394192e7",
+            "47de40701c0e44b4980e966e2feeefe2",
+            "07a08a86cc2c4981beb1ff4d1715e4c0",
+            "f711293be6064fbeb78a10e36fb4ca3c"
+          ]
+        },
+        "id": "lbbdb2lwS_2M",
+        "outputId": "0b252df3-43ed-4a2d-d459-888207d45bf9"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "31d64688e87848b5b582bf5c46dd4dd9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82bb77ad205b41b18346d25c709bfb04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b1664273e12e42fe9ffc87283ee1ac17", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "9f871650a7f9452a972e3fb359f6202c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "95531688a8654c2fa47d740cd92b338f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de930ca00f7d4853afa6d2cd832ecd06", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7516668d476a4ad296e457ed2dce582c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f27e93a7fb054bc68b2030ed0d7a01a2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "03929fe528d24f6d8dca2511a18a02b1",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8d7e37c4a725424cab94706f7c149b68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "07ab0f2d3ee94fe0a63ce1df394192e7",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "07a08a86cc2c4981beb1ff4d1715e4c0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 12: Embedded statement in subject position - object property with rdf:type predicate\n",
+        "# Case 12.2: Embedded statement with rdf:type as predicate\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:lara;\n",
+        "    rdf:predicate rdf:type;\n",
+        "    rdf:object ex:writer ;\n",
+        "    ex:owner ex:journal .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 32,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "86fb91142a524df2aea0b38e5e70ebf3",
+            "56fafa7b834944e8ab133cf454d7c975",
+            "1096a45ec72c4288942a61bfb522fcfa",
+            "99818b0b3b334807a9d480701be490ea",
+            "69d271c6000c484fbcae7d9c1df71c2d",
+            "aa4a6d44d69b4c3c9e14217ddf76fbe3",
+            "b90d6e06cf554533a8c4b2d0e7aead3a",
+            "5474b2535fdc4876932eb118f1f9da25",
+            "3a490438c9024452a8dc43ba4380184a",
+            "dce9a62edd304dd986fc904eaa2be8bd",
+            "e3ed2561d46c462492517def810ef87a",
+            "9133433c68334384a838e7bb43d46a72",
+            "ba1aa9d3a8414164b0a5f469e618a093",
+            "8aea416f223d4311a6cf9d4f1843df79",
+            "f8c653de7fdd4d28a0b4e855e31f8497",
+            "930632942d004d67aca96d6b1dd1f4f8",
+            "a98c3bdfb31e47d5b25442fa3114f5dc",
+            "2cf2703a60dd432a8cafa2d44cebc91f",
+            "d51d672e72484bf8abebd43741065c75",
+            "59c050129aa24f939162cf2a24329d1f",
+            "f5486bbcd6a542029db8c33230db6fbf",
+            "00aeacee663742bca19ea1564d49593a",
+            "5f1ab0c9d552407e8dd816c32ba3ff0f",
+            "76bd81b761b0409c89b9ce656b8bee27"
+          ]
+        },
+        "id": "4TwIzKZ4S_tN",
+        "outputId": "b4f66a58-7857-411e-e900-faab135e9253"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "86fb91142a524df2aea0b38e5e70ebf3",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1096a45ec72c4288942a61bfb522fcfa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "69d271c6000c484fbcae7d9c1df71c2d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b90d6e06cf554533a8c4b2d0e7aead3a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3a490438c9024452a8dc43ba4380184a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3ed2561d46c462492517def810ef87a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba1aa9d3a8414164b0a5f469e618a093", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f8c653de7fdd4d28a0b4e855e31f8497", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a98c3bdfb31e47d5b25442fa3114f5dc",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d51d672e72484bf8abebd43741065c75", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f5486bbcd6a542029db8c33230db6fbf",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5f1ab0c9d552407e8dd816c32ba3ff0f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 13: Nested RDF-star statements\n",
+        "# Case 13.1: Nested RDF-star statement in Subject position\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "ex:steve_position_ceo a rdf:Statement;\n",
+        "    rdf:subject ex:steve;\n",
+        "    rdf:predicate ex:position;\n",
+        "    rdf:object ex:CEO .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:steve_position_ceo;\n",
+        "    rdf:predicate ex:mentionedBy;\n",
+        "    rdf:object ex:book;\n",
+        "    ex:source ex:journal .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 33,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 134,
+          "referenced_widgets": [
+            "4c4e06460b1b45ab9cc9f4c17735e00c",
+            "5050f635e23d4d568a5ee162f3215cc4",
+            "36485dd1f0ac4020afb98ac853eed41c",
+            "6d22cce22d104fcfbac869f965502e53",
+            "b9ac6f8011d44f3396ba8b10c732253f",
+            "8d0d7952de7a4da4a759103ab22d2e37",
+            "c50644b32a9a416eb8590251c6fcbcb0",
+            "d988cd5ee4a34d2e8f86fef5093907ce",
+            "0ff7666935a04234b659ba79a2597c71",
+            "eff0b0606bdc40c88ebbd0509f4e8f14",
+            "4e9eb2e764d5451b9e583a3fc6290103",
+            "c35fb525a58246eebbf2fef1bd336b5e",
+            "e202d4e312114fae8ba6694151cfbbd5",
+            "f2b43ef11cf7421295d4c96b95c5e703",
+            "1ac2539ba6d94d6e92826d93d66dc649",
+            "f4d86a9622e74997aa7516410d0b7d92",
+            "aecca36ee5df464286c080f69a90a3b0",
+            "d7e12b91acdf4c68b11d967db6c533fa",
+            "fed1fa7af3a744d6959ca223c349806b",
+            "6dd871296cf44b4686c58701864c723c",
+            "635a63f420c848c089f70ca2e5aae701",
+            "816f7c8969da49e080916a9a6e6bf6df",
+            "b9f506c4c28a4e38be7b3b16cf972e06",
+            "05199d53ef264ae6acb67ef478a436ae"
+          ]
+        },
+        "id": "BfMbv1NpP6nt",
+        "outputId": "23bacd02-4a05-4e7b-9955-860ab70d9801"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4c4e06460b1b45ab9cc9f4c17735e00c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "36485dd1f0ac4020afb98ac853eed41c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b9ac6f8011d44f3396ba8b10c732253f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c50644b32a9a416eb8590251c6fcbcb0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0ff7666935a04234b659ba79a2597c71",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4e9eb2e764d5451b9e583a3fc6290103", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e202d4e312114fae8ba6694151cfbbd5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1ac2539ba6d94d6e92826d93d66dc649", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "aecca36ee5df464286c080f69a90a3b0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fed1fa7af3a744d6959ca223c349806b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "635a63f420c848c089f70ca2e5aae701",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b9f506c4c28a4e38be7b3b16cf972e06",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 13: Nested RDF-star statements\n",
+        "# Case 13.2: Nested RDF-star statements in Object positions\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "ex:steve_position_ceo a rdf:Statement;\n",
+        "    rdf:subject ex:steve;\n",
+        "    rdf:predicate ex:position;\n",
+        "    rdf:object ex:CEO .\n",
+        "\n",
+        "ex:book_mentioned_by_steve_position_ceo a rdf:Statement;\n",
+        "    rdf:subject ex:book;\n",
+        "    rdf:predicate ex:mentionedBy;\n",
+        "    rdf:object ex:steve_position_ceo .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:journal;\n",
+        "    rdf:predicate ex:source;\n",
+        "    rdf:object ex:book_mentioned_by_steve_position_ceo .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 34,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 150,
+          "referenced_widgets": [
+            "fc20c290802a41db8737daee15189174",
+            "41a6f15ee08a4e4e8ec03d1497b5ad2e",
+            "e6c4596dd3914ee2b7c338eff8bcf647",
+            "e58f215244e64ff68be337fd5a183058",
+            "cf37b65d12b54c17b1ed4c98f85bff2b",
+            "850743cb94c341849186c864f3d1f51c",
+            "934cbfecfbe34488abddbcd88f61ef26",
+            "de5ed27e132945f58444c0fb1a797f17",
+            "44bf2681ecea4978ac5e68449c2ebd2b",
+            "a5e9deebe6da40b889153e028b9a68bd",
+            "b817b83ccfed4b3daf48fdb2e0c33487",
+            "ebd854f567124326b5e790eeffde107a",
+            "d3d17d3949b6429a8a29397f99936256",
+            "feebddc745d8419fb64f0d144dc5c95b",
+            "0c39047fd29f488a8a731a3278b519b4",
+            "835443e97f3c4fdb98f0b1947e4dde81",
+            "c7d57948e351421a8cc2329cabdad6d1",
+            "f3fd59269d1740ef80c59a6dad9c2319",
+            "6b579a16241a49fe894af095168eab07",
+            "c4d12e6c75674af08b8adb827ab57615",
+            "0cb0cb6662834a5195ccf041f26e274d",
+            "105d4fe99189401994e333ed7978ebc3",
+            "39504ef3a8ed4dd285d67771f81f415a",
+            "f931874b27c84f2a9d8c0b6ef67f764f"
+          ]
+        },
+        "id": "yZDLiPMkS_kG",
+        "outputId": "ffc977ba-aa38-42fc-9859-517e63cc453e"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "fc20c290802a41db8737daee15189174",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6c4596dd3914ee2b7c338eff8bcf647", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cf37b65d12b54c17b1ed4c98f85bff2b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "934cbfecfbe34488abddbcd88f61ef26",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "44bf2681ecea4978ac5e68449c2ebd2b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b817b83ccfed4b3daf48fdb2e0c33487", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3d17d3949b6429a8a29397f99936256", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0c39047fd29f488a8a731a3278b519b4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c7d57948e351421a8cc2329cabdad6d1",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6b579a16241a49fe894af095168eab07", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0cb0cb6662834a5195ccf041f26e274d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "39504ef3a8ed4dd285d67771f81f415a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 14: Multi-valued properties\n",
+        "# Case 14.1: RDF statements with same subject and predicate and different objects\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "\n",
+        "ex:college_page ex:subject \"Info_Page\";\n",
+        "    ex:subject \"aau_page\" .\n",
+        "\n",
+        "ex:college_page_2 ex:subject \"Info_Page\" .\n",
+        "\n",
+        "ex:college_page ex:link ex:college_page_2 .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 35,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "b133a98869b142fa817360896ddafa70",
+            "d38bbde094c7431289f7601a13315025",
+            "9c94473b37144abb9cbe6ac26b8b64a4",
+            "7c4cb95e53f345b08c1f4439d2f4c2b1",
+            "02782281dd414f71b683b9a32aa31caa",
+            "4888e641f7d1495487f59158aff1895a",
+            "e785484e947d4bce8dd4020c92d32681",
+            "eb48ef60fdf0417082c2c74dff515ef3",
+            "d0fb3aac531b474d868868ed2bdceaac",
+            "d6fbeecbce094ee681da46d7836b5501",
+            "862b42e51d1d4c1aac66d07fc07a1961",
+            "5344ab9f5213406f821b4fc52f34c1b6",
+            "d62264402f0940f9a3658d834661d80a",
+            "26ffe01988374a8ebcf74ed0c30773fc",
+            "4f1af8b21f1a4a8db470924b8030ac26",
+            "d3891a12da3149f78927bc97712eecba",
+            "603b1ecf2f3d4db78d8a0f290baca136",
+            "efd05d0c9db0475b86d43a4a7a269fe1",
+            "34766e8e7bac4be9bfb86c455ee75493",
+            "cd8d836cb70a42849cb48facc90fd6e7",
+            "9914c1cfebf6400aa9a8ac54763d80a3",
+            "1b37da3c0e884470af207ab618e4d83a",
+            "2a6a1086a40341b3a9fb46912cb75dd6",
+            "207a6a1c6f714ee9a9482d83aa1b6d29"
+          ]
+        },
+        "id": "X_qBsxffS_br",
+        "outputId": "0ba71c7c-e1ec-42d0-b82c-72835fac14ad"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b133a98869b142fa817360896ddafa70",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9c94473b37144abb9cbe6ac26b8b64a4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "02782281dd414f71b683b9a32aa31caa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e785484e947d4bce8dd4020c92d32681",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d0fb3aac531b474d868868ed2bdceaac",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "862b42e51d1d4c1aac66d07fc07a1961", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d62264402f0940f9a3658d834661d80a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4f1af8b21f1a4a8db470924b8030ac26", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "603b1ecf2f3d4db78d8a0f290baca136",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "34766e8e7bac4be9bfb86c455ee75493", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "9914c1cfebf6400aa9a8ac54763d80a3",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "2a6a1086a40341b3a9fb46912cb75dd6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 14: Multi-valued properties\n",
+        "# Case 14.2: RDF-star statements with the same subject and predicate and different objects\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt ;\n",
+        "    ex:certainty \"0.5\"^^xsd:double .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt ;\n",
+        "    ex:certainty 1 .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 36,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "9a5fe71de1ca4e949b1b61173089cd7a",
+            "176ab88312ca4473b876b9dd94260f35",
+            "25bf71951a7a46e8ab818832fb6d770c",
+            "fe3b2882a7ad4ff99044c20354c1c8c0",
+            "bb24c652631f41bcbe0f9461372f8061",
+            "b0aea30c1ae54e57aec64cfa3f5e0f66",
+            "c8a31feebbbd4479bb4d3149f703b482",
+            "4801a13b780346d888b36082869de287",
+            "f139ed160d5641fc8603a7e27f4739d1",
+            "1833ea424b6944919951e027db237691",
+            "d7f0e36535a7471c89e7992b8d1b7c01",
+            "70bb188603354ddca66d4146ec8e471c",
+            "960cca7f5fe44b1db8d6f1b42ec9c96a",
+            "d515e99b328d4e118174560fa329af02",
+            "32cbde21198749b880278b11b845eeca",
+            "99036c6715c544ea9c50cd68621fde3a",
+            "680bf32f724e469982385088a61bb1fc",
+            "29bd1e51d7a5416db6f8646bbf620040",
+            "13356c7a8f8b4a83bfe2caa420745097",
+            "a89b108c9fec490687b74e968dfe98f7",
+            "cdd0250b550f438c863d72f4706d9131",
+            "86fd50b8fd6f4dbf95b30557df477519",
+            "b2b5e1788189446fa4ecab95341c4c20",
+            "7e791f4fd0d54af68e2f96e3e3119830"
+          ]
+        },
+        "id": "ZQqkFmPZQ69J",
+        "outputId": "2cc05095-f116-49e4-e2f0-deb47d721d25"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "9a5fe71de1ca4e949b1b61173089cd7a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "25bf71951a7a46e8ab818832fb6d770c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb24c652631f41bcbe0f9461372f8061", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c8a31feebbbd4479bb4d3149f703b482",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f139ed160d5641fc8603a7e27f4739d1",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7f0e36535a7471c89e7992b8d1b7c01", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "960cca7f5fe44b1db8d6f1b42ec9c96a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "32cbde21198749b880278b11b845eeca", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "680bf32f724e469982385088a61bb1fc",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13356c7a8f8b4a83bfe2caa420745097", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "cdd0250b550f438c863d72f4706d9131",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b2b5e1788189446fa4ecab95341c4c20",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 14: Multi-valued properties\n",
+        "# Case 14.3: Contexted within Named Graphs\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:college_page_3;\n",
+        "    rdf:predicate ex:subject;\n",
+        "    rdf:object \"Info_Page\" .\n",
+        "\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:college_page_4;\n",
+        "    rdf:predicate ex:subject;\n",
+        "    rdf:object \"Info_Page\", \"aau_page\" .\n",
+        "\n",
+        "ex:Graph1 {\n",
+        "    ex:college_page ex:subject \"Info_Page\";\n",
+        "        ex:subject \"aau_page\" .\n",
+        "}\n",
+        "\n",
+        "ex:Graph2 {\n",
+        "    [] a rdf:Statement;\n",
+        "        rdf:subject ex:college_page;\n",
+        "        rdf:predicate ex:link;\n",
+        "        rdf:object ex:college_page_3;\n",
+        "        ex:foo \"bar\";\n",
+        "        ex:foo \"bar2\" .\n",
+        "}\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 37,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "9cee9150609e4c219279ed050a66a184",
+            "f3fe3d08163449909f5161eb0c8d3ce4",
+            "52d888e703e546578d3d9eb0d3cee5dc",
+            "1615255ac8434968865b3bcc80cb53b7",
+            "a60161904de345dab13563494719af43",
+            "8278b10ae8974c06811e7264527858d6",
+            "4800e6188bee433382b650145a17152e",
+            "4ba0cd3dd2be43d7b97e10804e01563a",
+            "c05911de0b4840c9a5cae04a58a58eec",
+            "e00e4a5e870c4ae2ab15e9ee4dafbfb3",
+            "752e8beefa234828be053813a24db5cb",
+            "bd7c88d2b8ac430ebe4d6e8146ad4a50",
+            "3ef4f135a9814fdd913d113eecc4cb2f",
+            "ee751b1aded24d2fa4c07f2779e2a049",
+            "754215a7023e452f9578907cf2b333f4",
+            "a5b9e7a95014425ab6963a48e86f49f9",
+            "6d47a7766b92481fb6ff95ba77e8f0de",
+            "690dc7e0e3ff44e98880bdc12d7d370a",
+            "cd435a80b43340cc81e55108f7c686b8",
+            "bddbfacd0981464fb4bc7c3380d9293a",
+            "20bc8e7e0c9842b4a46cc5fe0c81687a",
+            "36a9e23ee2454fbb907facd9a07f9fca",
+            "89fdce4ca2f94221892e9f0d1197b8e0",
+            "7f716d2ad0e34fe8a67b1f6b8a9669c5"
+          ]
+        },
+        "id": "cD-S3cZ-S_Ta",
+        "outputId": "975b43e8-0151-44e2-cee8-34c160835cc7"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "9cee9150609e4c219279ed050a66a184",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "52d888e703e546578d3d9eb0d3cee5dc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a60161904de345dab13563494719af43", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4800e6188bee433382b650145a17152e",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c05911de0b4840c9a5cae04a58a58eec",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "752e8beefa234828be053813a24db5cb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3ef4f135a9814fdd913d113eecc4cb2f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "754215a7023e452f9578907cf2b333f4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "6d47a7766b92481fb6ff95ba77e8f0de",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cd435a80b43340cc81e55108f7c686b8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "20bc8e7e0c9842b4a46cc5fe0c81687a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "89fdce4ca2f94221892e9f0d1197b8e0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 15: Identical embedded RDF-star statements with different asserted statements\n",
+        "# Case 15.1: Basic Reified Statements\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt;\n",
+        "    ex:certainty 0.5 .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt;\n",
+        "    ex:source \"text\" .\n",
+        "\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 38,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 184,
+          "referenced_widgets": [
+            "00383ab1aadf438abf1f7ae40b0019d8",
+            "dd1262da5c7747bdb20dcfd9d0da8251",
+            "b60321f2d5444f349823a209b6592681",
+            "9abce425fb6a448a95b5b70d2d9a1f8a",
+            "92f7b68f2c954de1b9543accbb64f8c7",
+            "cc13170e10c142a89c2d36848ef13812",
+            "25200c81b79d4cf5b1887275467b25aa",
+            "dc71d23ca2c44ff39aad451bf7bb9bb8",
+            "fe07548f389642ecad02242a3297620e",
+            "ea218a29d344434abccaf303b0044dca",
+            "e492859f96704105b908c0f9e94f5aed",
+            "06d16a9226c94ce99cc1ba0de6828a0f",
+            "8b722d54416e4852b656d5cd0b2c5d08",
+            "d8b062e2e9da4af08c7e4d822f47c72e",
+            "ff0c11c9fd084a7790d7ae629772682f",
+            "b7e9590766f74bbdb62ea28a5bbc0ff4",
+            "da1a326b026644db9c1d3f956dbf35ed",
+            "465fbf12cec047dbb66c016aab1d876e",
+            "fceffadb163e4d74ae077a0e437bc879",
+            "c01224a7670240deb02a974dc360f0f2",
+            "89df658ca02348e5aef38d8b4158e772",
+            "eb1d608d4a384a19ae066051c956ce80",
+            "ab5bd1eda3b8465e8991c9dd80242069",
+            "8848879b486546d8b6b1039484813a7f"
+          ]
+        },
+        "id": "r7jArqpvR6OK",
+        "outputId": "4d118087-03ed-4d19-a20e-73960dd22fd5"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "00383ab1aadf438abf1f7ae40b0019d8",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b60321f2d5444f349823a209b6592681", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92f7b68f2c954de1b9543accbb64f8c7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "25200c81b79d4cf5b1887275467b25aa",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "fe07548f389642ecad02242a3297620e",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e492859f96704105b908c0f9e94f5aed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8b722d54416e4852b656d5cd0b2c5d08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ff0c11c9fd084a7790d7ae629772682f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "da1a326b026644db9c1d3f956dbf35ed",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fceffadb163e4d74ae077a0e437bc879", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "89df658ca02348e5aef38d8b4158e772",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ab5bd1eda3b8465e8991c9dd80242069",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 15: Identical embedded RDF-star statements with different asserted statements\n",
+        "# Case 15.2: Basic Reified Statement + regular statement\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt;\n",
+        "    ex:certainty \"0.5\"^^xsd:double ;\n",
+        "    ex:foo ex:bar .\n",
+        "\n",
+        "ex:Mary ex:likes ex:Matt .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 39,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 184,
+          "referenced_widgets": [
+            "1b7c320b49ba4a4d928090a55773d076",
+            "c5418daa64ef4c90ae44c7e845342cd2",
+            "5e5d6a1434204d9ca591ba7e5d80d394",
+            "eae1dc1f0c53488d9161546790aae34e",
+            "c0325b7f26d5436d99bee8a72fcd6d84",
+            "51c57fbccac34167855a2270c365b9b2",
+            "c0e5df890daa49eba05e2b3fc0c3a096",
+            "113d67880f1f4a48a88e1425b163cdb8",
+            "c05da93fed3d4d47a958f969dc575242",
+            "4c0629fb41e446bcb8c5bf7a6ed97820",
+            "0816edb1772f4e8f9e1326590f22a3cc",
+            "b2f03524128a4c6089d808686ad5281e",
+            "f334a52987ad4a0a9487c841b4eb4ab3",
+            "78620943d50549a3a57dbb4302b174be",
+            "d59751a9fa8045d884ebc30aeeadca70",
+            "7c21761ffbc04fd8a11c87bdcc07df64",
+            "580a7824847f45cd9ad774d975337480",
+            "1c533729c7f54f83b19169afb445d001",
+            "82aaa9fcf9ea489e89d567daf545bdf6",
+            "8a5cc8bcddb7487d872f8082c29bcdab",
+            "7f7008b7106847d0a71b51679e4e4522",
+            "5ad11cd62cc3452dbda9f543f100d135",
+            "b6eed34455224c21aa7b56e9222fcf44",
+            "3304bc08ecd648e6a566d74f17109680"
+          ]
+        },
+        "id": "oWZcONtcSFwb",
+        "outputId": "16f97ebf-9a3c-4e16-dc1f-130c5a898287"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1b7c320b49ba4a4d928090a55773d076",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5e5d6a1434204d9ca591ba7e5d80d394", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c0325b7f26d5436d99bee8a72fcd6d84", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c0e5df890daa49eba05e2b3fc0c3a096",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c05da93fed3d4d47a958f969dc575242",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0816edb1772f4e8f9e1326590f22a3cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f334a52987ad4a0a9487c841b4eb4ab3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d59751a9fa8045d884ebc30aeeadca70", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "580a7824847f45cd9ad774d975337480",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82aaa9fcf9ea489e89d567daf545bdf6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7f7008b7106847d0a71b51679e4e4522",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b6eed34455224c21aa7b56e9222fcf44",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 15: Identical embedded RDF-star statements with different asserted statements\n",
+        "# Case 15.2: Basic Reified Statement + duplicate \"regular\" statement\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt;\n",
+        "    ex:certainty \"0.5\"^^xsd:double ;\n",
+        "    ex:foo ex:bar .\n",
+        "\n",
+        "ex:Mary ex:likes ex:Matt .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 40,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 184,
+          "referenced_widgets": [
+            "8ccc94cf504e40eab5c7ea493f756f8b",
+            "b36ff1e5657c40c19ed169b354198efe",
+            "97686950407044e493db9b6e5f96abc3",
+            "6d8ac4bfc9f6436f99c1e36a4d0d0e43",
+            "70df5da45fdf4c8da8a368073e139caf",
+            "d7f6a5acbacb4f95950ecb48616a024d",
+            "e68cc58160134aa99a339cf9d726fd8a",
+            "387e8f25a72745968de20c93174fb8b3",
+            "12e58e8320e6432f9e38fd28eabd7b6a",
+            "67d0366ca2cd42cdbc3392d5cd606bd7",
+            "f45d3a94b0df4882b4e1bbb4194d0e2f",
+            "a5ffe50661654304a6368878b509264c",
+            "f93c03087ce94becaee30819a8ccd195",
+            "ab184d09c37043dbb7218a9748f24b31",
+            "fc193d6dec664d4e8b54b59ce18c8909",
+            "6fbf0c9ea5c543e694559524ccde9489",
+            "92fa5df4e678468cb6562d228b0f9af8",
+            "6094952cc61f414cbb9682aa3fd33313",
+            "42c89ab89b204967a4970c9c6ca189a6",
+            "f90e31d881904ee1b8f31b089a3e95d2",
+            "907bb9cf62e74cd292ea26cd7cd8d205",
+            "503dd524d03a4032ab66b63d0de621ae",
+            "44d289bcd3eb4ebd91c1e4a4b327a1e1",
+            "fb584b5d386e4a7591bb48059cb7af87"
+          ]
+        },
+        "id": "b_H6fDD0STPw",
+        "outputId": "61aebcda-78b1-4b02-daac-4d0ddd896062"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8ccc94cf504e40eab5c7ea493f756f8b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "97686950407044e493db9b6e5f96abc3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "70df5da45fdf4c8da8a368073e139caf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "e68cc58160134aa99a339cf9d726fd8a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "12e58e8320e6432f9e38fd28eabd7b6a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f45d3a94b0df4882b4e1bbb4194d0e2f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f93c03087ce94becaee30819a8ccd195", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc193d6dec664d4e8b54b59ce18c8909", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "92fa5df4e678468cb6562d228b0f9af8",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "42c89ab89b204967a4970c9c6ca189a6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "907bb9cf62e74cd292ea26cd7cd8d205",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "44d289bcd3eb4ebd91c1e4a4b327a1e1",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 15: Identical embedded RDF-star statements with different asserted statements\n",
+        "# Case 15.3: Basic Reified Statement + duplicate Reified Statement\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt;\n",
+        "    ex:certainty \"0.5\"^^xsd:double ;\n",
+        "    ex:foo ex:bar .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "    rdf:subject ex:Mary;\n",
+        "    rdf:predicate ex:likes;\n",
+        "    rdf:object ex:Matt .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 41,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 167,
+          "referenced_widgets": [
+            "d3cf60c5428e48d19db119ff4d747021",
+            "eae497edc98c4a2d81889d2cb4a3b621",
+            "3628924e22f54ca6bd3bc98dc0619de9",
+            "0b40cbc2604b4be58158cc8e56814f2e",
+            "ea632dc371e54437b52c5b22112b0e8e",
+            "bad0c11cb6ce497fb4c11bc03c533831",
+            "665e5cbce33143c0bc88c390aa35eed5",
+            "34df82f492d24cf18aa31027352e0df1",
+            "7d640d33c8a14846b089e21b404757a9",
+            "7e84fb9c3f464f08a4ba504cd7efdf0a",
+            "312d8f397d4f4362bbef7d18c1ba5de3",
+            "0d2b101b5cd34df5a60f49f0322b8ae5",
+            "27933cff78c94ea08128a4ab09aabc3d",
+            "5b5972f2a60d4165b29193acec5a3efb",
+            "c734fb7abf734de8a786b74490dbdc45",
+            "5483cddfc4a441bba4e38e06d531573b",
+            "14f9df9b0c98462aa5838e3da9fa1d9a",
+            "b5351fcc283f4f08a4c03ba7ff4c6171",
+            "23667a2c1edf48f0805b6f3a7deaff60",
+            "2d3b9ecb52c3494697f0914a9eda32ce",
+            "0b6cf37ac5ee4ab5a1d8b6dacd7cd5ab",
+            "733b2bb8ff1248dba07fb78f751141de",
+            "4de3bbd3d55a4b78a3eb1e521ce5cfe3",
+            "55577346bc664471a01442b07a9d5348"
+          ]
+        },
+        "id": "FQj1859cRwms",
+        "outputId": "a8c7c579-7cb5-4f6d-d11a-13c661411d42"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d3cf60c5428e48d19db119ff4d747021",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3628924e22f54ca6bd3bc98dc0619de9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ea632dc371e54437b52c5b22112b0e8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "665e5cbce33143c0bc88c390aa35eed5",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7d640d33c8a14846b089e21b404757a9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "312d8f397d4f4362bbef7d18c1ba5de3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "27933cff78c94ea08128a4ab09aabc3d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c734fb7abf734de8a786b74490dbdc45", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "14f9df9b0c98462aa5838e3da9fa1d9a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "23667a2c1edf48f0805b6f3a7deaff60", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0b6cf37ac5ee4ab5a1d8b6dacd7cd5ab",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4de3bbd3d55a4b78a3eb1e521ce5cfe3",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# Case 15: Identical embedded RDF-star statements with different asserted statements\n",
+        "# Case 15.4: Nested Reified Statements with Named Graphs\n",
+        "\n",
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix xsd:  .\n",
+        "\n",
+        "[] a rdf:Statement;\n",
+        "        rdf:subject ex:Mary;\n",
+        "        rdf:predicate ex:likes;\n",
+        "        rdf:object ex:Matt;\n",
+        "        ex:certainty 1 .\n",
+        "\n",
+        "ex:Graph1 {\n",
+        "    ex:mary_likes_matt_05 a rdf:Statement;\n",
+        "        rdf:subject ex:Mary;\n",
+        "        rdf:predicate ex:likes;\n",
+        "        rdf:object ex:Matt;\n",
+        "        ex:certainty 0.5 .\n",
+        "}\n",
+        "\n",
+        "ex:Graph2 {\n",
+        "    [] a rdf:Statement;\n",
+        "        rdf:subject ex:Mary;\n",
+        "        rdf:predicate ex:likes;\n",
+        "        rdf:object ex:Matt;\n",
+        "        ex:certainty 0.75 .\n",
+        "\n",
+        "    [] a rdf:Statement;\n",
+        "        rdf:subject ex:John;\n",
+        "        rdf:predicate ex:said;\n",
+        "        rdf:object ex:mary_likes_matt_05;\n",
+        "        ex:foo \"bar\" .\n",
+        "}\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data, True), overwrite_graph=True)\n",
+        "pgt_graph = adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data, True), overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0SWi4e3wIMtw"
+      },
+      "source": [
+        "#### Graph Contextualization"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "vec21mb9MkhR"
+      },
+      "source": [
+        "❗ Graph Contextualiztion is a work-in-progress feature ❗\n",
+        "\n",
+        "Contextualizing an RDF Graph to enhances the Terminology Box of the original RDF Graph. This is done by:\n",
+        "\n",
+        "1. Loading the OWL, RDF, and RDFS Ontologies into the RDF Graph\n",
+        "2. Providing Domain & Range Inference\n",
+        "3. Providing Domain & Range Introspection\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 42,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 0,
+          "referenced_widgets": [
+            "b3891e36049d4b3ca529ee521cacb673",
+            "b63b93b6d74e4e008dc4de0268877371",
+            "6686917122224b15b7f511dc89212ce6",
+            "900b7c249fbb49c59c18d2c9968f2891",
+            "2a1d425b97524de6aac4edc3b8e67000",
+            "44ebf31be6c64bf4b539f81c1250a8f1",
+            "4d6a69a6ddd84ef68a4902e889af0e18",
+            "64938ff2e522484a94712608de674545",
+            "b1c9f3985d874907ad3038ad6a836afa",
+            "e077548daac5479a9092dd7985a85dc7",
+            "f586ae31f10141c7afe0f6baa1794d03",
+            "93ce4c6d2f2f43fa95a2a443f3321e4b",
+            "3e668d9f0ee74d078e3627b3ac969ede",
+            "f4bb379438d74bcc8c9312d491e37fa7",
+            "ba86d6019c8a4be19f4fb3afc63e0830",
+            "2a09643054274217b1166b0ad5db22aa",
+            "032a12f2cbaa4235aa24c1d127a28363",
+            "987b6a19cb0e4a29a79c4fc5596796c0",
+            "188785b1836c47d0bc6f01fba3524651",
+            "8a4170094368494aa860c215fffda76a",
+            "e62cf939fd2c47408098ba78de765f0a",
+            "291de7e0668e447c917b3a7134cae0fd",
+            "4eeaa3082d74487796caa0db21a1521a",
+            "9122d486ae7a422b96e097342891fb70",
+            "a71eeca8fd5746eea89964c6791c3b62",
+            "9275bb009a014e058d6b737d93d89c06"
+          ]
+        },
+        "id": "P9oGi91RJbAI",
+        "outputId": "c9097281-026d-400f-f245-f4aae639ee62"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b3891e36049d4b3ca529ee521cacb673",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6686917122224b15b7f511dc89212ce6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2a1d425b97524de6aac4edc3b8e67000", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d6a69a6ddd84ef68a4902e889af0e18", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b1c9f3985d874907ad3038ad6a836afa",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f586ae31f10141c7afe0f6baa1794d03",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e668d9f0ee74d078e3627b3ac969ede", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba86d6019c8a4be19f4fb3afc63e0830", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "032a12f2cbaa4235aa24c1d127a28363", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "188785b1836c47d0bc6f01fba3524651",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e62cf939fd2c47408098ba78de765f0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4eeaa3082d74487796caa0db21a1521a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a71eeca8fd5746eea89964c6791c3b62",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "data = \"\"\"\n",
+        "PREFIX : \n",
+        "PREFIX rdf: \n",
+        "PREFIX rdfs: \n",
+        "PREFIX xsd: \n",
+        "\n",
+        ":The_Beatles      rdf:type  :Band .\n",
+        ":The_Beatles      :name     \"The Beatles\" .\n",
+        ":The_Beatles      :member   :John_Lennon .\n",
+        ":The_Beatles      :member   :Paul_McCartney .\n",
+        ":The_Beatles      :member   :Ringo_Starr .\n",
+        ":The_Beatles      :member   :George_Harrison .\n",
+        ":John_Lennon      rdf:type  :SoloArtist .\n",
+        ":Paul_McCartney   rdf:type  :SoloArtist .\n",
+        ":Ringo_Starr      rdf:type  :SoloArtist .\n",
+        ":George_Harrison  rdf:type  :SoloArtist .\n",
+        ":Please_Please_Me rdf:type  :Album .\n",
+        ":Please_Please_Me :name     \"Please Please Me\" .\n",
+        ":Please_Please_Me :date     \"1963-03-22\"^^xsd:date .\n",
+        ":Please_Please_Me :artist   :The_Beatles .\n",
+        ":Please_Please_Me :track    :Love_Me_Do .\n",
+        ":Love_Me_Do       rdf:type  :Song .\n",
+        ":Love_Me_Do       :name     \"Love Me Do\" .\n",
+        ":Love_Me_Do       :length   125 .\n",
+        ":Love_Me_Do       :writer   :John_Lennon .\n",
+        ":Love_Me_Do       :writer   :Paul_McCartney .\n",
+        "\n",
+        ":McCartney        rdf:type  :Album .\n",
+        ":McCartney        :name     \"McCartney\" .\n",
+        ":McCartney        :date     \"1970-04-17\"^^xsd:date .\n",
+        ":McCartney        :artist   :Paul_McCartney .\n",
+        "\n",
+        ":Imagine          rdf:type  :Album .\n",
+        ":Imagine          :name     \"Imagine\" .\n",
+        ":Imagine          :date     \"1971-10-11\"^^xsd:date .\n",
+        ":Imagine          :artist   :John_Lennon .\n",
+        "\"\"\"\n",
+        "\n",
+        "rpt_contextualized_graph = adbrdf.rdf_to_arangodb_by_rpt(\"DataRPT\", get_graph(data), contextualize_graph=True, overwrite_graph=True)\n",
+        "pgt_contextualized_graph= adbrdf.rdf_to_arangodb_by_pgt(\"DataPGT\", get_graph(data), contextualize_graph=True, overwrite_graph=True)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "9gBg-hDs77i7"
+      },
+      "source": [
+        "# ArangoDB to RDF"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "KSGKrcaPa_pi"
+      },
+      "source": [
+        "We'll be using an ArangoDB-native dataset representing a Knowledge Graph constructed from the [GDETL Project](https://www.gdeltproject.org/).\n",
+        "\n",
+        "> GDELT monitors the world's news media from nearly every corner of every country in print, broadcast, and web formats, in over 100 languages, every moment of every day. [...] Put simply, the GDELT Project is a realtime open data global graph over human society as seen through the eyes of the world's news media, reaching deeply into local events, reaction, discourse, and emotions of the most remote corners of the world in near-realtime and making all of this available as an open data firehose to enable research over human society.\n",
+        "\n",
+        "The events we're using today range from peaceful protests to significant battles. The image below depicts the connections around an example event:"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "wtyqU1Wdb-jR"
+      },
+      "source": [
+        "![open_intelligence_sample copy.png]()"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 43,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 0,
+          "referenced_widgets": [
+            "0806477acc4149a980271b600b0b27e6",
+            "8b258df3426f4781afed10499392c225",
+            "7145e6a71760467eb8797864f0e5d2a0",
+            "9c5380da6d794a228ac12ecab0d949ef",
+            "e6256c3b21914adc871cf4db6baf7fee",
+            "af651b267e5b4b11a2605b02f5a75ff3",
+            "f86c993cec21489983df88cee2ab5b2a",
+            "8348424c59c94f279f061d2ba339b17d",
+            "5c2e8b16eaba46d7ad63a4723a0e6c95",
+            "db764534dfec4bc3a9ef40f37c154129",
+            "ff2e1f75ed3a42e9882c2ce5e5d748c9",
+            "c4d4cc4bf5c54d6691135b25ba4d0c84",
+            "57c5c601d72d4bd8a30779500c0f63f1",
+            "678ff0b0994a40a982091b2d13f57c4a",
+            "958d1cb2fff3485a86ad5f3d9456d579",
+            "3fe5027f1c994fc4ba3c22f245604c13",
+            "050f31f028794d49bdad2e33c5e1e32e",
+            "a2954cc253fa4a2f9ad430ee12cec117",
+            "1b06375f7c054d05aac5766732801ad9",
+            "399256ab248e403ba3f26d5bd91b091c",
+            "3c19457d425b4574817572b38aa17d86",
+            "7a9a3f418d6a409cba2643daa11ec233",
+            "28ace3f50b3c4a25a7fc1b7f6eab7814",
+            "d2bc18ff98e142c58fdf18a9075d4c2b",
+            "98d22f88193c47939b93d552a3041447",
+            "66079ff3dbe043df86ba4c8cddd7ffb7",
+            "245bdf024f754fa1bbb8bedc5b59cfef",
+            "4f5490021107448cba0795253a892a71",
+            "47f69ff14b9a4021bdfe15d532a65753",
+            "3f92018b112e4213a1ee9b3d810828e5",
+            "4f4bb6f685a44d318827eecfd9d25215",
+            "a4acb870019b4b1daabbc92ce84ed88b",
+            "c48a252f55d64e78aadc927d94de4b4f",
+            "380f4a19bf51442e8bc93b77abe405d5",
+            "798d0ce58f28445cb91bcd4af75ad379",
+            "09a5785134684029b1cff1bc7510c534",
+            "f280bf45be9947bfa83e5d2ad1ffdd48",
+            "5b08d7a0cd37421fac9dd182c7e803a3",
+            "0c409a70fd6b4c42a75e575398722229",
+            "f74aa3ab9aff44f89396316e51f9774a",
+            "354a8042212b42b5ab48116c07be8c4a",
+            "ce982e0638b4403dba8bb46e8402d506",
+            "5c32f4f07b8241eb810c6b7d3bf0d516",
+            "98ef86cf824a4d7ca12d8cb76b22bbb6",
+            "772165f70bd347009bdbdc989a3610e5",
+            "e7e96edf087640c5a618deb016e4d277",
+            "9a481076f28e4e9098fca0d75d5e44f3",
+            "efcf3c8ce7424604b4726a5fdf8f9a97",
+            "ac0b18ff7a1c40b5b50326d891f5e5af",
+            "96e6a9c132cb4e068c01d819c9c53951",
+            "87ccb50738954e6d94e2d75f8194215f",
+            "096ad7b5b4844287b88f2b76e5cf107b",
+            "5e4d0d5329cd4f8f83fcef7dfd413eb1",
+            "d1ae873ccd9b459b8c8074d0cf87ff84",
+            "820e68b984f6428a8bff72a178447b41",
+            "d61489f2e3b34790905f0d2f5e32f17f",
+            "a81ff8d9fc6142188423abf029103491",
+            "ef3be25a72514885a169017b63a4212f"
+          ]
+        },
+        "id": "a6uPF7X_a2sB",
+        "outputId": "d43ae6b2-19b9-4399-9879-fd98f37f995e"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0806477acc4149a980271b600b0b27e6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Actor'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7145e6a71760467eb8797864f0e5d2a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6256c3b21914adc871cf4db6baf7fee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Class'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f86c993cec21489983df88cee2ab5b2a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c2e8b16eaba46d7ad63a4723a0e6c95", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Country'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ff2e1f75ed3a42e9882c2ce5e5d748c9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57c5c601d72d4bd8a30779500c0f63f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Event'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "958d1cb2fff3485a86ad5f3d9456d579", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "050f31f028794d49bdad2e33c5e1e32e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Location'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1b06375f7c054d05aac5766732801ad9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3c19457d425b4574817572b38aa17d86", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Region'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28ace3f50b3c4a25a7fc1b7f6eab7814", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "98d22f88193c47939b93d552a3041447", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Source'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "245bdf024f754fa1bbb8bedc5b59cfef", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47f69ff14b9a4021bdfe15d532a65753", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'eventActor'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4f4bb6f685a44d318827eecfd9d25215", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c48a252f55d64e78aadc927d94de4b4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'hasLocation'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "798d0ce58f28445cb91bcd4af75ad379", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f280bf45be9947bfa83e5d2ad1ffdd48", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'hasSource'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0c409a70fd6b4c42a75e575398722229", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "354a8042212b42b5ab48116c07be8c4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'inCountry'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c32f4f07b8241eb810c6b7d3bf0d516", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "772165f70bd347009bdbdc989a3610e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'inRegion'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a481076f28e4e9098fca0d75d5e44f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ac0b18ff7a1c40b5b50326d891f5e5af", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'subClass'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "87ccb50738954e6d94e2d75f8194215f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5e4d0d5329cd4f8f83fcef7dfd413eb1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'type'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "820e68b984f6428a8bff72a178447b41", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a81ff8d9fc6142188423abf029103491", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n", + "Datasets(db).load(\"OPEN_INTELLIGENCE_ANGOLA\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mNWLGGTUipj" + }, + "source": [ + "#### via Graph Name" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0, + "referenced_widgets": [ + "e7b1063bfccb405ea38b0fac7e2ab121", + "bb8e13a4f24f4a33a7b72454d38e6092", + "a903e7ef6e0946168d5422fba725bfbb", + "96d344126fbe41159cf025667fbce0c5", + "7fa97decd4204eb498b44554d9b2ac1a", + "38e979b0cf94465388eeb0c2e1d37214", + "025f0dba6472458da784d68dd82f6b05", + "6d2a7f63e099467d86af116e97de71a8", + "f0ae785301df4dd08619c600dc98d04d", + "eaeea446d3f74ed6adabfa5646ac05a2", + "72f9d06266ea4e97849c170c48308c77", + "b0c72633943841ec8911af176a347b21", + "22644f41d98444ad8f897fb1b940b854", + "5c60b07c9c5c424cbd266d3c2bc7189d", + "7e72dc811b934c2883020de74c82625a", + "695b886aee124d78ae582f914b88e26a", + "6c191d39e72f4dfc90443e57184cca27", + "e815564404004a3391d274458502ce9c", + "4106df416f7c47a1a0b6ab9e954acdab", + "9d5e41d68dd9479db77ef9bef14835de", + "52abd56876a0434abe9570679bbdb57b", + "6fecb562ef6c4e51be7bd0b42108c15e", + "666341c39bc3491086c936250956e6c4", + "939df2cace1e4c92bed3c64acf556698", + "7d4b161694aa424489ec20c93023128d", + "423019e8f56e4579a18e1b08bb216944", + "d062be96b4164b0fa74f3492465b7a63", + "5c6159ac9941405ea2399930e3385856", + "a516048f6b254c4c89924978719cd530", + "d8e05175e7e4468783b8f748cd69440b", + "ced9a003eb3c4db0b9c67cf5d4eba3ec", + "4c00c2738c77446291a8a88da8061603", + "bd8b2fd62451435a96df5db182c28f23", + "5c5d3d5139c44a7abc6616d674aab82c", + "2cb971a1d4ed49b3b1de2f1b062b40a1", + "2e6aa556b9fd44f68347677bea11caa3", + "cfbd898fda734c0585f5c9901a4c629f", + "8fb1525ca3744f33a0be9f712507cb03", + "92bb5e694f98436bad05b576e6aa1aab", + "6efa083feddf4ce497059534916b2b43", + "dcb2d51e15c7495fa7394660acfada07", + "0bf8f16e94f848d6bb465dc307c0e90b", + "76da0198443840b6b36d6f4ff9fb9aea", + "5e6618e3da7446fa8be8fb0c38a44935", + "a2d650f2905a4544a54b349d32c6d745", + "5b141553b59d4a64b567117a48a0f05d", + "2d19bd459bf54b1197a1fd18c47f4b05", + "5542d4fbb1294b63a5e7dee5f4af5fa0", + "a78281fc9c554c57852e29bc09ac8bea", + "80d8531d226f4b6c9d144aaea20130e3", + "af1f098d2a8f46f9b517ac359687a2ab", + "b126e7213e4f4630af51f1c3fe526e58", + "1088d2e6621a41c8a912520fb9206879", + "8bf0a3e6c09545d7a55487783e0b82c9", + "3cbbfb7c4c254dd995bc2d10e2429a4d", + "005f4ea3e18243d886f4264a8e328bcf" + ] + }, + "id": "rA5dBseDaiQB", + "outputId": "6979c566-f6c2-4c41-d98c-183b1317d728" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e7b1063bfccb405ea38b0fac7e2ab121", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a903e7ef6e0946168d5422fba725bfbb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7fa97decd4204eb498b44554d9b2ac1a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "025f0dba6472458da784d68dd82f6b05", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f0ae785301df4dd08619c600dc98d04d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "72f9d06266ea4e97849c170c48308c77", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "22644f41d98444ad8f897fb1b940b854",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7e72dc811b934c2883020de74c82625a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "6c191d39e72f4dfc90443e57184cca27",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4106df416f7c47a1a0b6ab9e954acdab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "52abd56876a0434abe9570679bbdb57b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "666341c39bc3491086c936250956e6c4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7d4b161694aa424489ec20c93023128d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d062be96b4164b0fa74f3492465b7a63", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a516048f6b254c4c89924978719cd530",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ced9a003eb3c4db0b9c67cf5d4eba3ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "bd8b2fd62451435a96df5db182c28f23",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2cb971a1d4ed49b3b1de2f1b062b40a1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "cfbd898fda734c0585f5c9901a4c629f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92bb5e694f98436bad05b576e6aa1aab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "dcb2d51e15c7495fa7394660acfada07",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "76da0198443840b6b36d6f4ff9fb9aea", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a2d650f2905a4544a54b349d32c6d745",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2d19bd459bf54b1197a1fd18c47f4b05", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a78281fc9c554c57852e29bc09ac8bea",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "af1f098d2a8f46f9b517ac359687a2ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1088d2e6621a41c8a912520fb9206879",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3cbbfb7c4c254dd995bc2d10e2429a4d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:56:56 +0000] [252] [INFO] - arango_rdf: Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n",
+            "INFO:arango_rdf:Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "63834\n"
+          ]
+        }
+      ],
+      "source": [
+        "rdf_graph = adbrdf.arangodb_graph_to_rdf(name=\"OPEN_INTELLIGENCE_ANGOLA\", rdf_graph=Graph())\n",
+        "\n",
+        "print(len(rdf_graph))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-FTakjQKUoWW"
+      },
+      "source": [
+        "#### via Collection Names"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 45,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 0,
+          "referenced_widgets": [
+            "ad0e243808cb46aa8605d8929e5129e2",
+            "15f7cd15b0904731a4ce5daaa81f560b",
+            "c49b5805f1bb4cd79fd87111fbd96118",
+            "23f1b6f7b7564c78aaf32ed5b7f382a2",
+            "4c8a803a162a47fca5b6484485a50168",
+            "6060a8afe98e41388fc3ca928af0d70d",
+            "2f4743884cf64364831cd82a9f2b7ed3",
+            "9222e80943b64fdaafbf0081aa501800",
+            "d1bd0d1096f042db9f2e41892c8855ff",
+            "67989ac8ad2a4f1a9919736d384cd294",
+            "ee1ee485ba5d4618906048b066e5b6b9",
+            "d6fa32c7e0794b78972d889c2ce55546",
+            "45883547766c4981b798206e55a5c2f9",
+            "95725b5bc05e4576b867b6066c5cd0b4",
+            "6e3a7048cf634fe4b8d16547ffe89d7d",
+            "5e4096f76e344148b57a688b2e9fe8b9",
+            "0769e25469e44c0f97b9d1f9ad2abf5d",
+            "50e0d72760df48cdbd0ab58a118f3b83",
+            "00da493dbd004b858625ed4fb1e2556d",
+            "48de9d4c770749dc933ec65ef35e9ce6"
+          ]
+        },
+        "id": "TDny1v4sdelB",
+        "outputId": "346d2e1a-02b9-4918-8370-a0305ab66f22"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ad0e243808cb46aa8605d8929e5129e2",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c49b5805f1bb4cd79fd87111fbd96118", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "4c8a803a162a47fca5b6484485a50168",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2f4743884cf64364831cd82a9f2b7ed3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d1bd0d1096f042db9f2e41892c8855ff",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee1ee485ba5d4618906048b066e5b6b9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "45883547766c4981b798206e55a5c2f9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6e3a7048cf634fe4b8d16547ffe89d7d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "0769e25469e44c0f97b9d1f9ad2abf5d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "00da493dbd004b858625ed4fb1e2556d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:57:00 +0000] [252] [INFO] - arango_rdf: Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n",
+            "INFO:arango_rdf:Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "43079\n"
+          ]
+        }
+      ],
+      "source": [
+        "rdf_graph = adbrdf.arangodb_collections_to_rdf(\n",
+        "    name=\"OPEN_INTELLIGENCE_ANGOLA\",\n",
+        "    rdf_graph=Graph(),\n",
+        "    v_cols={\"Event\", \"Actor\", \"Source\"},\n",
+        "    e_cols={\"eventActor\", \"hasSource\"},\n",
+        ")\n",
+        "\n",
+        "print(len(rdf_graph))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "qddfFNtaUpoo"
+      },
+      "source": [
+        "#### via MetaGraph"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 46,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 0,
+          "referenced_widgets": [
+            "c09d4aa3bbb440eea986e872479dd746",
+            "04e0e2fbdcbf43bdb6fd3a1cb1b9a5ba",
+            "5c3399c807834637b5b872fdec6a126a",
+            "a27c2cbe14eb40aa8b071a031c694220",
+            "94e3ac81d4924b1699a1801aaffd5349",
+            "6691ef61f8e743e8a274bf0710c84673",
+            "85ee2b46acbe42cb838ff89ee8457607",
+            "c627a1455abe47ac921d1bd841cdd9c2",
+            "008a2c05cf294ef0a8be167b1a2433e9",
+            "a6fb760fd98d448b990b6a9636df4894",
+            "fe58b0d093f24f3da92c546038fe1735",
+            "de3564cef3e44c2fbc0a25953d1b4500"
+          ]
+        },
+        "id": "kQSN13xdeH1X",
+        "outputId": "497885bc-1bdd-4a10-986f-387287b807cc"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c09d4aa3bbb440eea986e872479dd746",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c3399c807834637b5b872fdec6a126a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "94e3ac81d4924b1699a1801aaffd5349",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85ee2b46acbe42cb838ff89ee8457607", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "008a2c05cf294ef0a8be167b1a2433e9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fe58b0d093f24f3da92c546038fe1735", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:57:03 +0000] [252] [INFO] - arango_rdf: Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n",
+            "INFO:arango_rdf:Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n"
+          ]
+        },
+        {
+          "name": "stdout",
+          "output_type": "stream",
+          "text": [
+            "16199\n"
+          ]
+        }
+      ],
+      "source": [
+        "rdf_graph = adbrdf.arangodb_to_rdf(\n",
+        "    name=\"OPEN_INTELLIGENCE_ANGOLA\",\n",
+        "    rdf_graph=Graph(),\n",
+        "    metagraph={\n",
+        "        \"vertexCollections\": {\n",
+        "            \"Event\": {\"date\", \"description\", \"fatalities\"},\n",
+        "            \"Actor\": {\"name\"}\n",
+        "        },\n",
+        "        \"edgeCollections\": {\n",
+        "            \"eventActor\": {}\n",
+        "        },\n",
+        "    },\n",
+        ")\n",
+        "\n",
+        "print(len(rdf_graph))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "RGivoIz5Uv_-"
+      },
+      "source": [
+        "# Round-Tripping"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 47,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "s900bHJQinK3",
+        "outputId": "25e0dae1-e450-4576-aed3-38d1d4223dfa"
+      },
+      "outputs": [
+        {
+          "data": {
+            "text/plain": [
+              "True"
+            ]
+          },
+          "execution_count": 47,
+          "metadata": {},
+          "output_type": "execute_result"
+        }
+      ],
+      "source": [
+        "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n",
+        "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n",
+        "db.delete_graph(\"OPEN_INTELLIGENCE_ANGOLA\", drop_collections=True, ignore_missing=True)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4PzrROxlU0TM"
+      },
+      "source": [
+        "#### RDF -> ArangoDB -> RDF"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 48,
+      "metadata": {
+        "id": "oZNYvQxDgTvw"
+      },
+      "outputs": [],
+      "source": [
+        "data = \"\"\"\n",
+        "@prefix ex:  .\n",
+        "@prefix rdf:  .\n",
+        "@prefix rdfs:  .\n",
+        "\n",
+        "ex:Monica ex:employer ex:ArangoDB .\n",
+        "\n",
+        "ex:Graph1 {\n",
+        "    ex:Monica a ex:Entity .\n",
+        "    ex:Management a ex:Skill .\n",
+        "    ex:Monica ex:name \"Monica\" .\n",
+        "    ex:Monica ex:homepage  .\n",
+        "    ex:Monica ex:hasSkill ex:Management .\n",
+        "    ex:Monica ex:dateOfBirth \"1963-03-22\".\n",
+        "}\n",
+        "\n",
+        "ex:Graph2 {\n",
+        "    ex:Programming a ex:Skill .\n",
+        "     a ex:Website .\n",
+        "    ex:Monica a ex:Person .\n",
+        "    ex:Person rdfs:subClassOf ex:Entity .\n",
+        "    ex:Monica ex:hasSkill ex:Programming .\n",
+        "}\n",
+        "\"\"\"\n",
+        "\n",
+        "rdf_graph_original = get_graph(data, True)\n",
+        "\n",
+        "def graphs_are_identical(rdf_graph_a: Graph, rdf_graph_b: Graph) -> Graph:\n",
+        "    assert rdf_graph_a and rdf_graph_b\n",
+        "    return len(rdf_graph_a - rdf_graph_b) == 0 and len(rdf_graph_b - rdf_graph_a) == 0"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 49,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 318,
+          "referenced_widgets": [
+            "43792423dbaa49e4a4a19360091969b6",
+            "37a49fa1897849209764d68a6edd7008",
+            "23ca8452d91843d4bb367f79cb6fe21d",
+            "8f7a612cdc9646b1b3cdb3d2ef67a18e",
+            "52232abd9c904269997d568cc50c1fb6",
+            "0169a84a8bb74d7c8adc26dc9a701e2c",
+            "2ae4cd88a2684d4f876f62b0c0e1123d",
+            "632b440161b34a959a3fe82835f38f8d",
+            "b8ac74c5fc4b4eb499b6a196e187f2e5",
+            "aab83555df50479a88c3538e90b68fdc",
+            "409be936927846888c78a0cff15bf635",
+            "c81a9e5eb7bd497783e94cced16b94d5",
+            "71ddb22aed0446adbed06ade5f30a61d",
+            "7a3fc411802043c3b22e418a9d267bc1",
+            "f04b940f370643f68cca247a8cc5f952",
+            "f6bd0240ca004ff09b268afae04470de",
+            "387642d5ed1e408eba7516e6524c34f4",
+            "bb79559742424902a0693dc602c38f0e",
+            "fabcaecd1a0843afaf433bc2df936725",
+            "c1339ae8330144a0ba9a671411985389",
+            "8fb0eac7af4b4ba4836d5695deca6d32",
+            "31830517c9bc4134919413ff27dcdd00",
+            "e0515ddef3b54c19a674914c12730848",
+            "63bac0edac794f03b66da29a7d1d933d",
+            "274d1b85334c41e88282eae8d98df3dc",
+            "37768143af064eec94f846d5116caaa9",
+            "340471b0216d4e06852629be4c27f681",
+            "00ed07ecf31041ad84d32453fd43d0c1",
+            "13971de33d714affbdcbf4e17d7e6262",
+            "3e3c5ccb09e6420cbf4133930213227f",
+            "2417e2dc248f48f797adefe8cc228028",
+            "9983582ff7264e4cab10eed911e85f83",
+            "8903da96fe434ebc82efdb15a34a6edf",
+            "f0da88487b40424392885d47c76e5c8e",
+            "198e324979c14efdbb5990d057403a18",
+            "196c029b42e7468b8c1b2b82d93fb9d3",
+            "ab7f2a36f8354d82be9c6d8dc2940511",
+            "a69290567e9a4f809d50b4d02ad59ddc",
+            "b5a7dfdd273548ec9a75390e44f4f72d",
+            "6cba2fee3ce64170a5130d70695eec26",
+            "66bb8913622c403881eba0997ae6548f",
+            "1a60e18063d7443e9a7022a1bab0008f",
+            "98bee394813140c68b6cb5bfaba6a10c",
+            "51aa91d7110f4f90b69f83c790fb6b52",
+            "3b55e3255b46482fa0126d7df8fb6215",
+            "d0006980ed5642088dfb0f4766723316",
+            "de76ab207aa24b5187e8df6a244330f4",
+            "869184bdb77644ff9f5a7dfd62a20bc7",
+            "a37eb48a3cd74bc08b8880621c36c72f",
+            "ed62ee4dc04b400887a85c9186864cd8",
+            "9c80d8b208a44c6a9143dd3e9016d384",
+            "cc29a014f37240619b3c1e774e5a6b3c",
+            "12366995bad14594b1346c343bc10bdc",
+            "8310490b2e384846beb367a25d2cdf23",
+            "4ed9a5a4cce84f0aa47fe499455ac814",
+            "52e4fd6dcfae437b8f12e2d60e28318e",
+            "c685227c7509453ab0ba7c0a25ac3931",
+            "db1507b61b2447beb7226be27f091e63",
+            "de9df9c6f97d493da4a4236a4673e0c2",
+            "cd5583d33cb74601a6c1d822f5014846"
+          ]
+        },
+        "id": "O94Dg2sVhTdT",
+        "outputId": "76636c9e-6627-4940-9bfe-00c7210491a5"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "43792423dbaa49e4a4a19360091969b6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "23ca8452d91843d4bb367f79cb6fe21d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "52232abd9c904269997d568cc50c1fb6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ae4cd88a2684d4f876f62b0c0e1123d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b8ac74c5fc4b4eb499b6a196e187f2e5",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "409be936927846888c78a0cff15bf635", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "71ddb22aed0446adbed06ade5f30a61d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "f04b940f370643f68cca247a8cc5f952",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "387642d5ed1e408eba7516e6524c34f4",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fabcaecd1a0843afaf433bc2df936725", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8fb0eac7af4b4ba4836d5695deca6d32",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e0515ddef3b54c19a674914c12730848", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "274d1b85334c41e88282eae8d98df3dc",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "340471b0216d4e06852629be4c27f681", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "13971de33d714affbdcbf4e17d7e6262",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2417e2dc248f48f797adefe8cc228028", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8903da96fe434ebc82efdb15a34a6edf",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "198e324979c14efdbb5990d057403a18", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "ab7f2a36f8354d82be9c6d8dc2940511",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b5a7dfdd273548ec9a75390e44f4f72d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "66bb8913622c403881eba0997ae6548f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "98bee394813140c68b6cb5bfaba6a10c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3b55e3255b46482fa0126d7df8fb6215",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de76ab207aa24b5187e8df6a244330f4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "a37eb48a3cd74bc08b8880621c36c72f",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9c80d8b208a44c6a9143dd3e9016d384", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "12366995bad14594b1346c343bc10bdc",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ed9a5a4cce84f0aa47fe499455ac814", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c685227c7509453ab0ba7c0a25ac3931",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "de9df9c6f97d493da4a4236a4673e0c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:57:12 +0000] [252] [INFO] - arango_rdf: Created RDF 'DataPGT' Graph\n",
+            "INFO:arango_rdf:Created RDF 'DataPGT' Graph\n"
+          ]
+        }
+      ],
+      "source": [
+        "# PGT\n",
+        "adb_graph = adbrdf.rdf_to_arangodb_by_pgt(\n",
+        "    \"DataPGT\",\n",
+        "    get_graph(data, True),\n",
+        "    overwrite_graph=True,\n",
+        ")\n",
+        "\n",
+        "rdf_graph_new = adbrdf.arangodb_graph_to_rdf(\n",
+        "    \"DataPGT\",\n",
+        "    type(rdf_graph_original)()\n",
+        ")\n",
+        "\n",
+        "assert graphs_are_identical(rdf_graph_original, rdf_graph_new)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 50,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 168,
+          "referenced_widgets": [
+            "5a2d4a845d274bb9bd81165ce410a444",
+            "f4e4607b23a54074b058c823703b1c53",
+            "dd28a24eec3d4539bfc5be068fdb4717",
+            "945453c61da944a087f84fefa5a7d421",
+            "2fc6b8341e474b62a6ee7daff89304d2",
+            "1b669b3013fc4ea4a9951b7db3771f3b",
+            "c17bf36fde304a7f841ec0f7657f1c4b",
+            "4c7729ca0129498a99a5c1a33117c21e",
+            "d84a5c85435840f0b1eee9c6f61f2bb7",
+            "efd59aa2a7474984af289f75f2c04b6a",
+            "dc0b77ee6c8b427da5b1969576a0fe55",
+            "ae8c90ad5c7d42c4b702373327e843a6",
+            "64ef034cf3e043359fa8a92e4c040f94",
+            "f7641041d47e4ac89ba017b5838dc440",
+            "87ee460987eb400ba53ef8a8ac0f83ec",
+            "7c27638420a14a1bb93c50865d63162a",
+            "7d618e6d56914751b3344f67135d89e6",
+            "f5d10a6ad6124b15829f3d9d64880c79",
+            "c5474e0551fd4080bb2c8b62cef9f3a1",
+            "91ae98fc5b2e451ba177255edf131409",
+            "b0d4d4d12b0449e791a866e9ec7dcbe1",
+            "16b2c93f497d4f62aa06a35052933fd1",
+            "7fe6e86bf2d942c293ee3fdd97dc863a",
+            "2741d4016cd94f18ac0d38c5f16de281"
+          ]
+        },
+        "id": "Y51zcrJUfiL5",
+        "outputId": "30def815-e95f-4930-b6bc-9da664d748cf"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5a2d4a845d274bb9bd81165ce410a444",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd28a24eec3d4539bfc5be068fdb4717", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2fc6b8341e474b62a6ee7daff89304d2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c17bf36fde304a7f841ec0f7657f1c4b",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d84a5c85435840f0b1eee9c6f61f2bb7",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dc0b77ee6c8b427da5b1969576a0fe55", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "64ef034cf3e043359fa8a92e4c040f94",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "87ee460987eb400ba53ef8a8ac0f83ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "7d618e6d56914751b3344f67135d89e6",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c5474e0551fd4080bb2c8b62cef9f3a1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b0d4d4d12b0449e791a866e9ec7dcbe1",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7fe6e86bf2d942c293ee3fdd97dc863a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:57:16 +0000] [252] [INFO] - arango_rdf: Created RDF 'DataRPT' Graph\n",
+            "INFO:arango_rdf:Created RDF 'DataRPT' Graph\n"
+          ]
+        }
+      ],
+      "source": [
+        "# RPT\n",
+        "adb_graph = adbrdf.rdf_to_arangodb_by_rpt(\n",
+        "    \"DataRPT\",\n",
+        "    get_graph(data, True),\n",
+        "    overwrite_graph=True,\n",
+        ")\n",
+        "\n",
+        "rdf_graph_new = adbrdf.arangodb_graph_to_rdf(\n",
+        "    \"DataRPT\",\n",
+        "    type(rdf_graph_original)()\n",
+        ")\n",
+        "\n",
+        "assert graphs_are_identical(rdf_graph_original, rdf_graph_new)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "_q34B2SQU22_"
+      },
+      "source": [
+        "#### ArangoDB -> RDF -> ArangoDB"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 51,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 260,
+          "referenced_widgets": [
+            "3e4cc848dfd54a94911c913f784b8731",
+            "6edb486ed2f24b35a80cac3b8c8cdc10",
+            "d3abeb9ccf0c42ed8de36317f3c01a47",
+            "6c3b09e3d1cf4dff8702402fc413cca0",
+            "daad61352bce433bb1d55a7120bf6782",
+            "6a1f66e50ad74367a52d2ae3f8f48f12",
+            "49da35b5b10c4203bbbfebce32b2a80f",
+            "27bc6eda9d0f4277bea6de3bc3decab4",
+            "933df8dd162440638f608b1ae6bd34da",
+            "17677c4248b1466baeb36a4a1725856a",
+            "aa13cae66ac64a8e9e365748bc5ff67f",
+            "54dc7c0868724390bf94e030c4287418",
+            "59d1812502754c6bb6701e3614ba2d94",
+            "fd39fc51745a4de086c6b7ca00c3f832",
+            "a0cae451b1c241beaf57344f2890c810",
+            "edc9a966c2634d9cbad3bac706115686",
+            "87b9a0caa3da42c3bf48158da7825856",
+            "8214ad5a0a52493aa93c363a5be2d221",
+            "3fcd605337d142a58bb2d7c656e6f509",
+            "e15e3352f99340069470a8d33416986f",
+            "787ab170a303420cb36ae0cfd43c9d63",
+            "8fbd43f55d92442f9fb057dfd38d732a",
+            "54b93b209d61498eb7d2da4bf24042ea",
+            "1b72c41a51244810befd264aad85f526",
+            "92bbd0f0d5a647abab9bff176af5a0fc",
+            "6f52f700d62c455f995dbe7e60ee899e",
+            "b056cebde1384bb49944a7322a01e32c",
+            "4069f0176c3c46c081f1c64fd5d50bdc",
+            "a6409ed1bff345a39fc3f4b562d8ebc9",
+            "43e9f9350be04c3897feef328fca07fa",
+            "58eaf8c7cacc4156acda80aa02e94761",
+            "fe56ad08950d44ae87c2f512092edd3d",
+            "4ea55c7b06794f9f81e86b202c5ba354",
+            "b57d0a227c1048d4961219ebf1d32530",
+            "c2bcea063da949c2b0bf0730c41b55ac",
+            "e7491ac5da904f1f8f06bc2643650839",
+            "a41722216871421697c751905d5433e4",
+            "8cb37d36be2e45c5adc9fe5a43cfd1e0",
+            "9d0664c32a6a4f859331c90df1d1b6b2",
+            "41d72b118f31481ca4318ca46b2915a6",
+            "54abea983db442579f8647cef03d6823",
+            "6436d487a2e94e41b51bcff155413b02",
+            "95b8c8d3d31b4a938974d0f5684ef529",
+            "af04648c3e4d414ab666e01ee3050311",
+            "d313578b458c4028ad993f1ac95c743a",
+            "5c748f9b979f4fe499a05558c49668ac",
+            "076b285dbfb94f72bb119aff2c4213a5",
+            "05bca57620264084a8d6706ed80eb206",
+            "28773c52acae44fabda65710a389c4c8",
+            "47f7cf67a9d9415da8fc00725bdca58d",
+            "61308ce8c6c2433fa2173b5707bd8598",
+            "a557d52c1e3247dd847c5d6870c0abf2",
+            "4bd5e014b1aa4b649a84f7ad4510f6d1",
+            "e2dab9c4ac714611a7d92f5d54e1a28b",
+            "3ebef63c1ed3413f8b2b84cba0b7a9d3",
+            "41b26d58b2094b629bdf38122d108a6f",
+            "3e869d0fc5be4643aea1cfa06f2d5281",
+            "14a0aa763fdf4d3b85e693a5393c71bb"
+          ]
+        },
+        "id": "tCBsS5Q2jXrP",
+        "outputId": "f528702b-7f75-4be4-ed21-3fc339da1d57"
+      },
+      "outputs": [
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3e4cc848dfd54a94911c913f784b8731",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Actor'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3abeb9ccf0c42ed8de36317f3c01a47", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "daad61352bce433bb1d55a7120bf6782", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Class'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "49da35b5b10c4203bbbfebce32b2a80f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "933df8dd162440638f608b1ae6bd34da", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Country'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aa13cae66ac64a8e9e365748bc5ff67f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "59d1812502754c6bb6701e3614ba2d94", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Event'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a0cae451b1c241beaf57344f2890c810", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "87b9a0caa3da42c3bf48158da7825856", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Location'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fcd605337d142a58bb2d7c656e6f509", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "787ab170a303420cb36ae0cfd43c9d63", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Region'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "54b93b209d61498eb7d2da4bf24042ea", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "92bbd0f0d5a647abab9bff176af5a0fc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'Source'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b056cebde1384bb49944a7322a01e32c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a6409ed1bff345a39fc3f4b562d8ebc9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'eventActor'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "58eaf8c7cacc4156acda80aa02e94761", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ea55c7b06794f9f81e86b202c5ba354", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'hasLocation'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c2bcea063da949c2b0bf0730c41b55ac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a41722216871421697c751905d5433e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'hasSource'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9d0664c32a6a4f859331c90df1d1b6b2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "54abea983db442579f8647cef03d6823", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'inCountry'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "95b8c8d3d31b4a938974d0f5684ef529", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d313578b458c4028ad993f1ac95c743a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'inRegion'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "076b285dbfb94f72bb119aff2c4213a5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28773c52acae44fabda65710a389c4c8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'subClass'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "61308ce8c6c2433fa2173b5707bd8598", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4bd5e014b1aa4b649a84f7ad4510f6d1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing collection 'type'\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3ebef63c1ed3413f8b2b84cba0b7a9d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e869d0fc5be4643aea1cfa06f2d5281", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "db.delete_graph(\"DataRPT\", drop_collections=True, ignore_missing=True)\n", + "db.delete_graph(\"DataPGT\", drop_collections=True, ignore_missing=True)\n", + "\n", + "Datasets(db).load(\"OPEN_INTELLIGENCE_ANGOLA\")\n", + "\n", + "\n", + "def get_adb_graph_count(name: str):\n", + " global db\n", + " adb_graph = db.graph(name)\n", + "\n", + " e_cols = {col[\"edge_collection\"] for col in adb_graph.edge_definitions()}\n", + "\n", + " v_count = 0\n", + " for v in db.graph(name).vertex_collections():\n", + " if v in e_cols:\n", + " continue\n", + "\n", + " v_count += adb_graph.vertex_collection(v).count()\n", + "\n", + " e_count = 0\n", + " for e_d in adb_graph.edge_definitions():\n", + " e_count += adb_graph.edge_collection(e_d[\"edge_collection\"]).count()\n", + "\n", + " return (v_count, e_count)\n", + "\n", + "original_v_count, original_e_count = get_adb_graph_count(\"OPEN_INTELLIGENCE_ANGOLA\")" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 368, + "referenced_widgets": [ + "5a86d7d42ad74fb3bd471638a7e45df1", + "0ffed931b7e4411a882931ceb9d1b576", + "9aa19c471c064051a8ae962b1171ec24", + "cddf17d22f3447d199991a2ea1aa0564", + "8908115ec245468a9cf70d01f6349f90", + "25cc5340c82d4a60ad273cd6483dc48e", + "a683cf075e284cb5b2e57d47b9ad12e3", + "e1e3e373677b43dfa26d434d98a13ad9", + "13d371035c6e4441930620dee3c09ed0", + "14f1024bc2b349ad813ceab38b01f2dc", + "d359bbfd2725461baca4d2bd87e7c8d5", + "67e0fafdd9634aa69ac889342be69b51", + "af81fb0736e3444ab0e18760dd169e6a", + "803eef70784b4d5fb3cacd1abd7467cd", + "a551464a398b4bc9a3480717b6e65f2d", + "056a6e550f7f4f0eb763a4c9dec97a7b", + "c45d35ffd0884d7b9cf302de9a83f441", + "bcdf72b37a4d418ba3a7f97da7865629", + "526371c5ffa3455cb72359531671c385", + "b83f5e4968a44cc1bed752f63c23d45a", + "392bfe6ed1dd4327a9412a54cc4ab3d9", + "d96d5a9fba94419f93f6fc9f21e4ab10", + "8d909b7c90fa4caf8ea819dbed241e55", + "c4f776339f7248bc859bf49e61dbf37b", + "5501dd653f1647359616f7623579201c", + "910b3f36e0754872a132ee0076344338", + "f383807d016240daa720e0128fe960e5", + "d49a46b7410047008abd6117ba5cde00", + "d508449fbe214b4e92027329c253ba28", + "29ce0c02552f4a80aba63d003d1d13bc", + "3a132126a793411bac755f8981035861", + "9c61c2582e9e451488f01c22cc432d76", + "24c93b5825e04d07a0ac19b3054b2863", + "f73f626669b544d6a475cb528aada059", + "766d7599e584400f8f809227bb830fd1", + "ebc417617758470db76e670fe62473d5", + "d84cd061cf7440f287a581afe6f2e2a4", + "0ada0c44b2294efb8e7dc0307bb19fef", + "44c65c1407694742adc3f28968a2966c", + "0ff0e0b8a3424639aee19cb30ae03d45", + "8e7710a3934e4560afdc3ac42ae24da2", + "a0795fecba464f489c075ab0234d7580", + "77506a89557942298d13974e3cfb3283", + "77c43e3b70e244cfbdc97b60fabf75d4", + "9761b6144bff43e68155f661d777813d", + "5cb7eb9c39dc4ea6afbea5abce584d88", + "2966bbae3f8641f2a283bdcc1ed28033", + "f20624e96bcc46da8201c667f5affd34", + "1ad7fd19b2a14e138f58820275a3278c", + "1221b14e6fb44d9ab96518acd53bcb39", + "403355da7c0c452aa01188dec9f5197a", + "3fd821e5df744d36979ed8e4c21a64ab", + "3112012c724349f9a63467df384246bf", + "96c381aafc6c41de80080a60c6bd3433", + "41495fb3d42c4d88be5a5a883d3c3bc6", + "3be3d246e0424d1e94a921b94e1e0d9c", + "b59177f7df2e49bd8b499f81b70f6a36", + "df5c71b2fdf34623aa3b78871280b391", + "e68bc4e082df4493ba36e26684b62fa0", + "c3109b609f56431188eda471f4755219", + "1e28979e830648b1b3b4291d99eacb9b", + "8f0597ac3d684a55bb50b09036d76fd4", + "e8100f2fe07643b280aef789317c55e4", + "31df91153fe447bf8b4d5c2fbbded6e1", + "4dbed5e2c47f45f6b8617d13f14b743a", + "40d33cdc4f7d471e99668c2141a92e92", + "8fefa52620ae4ae798bb8698856404ae", + "9d28f57475024725b8ad8e8e66376c08", + "dd221f9487144800895f876010e45db1", + "f467e34102c644b3bb68bedb0fccf318", + "636701c209594d84bbbb6cd5dd620951", + "5e613d9d31f34b8883d8d0afae83cae7", + "37588cf454af45ad8a1c2c6ffb8c1dab", + "4ec0631a9829472fbf88cac4607a57f9" + ] + }, + "id": "K0ZN58bEjYFk", + "outputId": "4da5197e-fde3-4389-833d-e760aafed948" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5a86d7d42ad74fb3bd471638a7e45df1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9aa19c471c064051a8ae962b1171ec24", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8908115ec245468a9cf70d01f6349f90",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a683cf075e284cb5b2e57d47b9ad12e3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "13d371035c6e4441930620dee3c09ed0",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d359bbfd2725461baca4d2bd87e7c8d5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "af81fb0736e3444ab0e18760dd169e6a",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a551464a398b4bc9a3480717b6e65f2d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "c45d35ffd0884d7b9cf302de9a83f441",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "526371c5ffa3455cb72359531671c385", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "392bfe6ed1dd4327a9412a54cc4ab3d9",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8d909b7c90fa4caf8ea819dbed241e55", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "5501dd653f1647359616f7623579201c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f383807d016240daa720e0128fe960e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d508449fbe214b4e92027329c253ba28",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a132126a793411bac755f8981035861", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "24c93b5825e04d07a0ac19b3054b2863",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "766d7599e584400f8f809227bb830fd1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "d84cd061cf7440f287a581afe6f2e2a4",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44c65c1407694742adc3f28968a2966c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8e7710a3934e4560afdc3ac42ae24da2",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "77506a89557942298d13974e3cfb3283", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "9761b6144bff43e68155f661d777813d",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2966bbae3f8641f2a283bdcc1ed28033", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "1ad7fd19b2a14e138f58820275a3278c",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "403355da7c0c452aa01188dec9f5197a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "3112012c724349f9a63467df384246bf",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41495fb3d42c4d88be5a5a883d3c3bc6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "name": "stderr",
+          "output_type": "stream",
+          "text": [
+            "[2024/01/23 00:57:49 +0000] [252] [INFO] - arango_rdf: Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n",
+            "INFO:arango_rdf:Created RDF 'OPEN_INTELLIGENCE_ANGOLA' Graph\n"
+          ]
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "b59177f7df2e49bd8b499f81b70f6a36",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e68bc4e082df4493ba36e26684b62fa0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e28979e830648b1b3b4291d99eacb9b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e8100f2fe07643b280aef789317c55e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4dbed5e2c47f45f6b8617d13f14b743a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "8fefa52620ae4ae798bb8698856404ae",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n",
+              "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd221f9487144800895f876010e45db1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "636701c209594d84bbbb6cd5dd620951",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "37588cf454af45ad8a1c2c6ffb8c1dab",
+              "version_major": 2,
+              "version_minor": 0
+            },
+            "text/plain": [
+              "Output()"
+            ]
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        },
+        {
+          "data": {
+            "text/html": [
+              "
\n"
+            ],
+            "text/plain": []
+          },
+          "metadata": {},
+          "output_type": "display_data"
+        }
+      ],
+      "source": [
+        "# PGT\n",
+        "rdf_graph = adbrdf.arangodb_graph_to_rdf(\n",
+        "    \"OPEN_INTELLIGENCE_ANGOLA\",\n",
+        "    Graph(),\n",
+        "    list_conversion_mode=\"serialize\",\n",
+        "    dict_conversion_mode=\"serialize\",\n",
+        "    include_adb_v_col_statements=True,\n",
+        "    include_adb_v_key_statements=True,\n",
+        "    include_adb_e_key_statements=True,\n",
+        ")\n",
+        "\n",
+        "\n",
+        "adb_graph = adbrdf.rdf_to_arangodb_by_pgt(\n",
+        "    \"OPEN_INTELLIGENCE_ANGOLA\",\n",
+        "    rdf_graph,\n",
+        "    overwrite_graph=True\n",
+        ")\n",
+        "\n",
+        "property_v_count = adb_graph.vertex_collection(\"Property\").count()\n",
+        "\n",
+        "new_v_count, new_e_count = get_adb_graph_count(\"OPEN_INTELLIGENCE_ANGOLA\")\n",
+        "\n",
+        "assert original_v_count == new_v_count - property_v_count\n",
+        "assert original_e_count == new_e_count"
+      ]
+    }
+  ],
+  "metadata": {
+    "colab": {
+      "collapsed_sections": [
+        "44mc2EvIAzDy",
+        "yRuJ3OIGE2Yr",
+        "KnQifktFAxHx",
+        "QfE_tKxneG9A",
+        "0qry3Bcy-160",
+        "0SWi4e3wIMtw",
+        "9gBg-hDs77i7",
+        "7mNWLGGTUipj",
+        "-FTakjQKUoWW",
+        "qddfFNtaUpoo",
+        "RGivoIz5Uv_-"
+      ],
+      "provenance": []
+    },
+    "gpuClass": "standard",
+    "kernelspec": {
+      "display_name": "Python 3",
+      "name": "python3"
+    },
+    "language_info": {
+      "name": "python"
+    },
+    "widgets": {
+      "application/vnd.jupyter.widget-state+json": {
+        "00383ab1aadf438abf1f7ae40b0019d8": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_dd1262da5c7747bdb20dcfd9d0da8251",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "005f4ea3e18243d886f4264a8e328bcf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00769c4ddffe45caaf3d6b25b36dbc1e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_19970b3954634ea4b51383a554c939d6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "008a2c05cf294ef0a8be167b1a2433e9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a6fb760fd98d448b990b6a9636df4894", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'eventActor' (6252) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'eventActor' (6252) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "00aeacee663742bca19ea1564d49593a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00da493dbd004b858625ed4fb1e2556d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_48de9d4c770749dc933ec65ef35e9ce6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasSource' ━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━  61% (2000/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasSource' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 61%\u001b[0m (2000/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "00ed07ecf31041ad84d32453fd43d0c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "013737bac24c4fc19871485909ee3d44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0169a84a8bb74d7c8adc26dc9a701e2c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "024dbdf4ef6d411f8f8a6e25603c68a7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "025f0dba6472458da784d68dd82f6b05": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6d2a7f63e099467d86af116e97de71a8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Region' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Region' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "02782281dd414f71b683b9a32aa31caa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4888e641f7d1495487f59158aff1895a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "032a12f2cbaa4235aa24c1d127a28363": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_987b6a19cb0e4a29a79c4fc5596796c0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "03740e7e6199495cbaebf039d6fea20a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e9d399758a9c466188e5ed4c7076832a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "037bf3dcddc04024ab27ab2c67c6e494": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03929fe528d24f6d8dca2511a18a02b1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6ae66ff0e0a84581b6c836c7b9df5472", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "03a99f41fc0a4353bfc5efb093e552ac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03b0d5a081d84381929c663657fa266e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_694a30f6080d488cbc087bdb2d91e91e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "04e0e2fbdcbf43bdb6fd3a1cb1b9a5ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "050f31f028794d49bdad2e33c5e1e32e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a2954cc253fa4a2f9ad430ee12cec117", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Event ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Event \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "05199d53ef264ae6acb67ef478a436ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "056a6e550f7f4f0eb763a4c9dec97a7b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05a0ce7410fc476085ef3a25bf49cc79": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d02585418dad49a89330b587b87e9c5a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "05bca57620264084a8d6706ed80eb206": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05cf4bc8861048029fcf6df306e7c8d0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c62a384e50324db581016107e3a22952", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "06838a4ca6e3487abf98d48ac909f144": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_746745f6f03543e08fd4429cc5cc900f",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "06aca56f72fb4329b49cfcc532ac8116": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06d16a9226c94ce99cc1ba0de6828a0f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06f7a6f1943c403c96aca9b2be8cd920": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cf53bc54ba0745639e93548d2d70a5f7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0700821fd3764f7da3e204d15601d063": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "075b504f72064efaaaa1ee09afdc6a9f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0700821fd3764f7da3e204d15601d063", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0769e25469e44c0f97b9d1f9ad2abf5d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_50e0d72760df48cdbd0ab58a118f3b83", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'hasSource' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasSource' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "076b285dbfb94f72bb119aff2c4213a5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_05bca57620264084a8d6706ed80eb206", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inRegion.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inRegion.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "07a08a86cc2c4981beb1ff4d1715e4c0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f711293be6064fbeb78a10e36fb4ca3c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "07ab0f2d3ee94fe0a63ce1df394192e7": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_47de40701c0e44b4980e966e2feeefe2",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'owner' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'owner' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "07dca4c78ef047919da9e857902cc9fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0806477acc4149a980271b600b0b27e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8b258df3426f4781afed10499392c225", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/root_metadata.json ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/root_metadata.json \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0816edb1772f4e8f9e1326590f22a3cc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b2f03524128a4c6089d808686ad5281e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "094c0ec357ef44c395c39ae90dd66e7a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f6ddbd6c083449d1b675b1829c5b682f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "096ad7b5b4844287b88f2b76e5cf107b": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "09a5785134684029b1cff1bc7510c534": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "09c18b9e1bfa46e297e2476df6de6349": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "09e6afa357fd4803be75a3378a16668f": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_2c2e6463d20f4b6ab097a09ee4a38b5a",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0ada0c44b2294efb8e7dc0307bb19fef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b40cbc2604b4be58158cc8e56814f2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b6cf37ac5ee4ab5a1d8b6dacd7cd5ab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_733b2bb8ff1248dba07fb78f751141de", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0bf8f16e94f848d6bb465dc307c0e90b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c39047fd29f488a8a731a3278b519b4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_835443e97f3c4fdb98f0b1947e4dde81", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0c409a70fd6b4c42a75e575398722229": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f74aa3ab9aff44f89396316e51f9774a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasSource.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasSource.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0cb0cb6662834a5195ccf041f26e274d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_105d4fe99189401994e333ed7978ebc3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'link' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'link' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0d2b101b5cd34df5a60f49f0322b8ae5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d86bf821be447f4ab655cd136af247d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d9071e019d242b8835bd761a1e7ccb6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e59fe845b1f474181c50e61c986780c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ba49567d52134f59be958023a178943e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0f786717b0094fe785ea05fec93bdf06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f9c78460dd242fb8aae8d90beb5de1e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7c318d14e6f34bfd8c415f6d3c395f1a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0ff0e0b8a3424639aee19cb30ae03d45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ff7666935a04234b659ba79a2597c71": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_eff0b0606bdc40c88ebbd0509f4e8f14", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "0ffed931b7e4411a882931ceb9d1b576": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "105d4fe99189401994e333ed7978ebc3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1088d2e6621a41c8a912520fb9206879": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8bf0a3e6c09545d7a55487783e0b82c9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'type' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'type' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1096a45ec72c4288942a61bfb522fcfa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_99818b0b3b334807a9d480701be490ea", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "10b486782c364980b39db66ee20b7834": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_82153626f6e34225908e5d49fa73d5b1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1118d6ebf1f74180b2a3fb95d17d5f57": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_34f212a9207b4395a7ab6cee9990ba5a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (7/7) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (3) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (7/7) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (3) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "113d67880f1f4a48a88e1425b163cdb8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1153c63c0eaa41ec8e041d18aa60bb1e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_07dca4c78ef047919da9e857902cc9fe", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1167bf2328584950a2fe44c959d88a85": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "117b18d0bbc142ccb0fe1f5598a3cd1b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9f28ee10e68c4eb4b4b82076d5324212", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1221b14e6fb44d9ab96518acd53bcb39": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "12366995bad14594b1346c343bc10bdc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8310490b2e384846beb367a25d2cdf23", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'employer' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'employer' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "12e58e8320e6432f9e38fd28eabd7b6a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_67d0366ca2cd42cdbc3392d5cd606bd7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "13356c7a8f8b4a83bfe2caa420745097": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a89b108c9fec490687b74e968dfe98f7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/2) 0:00:00\n     (RDF → ADB): Import 'DataPGT_UnknownResource' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataPGT_UnknownResource' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1368dab9ca5d48baabedaa27e63a6608": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cf1f8b24c7b64859b87bfea6a16f7dd6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "13971de33d714affbdcbf4e17d7e6262": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3e3c5ccb09e6420cbf4133930213227f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Skill' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Skill' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "13a2bad0545b4813b411dd2059dcdaab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_23537334ef5f4bf7871e86250eab22c9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "13d371035c6e4441930620dee3c09ed0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_14f1024bc2b349ad813ceab38b01f2dc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Country' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Country' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "14139b121edc4b42bf05b1bf35f232ef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14a0aa763fdf4d3b85e693a5393c71bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14c1ae08e37343c683e4a8a3f8173d79": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f5b15a86202840cca452980125b90c48", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "14f1024bc2b349ad813ceab38b01f2dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14f9df9b0c98462aa5838e3da9fa1d9a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b5351fcc283f4f08a4c03ba7ff4c6171", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1562b02158f14e2585764860276d7daa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2ca5014106714ad0a571daed220fe8a3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "15f7cd15b0904731a4ce5daaa81f560b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "160f5882af964f5887dc015b767426c4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_37fc823816794e83a098931026bde2ec", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1611c20c4e834c76ae76a4f119db71c8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3b81b38993c14de68df2ff40f0a4f590", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "1615255ac8434968865b3bcc80cb53b7": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "1656f5d65cf74bc09f36c42d6805e634": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_db682b0171354a50bc8e7ae48d5d49f1",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "16b2c93f497d4f62aa06a35052933fd1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "17677c4248b1466baeb36a4a1725856a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "176ab88312ca4473b876b9dd94260f35": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "17719aef6c534bddabefe7a8842e743b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fbc6745df8724e9e9379e3ab3b07b2c5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1833ea424b6944919951e027db237691": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "188785b1836c47d0bc6f01fba3524651": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8a4170094368494aa860c215fffda76a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "18a76eb8f00b4c9d93eb862457c93604": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_be38c1c4704e42eaab72fa917a31551f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "196c029b42e7468b8c1b2b82d93fb9d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1980f083a8a24d118d4929daae64b05d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "198e324979c14efdbb5990d057403a18": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_196c029b42e7468b8c1b2b82d93fb9d3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Class' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/4) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Class' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/4) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "19970b3954634ea4b51383a554c939d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19f32708e8e148a4a38ea7d27b931a2e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b213dfe9dbe6485ba9ce050603aa69f4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1a60e18063d7443e9a7022a1bab0008f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ac2539ba6d94d6e92826d93d66dc649": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f4d86a9622e74997aa7516410d0b7d92", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'source' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'source' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1ad7fd19b2a14e138f58820275a3278c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1221b14e6fb44d9ab96518acd53bcb39", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'inCountry' (467) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'inCountry' (467) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1b06375f7c054d05aac5766732801ad9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_399256ab248e403ba3f26d5bd91b091c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Location.json \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Location.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1b37da3c0e884470af207ab618e4d83a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b529365878647f980449bb9b38b9460": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e34293eb4991417b9519a1029276803a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1b669b3013fc4ea4a9951b7db3771f3b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b72c41a51244810befd264aad85f526": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b7c320b49ba4a4d928090a55773d076": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c5418daa64ef4c90ae44c7e845342cd2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1ba7a0ca8b0646b8a5d9cb4ec400e03b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_024dbdf4ef6d411f8f8a6e25603c68a7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'type' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1c533729c7f54f83b19169afb445d001": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d6a2e9d98e6431db87f0f20de68a2db": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ef946e47d6e74ed6a4441e6aeba6ac07", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (21/21) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (1) ▰▰▰▰▰▰▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (21/21) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1d6d26d7b5a642529791ac860d335e29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e28979e830648b1b3b4291d99eacb9b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8f0597ac3d684a55bb50b09036d76fd4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▰▰▰▰▰▰ 0:00:02\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:02\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1eecac5b4e75476abeaea6ec99823841": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8e496993198046a5ad9ecb6a7cfc358b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'type' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1efe1b9781934efc9bf72d2632310f77": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f9945bbb3924f15999d790fed89863f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_03a99f41fc0a4353bfc5efb093e552ac", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "1fc43d8d945449ff8bf650a7168f3175": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c06094c52f354bf887b9573ef728ba6f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "207a6a1c6f714ee9a9482d83aa1b6d29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20bc8e7e0c9842b4a46cc5fe0c81687a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_36a9e23ee2454fbb907facd9a07f9fca", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2184f8202fbe4d359a0d611cdedb70c7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_29ebc2c2cc8349c7ad0c33e8772a202d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'writer' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'writer' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "222ddec771e2487088f38f5d8abc93d6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ca9ee619db5145a7b14ef9eaf7b282ef", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "223f64295def4d82b07989a0e9171191": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_eff7fd5f3f574ed38cfcafb5495e83c0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "22644f41d98444ad8f897fb1b940b854": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5c60b07c9c5c424cbd266d3c2bc7189d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Class' (6) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Class' (6) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "23537334ef5f4bf7871e86250eab22c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23667a2c1edf48f0805b6f3a7deaff60": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2d3b9ecb52c3494697f0914a9eda32ce", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/3) 0:00:00\n     (RDF → ADB): Import 'said' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'said' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "23ca8452d91843d4bb367f79cb6fe21d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8f7a612cdc9646b1b3cdb3d2ef67a18e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "23f1b6f7b7564c78aaf32ed5b7f382a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2417e2dc248f48f797adefe8cc228028": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9983582ff7264e4cab10eed911e85f83", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Skill' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/2) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Skill' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/2) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "245bdf024f754fa1bbb8bedc5b59cfef": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4f5490021107448cba0795253a892a71", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Source.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Source.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "24c93b5825e04d07a0ac19b3054b2863": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f73f626669b544d6a475cb528aada059", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'inRegion' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'inRegion' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "25200c81b79d4cf5b1887275467b25aa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_dc71d23ca2c44ff39aad451bf7bb9bb8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'DataRPT_URIRef' (3) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_URIRef' (3) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "259234af91af41e5a00ff6dd69de6abb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25bf71951a7a46e8ab818832fb6d770c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fe3b2882a7ad4ff99044c20354c1c8c0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "25cc5340c82d4a60ad273cd6483dc48e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "260648c894104cb092ede5d76ef44111": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26ffe01988374a8ebcf74ed0c30773fc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2741d4016cd94f18ac0d38c5f16de281": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "274d1b85334c41e88282eae8d98df3dc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_37768143af064eec94f846d5116caaa9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Website' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Website' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "27933cff78c94ea08128a4ab09aabc3d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5b5972f2a60d4165b29193acec5a3efb", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "27bc6eda9d0f4277bea6de3bc3decab4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "283c95e105104ea6a5b235ede8a1a2ab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d4f26543a05649eab36d2d2e430bf868", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "28773c52acae44fabda65710a389c4c8": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_47f7cf67a9d9415da8fc00725bdca58d",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
Collection: inRegion ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: inRegion \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "28ace3f50b3c4a25a7fc1b7f6eab7814": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d2bc18ff98e142c58fdf18a9075d4c2b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Region.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Region.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "291de7e0668e447c917b3a7134cae0fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2966bbae3f8641f2a283bdcc1ed28033": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f20624e96bcc46da8201c667f5affd34", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'eventActor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━  96% (6000/6252) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'eventActor' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━\u001b[0m \u001b[35m 96%\u001b[0m (6000/6252) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "299cedcd596747f7a8837d2ef1a25f5c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2f3cc4e6401444d1a3154659afc9efab", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "29bd1e51d7a5416db6f8646bbf620040": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29ce0c02552f4a80aba63d003d1d13bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29ebc2c2cc8349c7ad0c33e8772a202d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a09643054274217b1166b0ad5db22aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a1d425b97524de6aac4edc3b8e67000": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_44ebf31be6c64bf4b539f81c1250a8f1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2a6a1086a40341b3a9fb46912cb75dd6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_207a6a1c6f714ee9a9482d83aa1b6d29", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "2ae4cd88a2684d4f876f62b0c0e1123d": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_632b440161b34a959a3fe82835f38f8d",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2b8042363eca490d9be41f7876e0aab0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c2e6463d20f4b6ab097a09ee4a38b5a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ca5014106714ad0a571daed220fe8a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2cb971a1d4ed49b3b1de2f1b062b40a1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2e6aa556b9fd44f68347677bea11caa3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'inRegion' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'inRegion' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2cd5ecb36d81498595f558f842e23c05": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2cf2703a60dd432a8cafa2d44cebc91f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d19bd459bf54b1197a1fd18c47f4b05": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5542d4fbb1294b63a5e7dee5f4af5fa0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'eventActor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━  96% (6000/6252) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'eventActor' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━\u001b[0m \u001b[35m 96%\u001b[0m (6000/6252) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2d3b9ecb52c3494697f0914a9eda32ce": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d502c4cd2ce41cfa6e35eff82ebe098": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2da044ff861542359703ca9ae6c0d56b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a7a62d0a2adb4945bbff664966216d33", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2ddfd1e64d4747f8b3cc576d462d5f56": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c1a0f2be84cd45749b0043f6510a4bfa", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2e6aa556b9fd44f68347677bea11caa3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ebcb5a1f513410f8f703da16b3f44c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f3cc4e6401444d1a3154659afc9efab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f40386b3fd1461b91d3809794504b5c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2d502c4cd2ce41cfa6e35eff82ebe098", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'source' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'source' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2f4743884cf64364831cd82a9f2b7ed3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9222e80943b64fdaafbf0081aa501800", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Source' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/232) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Source' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/232) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2fc6b8341e474b62a6ee7daff89304d2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1b669b3013fc4ea4a9951b7db3771f3b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "2ff255c0ad7f4b6db1681395395073e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5dc5238380194b4fb0726733020ce9a9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3048cf5c63824a339a17d275ba6f5dbb": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fbdd9315fee8499b9445d1d41ff052ba", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "306ec886b3264c6fa6df970754f7f603": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3112012c724349f9a63467df384246bf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_96c381aafc6c41de80080a60c6bd3433", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'type' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'type' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "312d8f397d4f4362bbef7d18c1ba5de3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0d2b101b5cd34df5a60f49f0322b8ae5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "31830517c9bc4134919413ff27dcdd00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31c785fe99cb45488b2370510428f2f9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9af45bf1246244c9bede98ed124371ae", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "31cdeffecb6e4de199d9b8925ec7a567": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_86cabf0aa5da4a2bb523713b7f70e2c8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "31d64688e87848b5b582bf5c46dd4dd9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b4aeebce09de4f76b56757c293f765e4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "31df91153fe447bf8b4d5c2fbbded6e1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31f235ab96ac4c3e866a1f42525bbf08": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "324aaf266fbe4a73a48096790b2b3a8a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bcaf27bfd2b94b088aee76f8c1c0b394", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "326423bae4c54057ad221e7c3077ad64": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "32c2bf3fe02f4b2b9f6e32cf8496a83e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "32cbde21198749b880278b11b845eeca": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_99036c6715c544ea9c50cd68621fde3a",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'link' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'link' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3304bc08ecd648e6a566d74f17109680": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "340471b0216d4e06852629be4c27f681": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_00ed07ecf31041ad84d32453fd43d0c1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Website' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Website' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "34082cf6eb994d0e8dc1c5a32103e6a8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a601dcef909d423d89e184f7afefd15c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "341b818f59ba43d4b69166e655dd9765": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4624a85e55f54bbf9488a44dcb872a06", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'nationality' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'nationality' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "34766e8e7bac4be9bfb86c455ee75493": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cd8d836cb70a42849cb48facc90fd6e7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "34df82f492d24cf18aa31027352e0df1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34f212a9207b4395a7ab6cee9990ba5a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "354a8042212b42b5ab48116c07be8c4a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ce982e0638b4403dba8bb46e8402d506", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: hasSource ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: hasSource \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3559d4b574044e0e8bace41211b1649f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2b8042363eca490d9be41f7876e0aab0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "358dc9cbaa2f47f6aa3b14963b022222": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fb6fc4469af9424c9c8eaaec53ddf478", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3628924e22f54ca6bd3bc98dc0619de9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0b40cbc2604b4be58158cc8e56814f2e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "36485dd1f0ac4020afb98ac853eed41c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6d22cce22d104fcfbac869f965502e53", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3675e6b10c0748e387629f471847295a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ac58fe66dce145f0be7f770a26039acf", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "367eabfb0fd24998835426983d7565a1": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_89e21dfb027c495f9a9524ec26ff204e",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'type' (2) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (2) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "36998aa1db0d4404a02bef5abfa995c8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f529a9ce3a0a4fdf832eae87d164d458", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "36a9e23ee2454fbb907facd9a07f9fca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3735f9c2a9924655ae67398428eb9c14": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e39bf2d80ac94271bdeabee0c0c3cbb1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "37588cf454af45ad8a1c2c6ffb8c1dab": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_4ec0631a9829472fbf88cac4607a57f9",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "37768143af064eec94f846d5116caaa9": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "377819d3b19240fbb1afdbe5b5cc3d19": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "37a49fa1897849209764d68a6edd7008": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "37fc823816794e83a098931026bde2ec": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "380f4a19bf51442e8bc93b77abe405d5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "387642d5ed1e408eba7516e6524c34f4": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_bb79559742424902a0693dc602c38f0e",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(ADB → RDF): Export 'Property' (7) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Property' (7) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "387e8f25a72745968de20c93174fb8b3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38e4ec950dfb48c1b86dfa51b59bd9f6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_52737430028e42b493963e2ef404902d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "38e979b0cf94465388eeb0c2e1d37214": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "392bfe6ed1dd4327a9412a54cc4ab3d9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d96d5a9fba94419f93f6fc9f21e4ab10", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Source' (232) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Source' (232) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "393a3b2b1fab47b3836ce742c9491594": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "39504ef3a8ed4dd285d67771f81f415a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f931874b27c84f2a9d8c0b6ef67f764f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "3983a55e940b4729869ddcc63b83bb51": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "399256ab248e403ba3f26d5bd91b091c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "39bbccb261f74e9696665119136f35ee": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_89d11dbcd6e34779a029e0cca10286a5",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3a132126a793411bac755f8981035861": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9c61c2582e9e451488f01c22cc432d76", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasSource' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━  88% (2911/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasSource' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━\u001b[0m \u001b[35m 88%\u001b[0m (2911/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3a490438c9024452a8dc43ba4380184a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_dce9a62edd304dd986fc904eaa2be8bd", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3b55e3255b46482fa0126d7df8fb6215": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d0006980ed5642088dfb0f4766723316", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'subClassOf' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'subClassOf' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3b77a9b7d5a54d0bb587666d26fe9638": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b81b38993c14de68df2ff40f0a4f590": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3be3d246e0424d1e94a921b94e1e0d9c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c19457d425b4574817572b38aa17d86": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7a9a3f418d6a409cba2643daa11ec233", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Location ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Location \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3c6e454224c346ae820de03d069583ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cbbfb7c4c254dd995bc2d10e2429a4d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_005f4ea3e18243d886f4264a8e328bcf", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'type' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━  96% (3161/3302) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'type' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━\u001b[0m \u001b[35m 96%\u001b[0m (3161/3302) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3e3c5ccb09e6420cbf4133930213227f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e4cc848dfd54a94911c913f784b8731": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6edb486ed2f24b35a80cac3b8c8cdc10", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/root_metadata.json ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/root_metadata.json \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3e668d9f0ee74d078e3627b3ac969ede": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f4bb379438d74bcc8c9312d491e37fa7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3e869d0fc5be4643aea1cfa06f2d5281": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_14a0aa763fdf4d3b85e693a5393c71bb", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: type ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: type \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3ebef63c1ed3413f8b2b84cba0b7a9d3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_41b26d58b2094b629bdf38122d108a6f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/type.json ▰… 0:…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/type.json \u001b[38;2;91;192;222m▰…\u001b[0m \u001b[33m0:…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3ec735ec0be8406e93b98c8fc5faa94d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ecde2ba048344a9877afe06fae66e02": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ef4f135a9814fdd913d113eecc4cb2f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ee751b1aded24d2fa4c07f2779e2a049", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3f2f2a4d7c484682bf12ded64a1ceee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f92018b112e4213a1ee9b3d810828e5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fcd605337d142a58bb2d7c656e6f509": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e15e3352f99340069470a8d33416986f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Location.json \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Location.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "3fd821e5df744d36979ed8e4c21a64ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fe5027f1c994fc4ba3c22f245604c13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "403355da7c0c452aa01188dec9f5197a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3fd821e5df744d36979ed8e4c21a64ab", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'inCountry' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/467) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'inCountry' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/467) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4069f0176c3c46c081f1c64fd5d50bdc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "407cfb7d093540daa3e77ed151028666": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e849e373b5fd4798b5efae255bba65e7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "409be936927846888c78a0cff15bf635": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c81a9e5eb7bd497783e94cced16b94d5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (2) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (2) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "40ba8687516e4923a56bd8354dc97838": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ccaa03e4315e4945b5fd1c01e084369d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "40d33cdc4f7d471e99668c2141a92e92": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4106df416f7c47a1a0b6ab9e954acdab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9d5e41d68dd9479db77ef9bef14835de", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Actor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/47) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Actor' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/47) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "41495fb3d42c4d88be5a5a883d3c3bc6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3be3d246e0424d1e94a921b94e1e0d9c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'type' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━  80% (2646/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'type' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━\u001b[0m \u001b[35m 80%\u001b[0m (2646/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "41a6f15ee08a4e4e8ec03d1497b5ad2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41b26d58b2094b629bdf38122d108a6f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41c5ae5ef1f1453ba249725f961f6b47": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f433163973a148f7ae20eaa83425e8b9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "41d72b118f31481ca4318ca46b2915a6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "423019e8f56e4579a18e1b08bb216944": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42c89ab89b204967a4970c9c6ca189a6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f90e31d881904ee1b8f31b089a3e95d2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4353e4aefa3b4d9a9d57249b27df4932": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43792423dbaa49e4a4a19360091969b6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_37a49fa1897849209764d68a6edd7008", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "43e9f9350be04c3897feef328fca07fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "442ab928de054d89834465fa7d3f6c90": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7aac7eecd5364b3d976a3a7c108cde46", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4499a8f97cc4412db02dbe138ccf9357": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44bf2681ecea4978ac5e68449c2ebd2b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a5e9deebe6da40b889153e028b9a68bd", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "44c65c1407694742adc3f28968a2966c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0ff0e0b8a3424639aee19cb30ae03d45", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'subClass' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'subClass' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "44d289bcd3eb4ebd91c1e4a4b327a1e1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fb584b5d386e4a7591bb48059cb7af87", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "44ebf31be6c64bf4b539f81c1250a8f1": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "456a8dd834234dbabcc65cc4b98f2b2d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "45883547766c4981b798206e55a5c2f9": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_95725b5bc05e4576b867b6066c5cd0b4",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(ADB → RDF): Export 'eventActor' (6252) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'eventActor' (6252) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "45c23924820f4dc28941d54522152446": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ec967562785641e6b0c0aaedd4946827", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/3) 0:00:00\n     (RDF → ADB): Import 'Property' (4) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (4) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4624a85e55f54bbf9488a44dcb872a06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46356aae8ddc45ffa519a783411ed5c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "465fbf12cec047dbb66c016aab1d876e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47bee386693546e4906a547ff5556cb2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47de40701c0e44b4980e966e2feeefe2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47f69ff14b9a4021bdfe15d532a65753": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3f92018b112e4213a1ee9b3d810828e5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Source ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Source \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "47f7cf67a9d9415da8fc00725bdca58d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4800e6188bee433382b650145a17152e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4ba0cd3dd2be43d7b97e10804e01563a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4801a13b780346d888b36082869de287": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48867504843843389281e9c6c12953c4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_84276bda9c6c4c7280423540f4695001", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "4888e641f7d1495487f59158aff1895a": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "48de9d4c770749dc933ec65ef35e9ce6": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "49da35b5b10c4203bbbfebce32b2a80f": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_27bc6eda9d0f4277bea6de3bc3decab4",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Class.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Class.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "49f447ea948b4d3cb29a19d0ac248815": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a397ba17bd747a185a82cf1a1fb4637": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ba0cd3dd2be43d7b97e10804e01563a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4bd5e014b1aa4b649a84f7ad4510f6d1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e2dab9c4ac714611a7d92f5d54e1a28b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: subClass ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: subClass \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4c00c2738c77446291a8a88da8061603": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c0629fb41e446bcb8c5bf7a6ed97820": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c4e06460b1b45ab9cc9f4c17735e00c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5050f635e23d4d568a5ee162f3215cc4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4c7729ca0129498a99a5c1a33117c21e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c8a803a162a47fca5b6484485a50168": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6060a8afe98e41388fc3ca928af0d70d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Source' (232) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Source' (232) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4cb8bd60a6174fdaa24c09f9a852fa18": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_14139b121edc4b42bf05b1bf35f232ef", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4d6a69a6ddd84ef68a4902e889af0e18": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_64938ff2e522484a94712608de674545", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4dbed5e2c47f45f6b8617d13f14b743a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_40d33cdc4f7d471e99668c2141a92e92", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (16626/16626) 0:00:04\n     (RDF → ADB): Import 'type' (3302) ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (16626/16626) \u001b[33m0:00:04\u001b[0m\n (RDF → ADB): Import 'type' (3302) \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4de3bbd3d55a4b78a3eb1e521ce5cfe3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_55577346bc664471a01442b07a9d5348", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "4e9d7516d4b447e9af814d0ef8e1a33e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "4e9eb2e764d5451b9e583a3fc6290103": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_c35fb525a58246eebbf2fef1bd336b5e",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4ea55c7b06794f9f81e86b202c5ba354": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b57d0a227c1048d4961219ebf1d32530", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: eventActor ▰▱▱▱▱▱▱ 0:00:01\n
\n", + "text/plain": "Collection: eventActor \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4ec0631a9829472fbf88cac4607a57f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ed9a5a4cce84f0aa47fe499455ac814": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_52e4fd6dcfae437b8f12e2d60e28318e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'employer' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'employer' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4eeaa3082d74487796caa0db21a1521a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9122d486ae7a422b96e097342891fb70", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (459/459) 0:00:00\n     (RDF → ADB): Import 'imports' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (459/459) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'imports' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4f1af8b21f1a4a8db470924b8030ac26": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d3891a12da3149f78927bc97712eecba", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'likes' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4f4bb6f685a44d318827eecfd9d25215": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a4acb870019b4b1daabbc92ce84ed88b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/eventActor.json \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/eventActor.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "4f5490021107448cba0795253a892a71": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4f58d9bac09c404c9f2b1f7d6007109d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4f691259e5674b3da1f46f11075d5428": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_456a8dd834234dbabcc65cc4b98f2b2d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (1) ▰▱▱▱▱▱▱ 0:00:03\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:03\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "503dd524d03a4032ab66b63d0de621ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5050f635e23d4d568a5ee162f3215cc4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "50e0d72760df48cdbd0ab58a118f3b83": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "510794a7ae37442f8b66a3a74661de66": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c9855520f70e4202956e0d0c5dcfac69", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "518456cbb9b743f38914894954dd8777": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bea5ba1e9db740a29147d2a2f105c8a9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'type' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "51aa91d7110f4f90b69f83c790fb6b52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51c57fbccac34167855a2270c365b9b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51c97d40286f4bd9b922aedf3fd912a2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9134cccccc79418d887f13938c68d35e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "52232abd9c904269997d568cc50c1fb6": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_0169a84a8bb74d7c8adc26dc9a701e2c",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "526371c5ffa3455cb72359531671c385": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b83f5e4968a44cc1bed752f63c23d45a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Actor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/47) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Actor' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/47) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "52737430028e42b493963e2ef404902d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52abd56876a0434abe9570679bbdb57b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6fecb562ef6c4e51be7bd0b42108c15e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Source' (232) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Source' (232) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "52c95751c36a41249e00de51f9280ed5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52cbbdbb898f48deae681ff01d1468c8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4f58d9bac09c404c9f2b1f7d6007109d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "52d16d34612d42a5ace968d4104c89ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52d888e703e546578d3d9eb0d3cee5dc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1615255ac8434968865b3bcc80cb53b7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "52e4fd6dcfae437b8f12e2d60e28318e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5344ab9f5213406f821b4fc52f34c1b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5382e4076e9d4b058082df8c722e0668": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54182c5e13f84178b64673a1ddfc3a42": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_52c95751c36a41249e00de51f9280ed5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5474b2535fdc4876932eb118f1f9da25": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5474d353569b4aa99ca7b0cfba1a3a45": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7a61723dadad4e29858db789b0befedd", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'mentorJoe' (1) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'mentorJoe' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5483cddfc4a441bba4e38e06d531573b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5498eaee5d4147e7837cb6c6c563dfbc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a8d4da8fc9f9471e9bc5d328b4ca8d90", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "549cc0eeb21e4816af1ce48c6992db04": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_863bb5095d89492cb6153b3bbde5b104", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "54abea983db442579f8647cef03d6823": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6436d487a2e94e41b51bcff155413b02", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: hasSource ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: hasSource \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "54b93b209d61498eb7d2da4bf24042ea": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1b72c41a51244810befd264aad85f526", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Region.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Region.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "54dc7c0868724390bf94e030c4287418": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5501dd653f1647359616f7623579201c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_910b3f36e0754872a132ee0076344338", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Location' (467) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Location' (467) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5542d4fbb1294b63a5e7dee5f4af5fa0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "554c15b9173641b199741a03138c3ec5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55577346bc664471a01442b07a9d5348": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "562c5eb6af7b48cab01a04d36df6d8a0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "56658e42d18f4db7b09c3dff62b0e7cf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d7e349f506e34b12b72bc284c874c515", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "56a5349593d642ebaf100d6a50abf506": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bb3de533a75145bba916c21d660249ce", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "56fafa7b834944e8ab133cf454d7c975": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "573e8e1ec5794c519349919b0c644e0c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_841e9c1810c640d1bec6c739f60f11a8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5772089896234e52aa40e3daadc38d30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "57c5c601d72d4bd8a30779500c0f63f1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_678ff0b0994a40a982091b2d13f57c4a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Country ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Country \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "580a7824847f45cd9ad774d975337480": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1c533729c7f54f83b19169afb445d001", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5819a9a679784e53979fe59ac6fdc6c8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ea91f40791f247118cbfd30f0a8e0209", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5871fa9c17ca4dbbad7c110842b1c43c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58eaf8c7cacc4156acda80aa02e94761": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fe56ad08950d44ae87c2f512092edd3d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/eventActor.json \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/eventActor.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "597dc766da6d4c65a6e526f29d8001ad": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6c9fda1cf8f441649b19421140844eca", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "59c050129aa24f939162cf2a24329d1f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59c0abf74b4d4276ba5bc305f28d26a8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5382e4076e9d4b058082df8c722e0668", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "59d1812502754c6bb6701e3614ba2d94": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fd39fc51745a4de086c6b7ca00c3f832", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Country ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Country \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5a1c4b8078e94b92ae912eeb9b9ee02b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fa0b56ec689c405d9903de685af4e39e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5a2d4a845d274bb9bd81165ce410a444": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f4e4607b23a54074b058c823703b1c53", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5a62d99ec49d4d2181f4296e97334516": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4499a8f97cc4412db02dbe138ccf9357", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/2) 0:00:00\n     (RDF → ADB): Import 'Property' (3) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (3) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5a74235176fb4af3831eb25cd2e97262": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a86d7d42ad74fb3bd471638a7e45df1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0ffed931b7e4411a882931ceb9d1b576", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Event' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Event' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5ad11cd62cc3452dbda9f543f100d135": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b08d7a0cd37421fac9dd182c7e803a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b141553b59d4a64b567117a48a0f05d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b5972f2a60d4165b29193acec5a3efb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c2e8b16eaba46d7ad63a4723a0e6c95": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_db764534dfec4bc3a9ef40f37c154129", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Class ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Class \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5c32f4f07b8241eb810c6b7d3bf0d516": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_98ef86cf824a4d7ca12d8cb76b22bbb6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inCountry.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inCountry.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5c3399c807834637b5b872fdec6a126a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a27c2cbe14eb40aa8b071a031c694220", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Event' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━  81% (2671/3302) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'Event' \u001b[38;2;151;196;35m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━\u001b[0m \u001b[35m 81%\u001b[0m (2671/3302) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5c5d3d5139c44a7abc6616d674aab82c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c60b07c9c5c424cbd266d3c2bc7189d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c6159ac9941405ea2399930e3385856": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c748f9b979f4fe499a05558c49668ac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c8ea494175c47e1b55304e2730df295": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9d506f434f5d4df7be610f8b40fcd390", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5cb7eb9c39dc4ea6afbea5abce584d88": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d47d305fe12407cbc727cfa15ea56b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5dc5238380194b4fb0726733020ce9a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e4096f76e344148b57a688b2e9fe8b9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e4d0d5329cd4f8f83fcef7dfd413eb1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d1ae873ccd9b459b8c8074d0cf87ff84", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: subClass ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: subClass \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5e5d6a1434204d9ca591ba7e5d80d394": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_eae1dc1f0c53488d9161546790aae34e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5e613d9d31f34b8883d8d0afae83cae7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e6618e3da7446fa8be8fb0c38a44935": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5eb7089127fb481a93e44a1468c01914": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_260648c894104cb092ede5d76ef44111", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5f1ab0c9d552407e8dd816c32ba3ff0f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_76bd81b761b0409c89b9ce656b8bee27", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "5f82c603b82e424daed6d81cc12810b3": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_94d0232fdf1a46b8ad11059dbf8162dc",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5f98553c1f4f4594a4b04d519700c077": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5fdae6f5461e462dad3e5309fffe4cc3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_db4f225255194d17bb18112c8a4d10e6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "5fe9196bb6434bc4a410828e6d966c1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5feded6877d94084a1426ceec3d0baca": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_31f235ab96ac4c3e866a1f42525bbf08", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "603b1ecf2f3d4db78d8a0f290baca136": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_efd05d0c9db0475b86d43a4a7a269fe1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6060a8afe98e41388fc3ca928af0d70d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6094952cc61f414cbb9682aa3fd33313": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60c5ddd64d9347f590e71a185604f117": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_49f447ea948b4d3cb29a19d0ac248815", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "61308ce8c6c2433fa2173b5707bd8598": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a557d52c1e3247dd847c5d6870c0abf2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/subClass.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/subClass.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6198ee915b6148259ac259d5d8709217": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62199c1525d34669b32ec33744030077": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_554c15b9173641b199741a03138c3ec5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (4) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (4) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "632b440161b34a959a3fe82835f38f8d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63544062794940b8a60ec50c3d8fd5df": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_32c2bf3fe02f4b2b9f6e32cf8496a83e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "635a63f420c848c089f70ca2e5aae701": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_816f7c8969da49e080916a9a6e6bf6df", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "636701c209594d84bbbb6cd5dd620951": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5e613d9d31f34b8883d8d0afae83cae7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "63bac0edac794f03b66da29a7d1d933d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6436d487a2e94e41b51bcff155413b02": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64938ff2e522484a94712608de674545": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64ef034cf3e043359fa8a92e4c040f94": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f7641041d47e4ac89ba017b5838dc440", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'DataRPT_URIRef' (9) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'DataRPT_URIRef' (9) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6583d4fa4e8e465dbd8a6f7e903f9766": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66079ff3dbe043df86ba4c8cddd7ffb7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "663d9df312bf4c44994eca45cc5dcf93": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7f8a2efde7f242f4af578c23d5d72004", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "665e5cbce33143c0bc88c390aa35eed5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_34df82f492d24cf18aa31027352e0df1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (4) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (4) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "666341c39bc3491086c936250956e6c4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_939df2cace1e4c92bed3c64acf556698", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Source' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/232) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Source' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/232) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "666b5be3143e4d1aad23ead3f9ce53ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6686917122224b15b7f511dc89212ce6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_900b7c249fbb49c59c18d2c9968f2891", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Graph Contextualization ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Graph Contextualization \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6691ef61f8e743e8a274bf0710c84673": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66bb8913622c403881eba0997ae6548f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1a60e18063d7443e9a7022a1bab0008f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'homepage' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'homepage' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "678ff0b0994a40a982091b2d13f57c4a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67989ac8ad2a4f1a9919736d384cd294": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67d0366ca2cd42cdbc3392d5cd606bd7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67e0fafdd9634aa69ac889342be69b51": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "680bf32f724e469982385088a61bb1fc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_29bd1e51d7a5416db6f8646bbf620040", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "68a631ba14a04579a21076e608113f5b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68ed047e78784348b8478e06f36498da": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_841e8ab2c5f044b4a1fadd8c2acd4a89", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "690dc7e0e3ff44e98880bdc12d7d370a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "694a30f6080d488cbc087bdb2d91e91e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "695b886aee124d78ae582f914b88e26a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69d271c6000c484fbcae7d9c1df71c2d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_aa4a6d44d69b4c3c9e14217ddf76fbe3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6a1f66e50ad74367a52d2ae3f8f48f12": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a78b165f4aa4e04bb0a40d531d1facc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d544f1ae4c1c4355b02b6b58ffe4e227", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6ae66ff0e0a84581b6c836c7b9df5472": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b579a16241a49fe894af095168eab07": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c4d12e6c75674af08b8adb827ab57615", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6bd89d16c4d649538dc7213f8abc7aed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c191d39e72f4dfc90443e57184cca27": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e815564404004a3391d274458502ce9c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Actor' (47) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Actor' (47) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6c3b09e3d1cf4dff8702402fc413cca0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c5dc20ab389471e993a2407b20e01cc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c9fda1cf8f441649b19421140844eca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cba2fee3ce64170a5130d70695eec26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d22cce22d104fcfbac869f965502e53": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d2a7f63e099467d86af116e97de71a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d47a7766b92481fb6ff95ba77e8f0de": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_690dc7e0e3ff44e98880bdc12d7d370a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6d8ac4bfc9f6436f99c1e36a4d0d0e43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6dd871296cf44b4686c58701864c723c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ddbd53f84c04a808dbfda79308b5291": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_259234af91af41e5a00ff6dd69de6abb", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6df2082e6f484dc79472fccacc27c996": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0d86bf821be447f4ab655cd136af247d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6e3a7048cf634fe4b8d16547ffe89d7d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5e4096f76e344148b57a688b2e9fe8b9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'eventActor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━  96% (6000/6252) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'eventActor' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━\u001b[0m \u001b[35m 96%\u001b[0m (6000/6252) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "6edb486ed2f24b35a80cac3b8c8cdc10": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6efa083feddf4ce497059534916b2b43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f52f700d62c455f995dbe7e60ee899e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fbf0c9ea5c543e694559524ccde9489": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fecb562ef6c4e51be7bd0b42108c15e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70bb188603354ddca66d4146ec8e471c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70df5da45fdf4c8da8a368073e139caf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d7f6a5acbacb4f95950ecb48616a024d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7145e6a71760467eb8797864f0e5d2a0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9c5380da6d794a228ac12ecab0d949ef", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Actor.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Actor.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "71ddb22aed0446adbed06ade5f30a61d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7a3fc411802043c3b22e418a9d267bc1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n     (RDF → ADB): Import 'homepage' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'homepage' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "72f9d06266ea4e97849c170c48308c77": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b0c72633943841ec8911af176a347b21", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Country' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Country' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "733b2bb8ff1248dba07fb78f751141de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73467dd00a6a45398be0e336a67e3379": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a27f4bc191244980a4569f1380509b24", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "746745f6f03543e08fd4429cc5cc900f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "750e03bd0e7340ea94112bb5971b556d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5871fa9c17ca4dbbad7c110842b1c43c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7516668d476a4ad296e457ed2dce582c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f8e863f9e8d445b9a9f70a3ebe71cc22", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "752e8beefa234828be053813a24db5cb": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bd7c88d2b8ac430ebe4d6e8146ad4a50", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "754215a7023e452f9578907cf2b333f4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a5b9e7a95014425ab6963a48e86f49f9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'likes' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7628cbddf01341e0ad612263dba3ed06": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1167bf2328584950a2fe44c959d88a85", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "766d7599e584400f8f809227bb830fd1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ebc417617758470db76e670fe62473d5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'inRegion' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'inRegion' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "76bd81b761b0409c89b9ce656b8bee27": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76da0198443840b6b36d6f4ff9fb9aea": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5e6618e3da7446fa8be8fb0c38a44935", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasLocation' ━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━  68% (2255/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasLocation' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━\u001b[0m \u001b[35m 68%\u001b[0m (2255/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7713d7ed396c4fb3852c1513ae59a7a6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_db06c3e74e6b4d0e87aba61e4386e521", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "772165f70bd347009bdbdc989a3610e5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e7e96edf087640c5a618deb016e4d277", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: inCountry ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: inCountry \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "77506a89557942298d13974e3cfb3283": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_77c43e3b70e244cfbdc97b60fabf75d4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasLocation' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━  91% (3000/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasLocation' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━\u001b[0m \u001b[35m 91%\u001b[0m (3000/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "77c43e3b70e244cfbdc97b60fabf75d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78620943d50549a3a57dbb4302b174be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "787ab170a303420cb36ae0cfd43c9d63": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8fbd43f55d92442f9fb057dfd38d732a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Location ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Location \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "787d5500e7da4133a75f8df78b8466fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78ac12ef772441a49ab15c1a583efed1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "798d0ce58f28445cb91bcd4af75ad379": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_09a5785134684029b1cff1bc7510c534", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasLocation.js… \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasLocation.js… \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7a3fc411802043c3b22e418a9d267bc1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a61723dadad4e29858db789b0befedd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a9a3f418d6a409cba2643daa11ec233": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a9da186117340f18f557f39131f3ab3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_811ac8febf1846ed9e2db9cfc2a6aeb7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7aac7eecd5364b3d976a3a7c108cde46": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c21761ffbc04fd8a11c87bdcc07df64": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c27638420a14a1bb93c50865d63162a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c318d14e6f34bfd8c415f6d3c395f1a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c4cb95e53f345b08c1f4439d2f4c2b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c95cb7b6bbf4f018a598a9ec2e7d8c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d4b161694aa424489ec20c93023128d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_423019e8f56e4579a18e1b08bb216944", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Location' (467) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Location' (467) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7d618e6d56914751b3344f67135d89e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f5d10a6ad6124b15829f3d9d64880c79", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'DataRPT_Literal' (2) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'DataRPT_Literal' (2) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7d640d33c8a14846b089e21b404757a9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7e84fb9c3f464f08a4ba504cd7efdf0a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7e72dc811b934c2883020de74c82625a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_695b886aee124d78ae582f914b88e26a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Class' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/6) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Class' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/6) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7e791f4fd0d54af68e2f96e3e3119830": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e84fb9c3f464f08a4ba504cd7efdf0a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ed46570893d4123a718f77890e84081": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f35f5dbf07e47f78d51f42f62c42258": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_013737bac24c4fc19871485909ee3d44", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7f4735b6532b44bf9e2a4deb1385e677": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e86234b816a148f482c6f0d7fc241675", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7f7008b7106847d0a71b51679e4e4522": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5ad11cd62cc3452dbda9f543f100d135", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'foo' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'foo' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7f716d2ad0e34fe8a67b1f6b8a9669c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f8a2efde7f242f4af578c23d5d72004": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fa97decd4204eb498b44554d9b2ac1a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_38e979b0cf94465388eeb0c2e1d37214", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Region' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Region' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "7fe6e86bf2d942c293ee3fdd97dc863a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2741d4016cd94f18ac0d38c5f16de281", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'DataRPT_Statement' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/12) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'DataRPT_Statement' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/12) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8008d0fc5ee848c5a60ae9fc6e0af2ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "803eef70784b4d5fb3cacd1abd7467cd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80d8531d226f4b6c9d144aaea20130e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "811ac8febf1846ed9e2db9cfc2a6aeb7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "816f7c8969da49e080916a9a6e6bf6df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8182af5eea8247f38b41d468c10b2ce5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81b1364ffbd34ef688fb059f9e80afd1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "820e68b984f6428a8bff72a178447b41": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d61489f2e3b34790905f0d2f5e32f17f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/type.json ▰… 0:…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/type.json \u001b[38;2;91;192;222m▰…\u001b[0m \u001b[33m0:…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8214ad5a0a52493aa93c363a5be2d221": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82153626f6e34225908e5d49fa73d5b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82621e9cb2ba47baafa2c1580d91740b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_99fbd40f55514a0087206be19f5b96db", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8278b10ae8974c06811e7264527858d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82aaa9fcf9ea489e89d567daf545bdf6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8a5cc8bcddb7487d872f8082c29bcdab", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "82bb77ad205b41b18346d25c709bfb04": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_46356aae8ddc45ffa519a783411ed5c3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8310490b2e384846beb367a25d2cdf23": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8348424c59c94f279f061d2ba339b17d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "835443e97f3c4fdb98f0b1947e4dde81": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "841e8ab2c5f044b4a1fadd8c2acd4a89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "841e9c1810c640d1bec6c739f60f11a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84276bda9c6c4c7280423540f4695001": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "850743cb94c341849186c864f3d1f51c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8526056c9dfe43f9942f53afdd79152d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5d47d305fe12407cbc727cfa15ea56b2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "85eb298ec6d649c4bef732d7776e1936": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_be66a8a9c8544a8c9fa4d86468c57d05", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "85ee2b46acbe42cb838ff89ee8457607": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c627a1455abe47ac921d1bd841cdd9c2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Actor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/47) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Actor' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/47) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "862b42e51d1d4c1aac66d07fc07a1961": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5344ab9f5213406f821b4fc52f34c1b6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "863bb5095d89492cb6153b3bbde5b104": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "869184bdb77644ff9f5a7dfd62a20bc7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86cabf0aa5da4a2bb523713b7f70e2c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86fb91142a524df2aea0b38e5e70ebf3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_56fafa7b834944e8ab133cf454d7c975", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "86fd50b8fd6f4dbf95b30557df477519": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "87b9a0caa3da42c3bf48158da7825856": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8214ad5a0a52493aa93c363a5be2d221", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Event ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Event \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "87ccb50738954e6d94e2d75f8194215f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_096ad7b5b4844287b88f2b76e5cf107b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/subClass.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/subClass.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "87ee460987eb400ba53ef8a8ac0f83ec": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7c27638420a14a1bb93c50865d63162a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'DataRPT_URIRef' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/9) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'DataRPT_URIRef' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/9) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "88337681b0304b969bbad61c5ec0c3b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8848879b486546d8b6b1039484813a7f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8903da96fe434ebc82efdb15a34a6edf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f0da88487b40424392885d47c76e5c8e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Class' (4) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Class' (4) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8908115ec245468a9cf70d01f6349f90": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_25cc5340c82d4a60ad273cd6483dc48e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Region' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Region' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "896ec3cb702c4e8693939179306da04b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fb7b8319d8c44e17b1e72f964c5a319b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8998ed5dbfd44af287e21c401cf9d209": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89d11dbcd6e34779a029e0cca10286a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89df658ca02348e5aef38d8b4158e772": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_eb1d608d4a384a19ae066051c956ce80", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'foo' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'foo' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "89e21dfb027c495f9a9524ec26ff204e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "89fdce4ca2f94221892e9f0d1197b8e0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7f716d2ad0e34fe8a67b1f6b8a9669c5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "8a4170094368494aa860c215fffda76a": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8a5cc8bcddb7487d872f8082c29bcdab": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8add49e7aff949c8b6aa86ecf1b8404c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8ae0c9e3aa7841308a73424fa9fac059": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8aea416f223d4311a6cf9d4f1843df79": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8b258df3426f4781afed10499392c225": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8b722d54416e4852b656d5cd0b2c5d08": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_d8b062e2e9da4af08c7e4d822f47c72e",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8bf0a3e6c09545d7a55487783e0b82c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c983236500b40628285ef1c5ffc4486": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cb37d36be2e45c5adc9fe5a43cfd1e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ccc94cf504e40eab5c7ea493f756f8b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b36ff1e5657c40c19ed169b354198efe", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8cf060d8fc7f4ecf80b318a11473c020": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b04978aca95e428ab04c656b3d39fdc5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8d0d7952de7a4da4a759103ab22d2e37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d7e37c4a725424cab94706f7c149b68": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8c983236500b40628285ef1c5ffc4486", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8d909b7c90fa4caf8ea819dbed241e55": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c4f776339f7248bc859bf49e61dbf37b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Source' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/232) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Source' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/232) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8de688d21cf147988f21e29a740ff08c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e09ff0eb87345a88389b0a6780c1167": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e496993198046a5ad9ecb6a7cfc358b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e7710a3934e4560afdc3ac42ae24da2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a0795fecba464f489c075ab0234d7580", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'hasLocation' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasLocation' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8f0597ac3d684a55bb50b09036d76fd4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f588230f1de4c58a2e8dbc1b466f0e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6c5dc20ab389471e993a2407b20e01cc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8f7a612cdc9646b1b3cdb3d2ef67a18e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fb0eac7af4b4ba4836d5695deca6d32": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_31830517c9bc4134919413ff27dcdd00", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'DataPGT_UnknownResource' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'DataPGT_UnknownResource' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "8fb1525ca3744f33a0be9f712507cb03": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fbd43f55d92442f9fb057dfd38d732a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fefa52620ae4ae798bb8698856404ae": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9d28f57475024725b8ad8e8e66376c08", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "900b7c249fbb49c59c18d2c9968f2891": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "900ea2b6683f4dbc89aa1360936bad45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "906fe2e4e22940bc9fd816cefc70277a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "907bb9cf62e74cd292ea26cd7cd8d205": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_503dd524d03a4032ab66b63d0de621ae", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'foo' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'foo' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "908de16ce10a496b991f81cfa695f0e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "90c5c0ba3d0b4e8e8194dc0bc254b191": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d773e247a00b40f592d2b8a355d67eae", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (12/12) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (12/12) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "90cb248476934ee496a5c8e1ef2b5c31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "910b3f36e0754872a132ee0076344338": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9122d486ae7a422b96e097342891fb70": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9133433c68334384a838e7bb43d46a72": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9134cccccc79418d887f13938c68d35e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91ae98fc5b2e451ba177255edf131409": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9222e80943b64fdaafbf0081aa501800": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92282a6db94f41f79fe9e13b9354aadf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4a397ba17bd747a185a82cf1a1fb4637", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9275bb009a014e058d6b737d93d89c06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92bb5e694f98436bad05b576e6aa1aab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6efa083feddf4ce497059534916b2b43", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'subClass' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'subClass' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "92bbd0f0d5a647abab9bff176af5a0fc": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6f52f700d62c455f995dbe7e60ee899e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Region ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Region \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "92f7b68f2c954de1b9543accbb64f8c7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cc13170e10c142a89c2d36848ef13812", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▱▱▱▱▱ 0:00:03\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:03\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "92fa5df4e678468cb6562d228b0f9af8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6094952cc61f414cbb9682aa3fd33313", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "930632942d004d67aca96d6b1dd1f4f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "933df8dd162440638f608b1ae6bd34da": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_17677c4248b1466baeb36a4a1725856a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Class ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Class \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "934cbfecfbe34488abddbcd88f61ef26": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_de5ed27e132945f58444c0fb1a797f17", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "939df2cace1e4c92bed3c64acf556698": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93ce4c6d2f2f43fa95a2a443f3321e4b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "945453c61da944a087f84fefa5a7d421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "94d0232fdf1a46b8ad11059dbf8162dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "94e3ac81d4924b1699a1801aaffd5349": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6691ef61f8e743e8a274bf0710c84673", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Actor' (47) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Actor' (47) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "95531688a8654c2fa47d740cd92b338f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2ebcb5a1f513410f8f703da16b3f44c1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "95725b5bc05e4576b867b6066c5cd0b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9575b3b304784e31a335e371c2d5f3a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "958d1cb2fff3485a86ad5f3d9456d579": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3fe5027f1c994fc4ba3c22f245604c13", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Event.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Event.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "95b8c8d3d31b4a938974d0f5684ef529": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_af04648c3e4d414ab666e01ee3050311", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inCountry.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inCountry.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "95d6f533e8a240c3b0d4aad2e9580335": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "960cca7f5fe44b1db8d6f1b42ec9c96a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d515e99b328d4e118174560fa329af02", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "96c381aafc6c41de80080a60c6bd3433": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96d344126fbe41159cf025667fbce0c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96e6a9c132cb4e068c01d819c9c53951": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9761b6144bff43e68155f661d777813d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5cb7eb9c39dc4ea6afbea5abce584d88", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'eventActor' (6252) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'eventActor' (6252) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "97686950407044e493db9b6e5f96abc3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6d8ac4bfc9f6436f99c1e36a4d0d0e43", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "987b6a19cb0e4a29a79c4fc5596796c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98bee394813140c68b6cb5bfaba6a10c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_51aa91d7110f4f90b69f83c790fb6b52", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'homepage' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'homepage' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "98d22f88193c47939b93d552a3041447": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_66079ff3dbe043df86ba4c8cddd7ffb7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Region ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Region \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "98ef86cf824a4d7ca12d8cb76b22bbb6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99036c6715c544ea9c50cd68621fde3a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9914c1cfebf6400aa9a8ac54763d80a3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_1b37da3c0e884470af207ab618e4d83a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "99818b0b3b334807a9d480701be490ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9983582ff7264e4cab10eed911e85f83": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "999885ce87084d309d1c8c0972124094": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d867c72e97bd48b686aac05d789729fe", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "99b484013ed3422c9c5bd2d5bfcdbb47": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99edc92ed36a4566890b4da4ed68c123": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0f786717b0094fe785ea05fec93bdf06", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "99fbd40f55514a0087206be19f5b96db": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a481076f28e4e9098fca0d75d5e44f3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_efcf3c8ce7424604b4726a5fdf8f9a97", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inRegion.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/inRegion.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9a5fe71de1ca4e949b1b61173089cd7a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_176ab88312ca4473b876b9dd94260f35", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9aa19c471c064051a8ae962b1171ec24": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cddf17d22f3447d199991a2ea1aa0564", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Event' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━  78% (2570/3302) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'Event' \u001b[38;2;151;196;35m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━\u001b[0m \u001b[35m 78%\u001b[0m (2570/3302) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9abce425fb6a448a95b5b70d2d9a1f8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9af45bf1246244c9bede98ed124371ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b60d80acd1140eb91da4ee24e3aec65": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_edc4bc9e70c3451299599dc199951288", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9c5380da6d794a228ac12ecab0d949ef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c61c2582e9e451488f01c22cc432d76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c73cea9af174a978ed87abd757dd466": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7ed46570893d4123a718f77890e84081", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9c80d8b208a44c6a9143dd3e9016d384": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_cc29a014f37240619b3c1e774e5a6b3c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasSkill' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/2) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasSkill' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/2) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9c94473b37144abb9cbe6ac26b8b64a4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7c4cb95e53f345b08c1f4439d2f4c2b1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9cd12ef1fe0c467cb7f31ce82200f9e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9e955e0fd94e4b388da05e1056c13e1e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (3) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (3) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9cee9150609e4c219279ed050a66a184": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f3fe3d08163449909f5161eb0c8d3ce4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9d0664c32a6a4f859331c90df1d1b6b2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_41d72b118f31481ca4318ca46b2915a6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasSource.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasSource.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9d28f57475024725b8ad8e8e66376c08": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d506f434f5d4df7be610f8b40fcd390": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d5e41d68dd9479db77ef9bef14835de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e6876611736455caa8d7810419c28cf": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d6e781982c5f44fcba3fbd679e951358", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'writer' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'writer' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9e955e0fd94e4b388da05e1056c13e1e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9eac31d5717d4ca696ea683f4776987c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bce8c14036354838975daf20e8437b41", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9f28ee10e68c4eb4b4b82076d5324212": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f871650a7f9452a972e3fb359f6202c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_acc2faa48c3347c3b4f58272b0119048", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a05e21f6174647dca22307a6ae256d40": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0795fecba464f489c075ab0234d7580": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0cae451b1c241beaf57344f2890c810": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_edc9a966c2634d9cbad3bac706115686", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Event.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Event.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a2798e676ae644a0bc091c23c1e7c5c1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ffc83e4385534117bc664c291338f355", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a27c2cbe14eb40aa8b071a031c694220": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a27f4bc191244980a4569f1380509b24": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a2954cc253fa4a2f9ad430ee12cec117": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a2b0b7c7cc6a4057b8743464c0fb33a8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7c95cb7b6bbf4f018a598a9ec2e7d8c9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a2d650f2905a4544a54b349d32c6d745": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5b141553b59d4a64b567117a48a0f05d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'eventActor' (6252) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'eventActor' (6252) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a32bca072f5c491cae9947d2b4cd5de9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6583d4fa4e8e465dbd8a6f7e903f9766", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_URIRef' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_URIRef' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a32dc9b3892f4087a3b824b3bab6486f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b1f35477806840a8b8a54799fe8e1398", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a37eb48a3cd74bc08b8880621c36c72f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ed62ee4dc04b400887a85c9186864cd8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'hasSkill' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasSkill' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a3a87aebeb7e47e393ed6e73309d0368": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fc64965fc2bb4303a2605992562de2df", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a41722216871421697c751905d5433e4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8cb37d36be2e45c5adc9fe5a43cfd1e0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: hasLocation ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: hasLocation \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a43f6762475244aabdff63426a9e1423": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5772089896234e52aa40e3daadc38d30", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (7/7) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (7/7) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a49f012e93be46ddb68a33c2fce2760b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fab556deb44348ee88db08d6e4166484", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'likes' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a4acb870019b4b1daabbc92ce84ed88b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a516048f6b254c4c89924978719cd530": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d8e05175e7e4468783b8f748cd69440b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'hasSource' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasSource' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a551464a398b4bc9a3480717b6e65f2d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_056a6e550f7f4f0eb763a4c9dec97a7b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Class' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/6) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Class' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/6) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a557d52c1e3247dd847c5d6870c0abf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a5878d1b00ea420a80da1504a988cebd": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_90cb248476934ee496a5c8e1ef2b5c31", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a5b9e7a95014425ab6963a48e86f49f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a5e9deebe6da40b889153e028b9a68bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a5ffe50661654304a6368878b509264c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a60161904de345dab13563494719af43": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8278b10ae8974c06811e7264527858d6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a601dcef909d423d89e184f7afefd15c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6409ed1bff345a39fc3f4b562d8ebc9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_43e9f9350be04c3897feef328fca07fa", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: Source ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Source \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a683cf075e284cb5b2e57d47b9ad12e3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e1e3e373677b43dfa26d434d98a13ad9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Region' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Region' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a68461a127d2438fabf18b90f0e7a0f3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b9a655403dd74da18f452ca364b843d7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "a69290567e9a4f809d50b4d02ad59ddc": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a6fb760fd98d448b990b6a9636df4894": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a71eeca8fd5746eea89964c6791c3b62": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_9275bb009a014e058d6b737d93d89c06",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "a78281fc9c554c57852e29bc09ac8bea": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_80d8531d226f4b6c9d144aaea20130e3",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(ADB → RDF): Export 'inCountry' (467) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'inCountry' (467) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a7a62d0a2adb4945bbff664966216d33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a7ba9072d835401592f843ed6fe9a334": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_47bee386693546e4906a547ff5556cb2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/collection' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/collection' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a81ff8d9fc6142188423abf029103491": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ef3be25a72514885a169017b63a4212f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: type ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: type \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a89b108c9fec490687b74e968dfe98f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8a41f5965ec45ed90c876c0b309b044": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8d4da8fc9f9471e9bc5d328b4ca8d90": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a903e7ef6e0946168d5422fba725bfbb": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_96d344126fbe41159cf025667fbce0c5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Event' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━  94% (3114/3302) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'Event' \u001b[38;2;151;196;35m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;2;151;196;35m╸\u001b[0m\u001b[38;5;237m━━\u001b[0m \u001b[35m 94%\u001b[0m (3114/3302) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "a96caf05dfcf41cb848229c08969a36b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_906fe2e4e22940bc9fd816cefc70277a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "a98c3bdfb31e47d5b25442fa3114f5dc": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_2cf2703a60dd432a8cafa2d44cebc91f",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "aa13cae66ac64a8e9e365748bc5ff67f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_54dc7c0868724390bf94e030c4287418", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Country.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Country.json \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "aa4a6d44d69b4c3c9e14217ddf76fbe3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa947d9e955b476686905afb94bd9a30": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ac20f1f535434e80b9db35fdf03f4c60", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'mentionedBy' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'mentionedBy' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "aab83555df50479a88c3538e90b68fdc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aaf936790e47461386f187f15e2fb58c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c9f80d60eb294a449579d9673201b333", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ab184d09c37043dbb7218a9748f24b31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab5bd1eda3b8465e8991c9dd80242069": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8848879b486546d8b6b1039484813a7f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "ab7f2a36f8354d82be9c6d8dc2940511": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_a69290567e9a4f809d50b4d02ad59ddc",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(ADB → RDF): Export 'Person' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Person' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ab8cd606859e4bfe8bb71c6096f8aa33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abdad6f869ba40529d63e6ca8d4b854c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_09c18b9e1bfa46e297e2476df6de6349", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ac0b18ff7a1c40b5b50326d891f5e5af": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_96e6a9c132cb4e068c01d819c9c53951", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: inRegion ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: inRegion \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ac20f1f535434e80b9db35fdf03f4c60": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac58fe66dce145f0be7f770a26039acf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "acc2faa48c3347c3b4f58272b0119048": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad0e243808cb46aa8605d8929e5129e2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_15f7cd15b0904731a4ce5daaa81f560b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Event' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Event' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ae2da01ed0d642abb114323e9f67d829": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_99b484013ed3422c9c5bd2d5bfcdbb47", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ae8c90ad5c7d42c4b702373327e843a6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aecca36ee5df464286c080f69a90a3b0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d7e12b91acdf4c68b11d967db6c533fa", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "af04648c3e4d414ab666e01ee3050311": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af1f098d2a8f46f9b517ac359687a2ab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b126e7213e4f4630af51f1c3fe526e58", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'inCountry' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/467) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'inCountry' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/467) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "af5d50833aa74fec9e5916a7ee76fcac": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_666b5be3143e4d1aad23ead3f9ce53ea", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'friend' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'friend' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "af651b267e5b4b11a2605b02f5a75ff3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af81fb0736e3444ab0e18760dd169e6a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_803eef70784b4d5fb3cacd1abd7467cd", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Class' (6) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Class' (6) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "afd95022a638474ebd254a4e365e0f5f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_787d5500e7da4133a75f8df78b8466fa", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b04978aca95e428ab04c656b3d39fdc5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b056cebde1384bb49944a7322a01e32c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4069f0176c3c46c081f1c64fd5d50bdc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Source.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Source.json \u001b[33m…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b0aea30c1ae54e57aec64cfa3f5e0f66": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0c72633943841ec8911af176a347b21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0d4d4d12b0449e791a866e9ec7dcbe1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_16b2c93f497d4f62aa06a35052933fd1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'DataRPT_Statement' (12) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'DataRPT_Statement' (12) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b126e7213e4f4630af51f1c3fe526e58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b133a98869b142fa817360896ddafa70": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d38bbde094c7431289f7601a13315025", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b1664273e12e42fe9ffc87283ee1ac17": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3b77a9b7d5a54d0bb587666d26fe9638", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b1c9f3985d874907ad3038ad6a836afa": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e077548daac5479a9092dd7985a85dc7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (712/712) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (737) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (712/712) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (737) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b1f35477806840a8b8a54799fe8e1398": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b213dfe9dbe6485ba9ce050603aa69f4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b2212838b5dc498cb7f633a7ceae77f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b29eb50fc0bc4a7b9abf6a7da3042f72": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b2b5e1788189446fa4ecab95341c4c20": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7e791f4fd0d54af68e2f96e3e3119830", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "b2f03524128a4c6089d808686ad5281e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "b36ff1e5657c40c19ed169b354198efe": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "b3891e36049d4b3ca529ee521cacb673": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_b63b93b6d74e4e008dc4de0268877371",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b4187694d84a486c96214682fa0b06e8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b2212838b5dc498cb7f633a7ceae77f6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b4aeebce09de4f76b56757c293f765e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4b3ea80874b4f6da320f1c11cf08363": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5a74235176fb4af3831eb25cd2e97262", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b4da93b0d8664c74bfffcd2fdf727d01": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8182af5eea8247f38b41d468c10b2ce5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b5351fcc283f4f08a4c03ba7ff4c6171": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b54aeadd1028418a9c44d660dd9a44f9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d61fc357d96646cbacbf74a072e3b738", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b57d0a227c1048d4961219ebf1d32530": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b59177f7df2e49bd8b499f81b70f6a36": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_df5c71b2fdf34623aa3b78871280b391", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b5a7dfdd273548ec9a75390e44f4f72d": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6cba2fee3ce64170a5130d70695eec26", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Person' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Person' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b5aaff1d7205458b8a9ef5457d2e3600": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f2c7dcc0c0c848e18722c628f78b8676", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b5e30a4917db413081b1003aac893141": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8add49e7aff949c8b6aa86ecf1b8404c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b60321f2d5444f349823a209b6592681": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9abce425fb6a448a95b5b70d2d9a1f8a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b63b93b6d74e4e008dc4de0268877371": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b669c7e6ace146ba8a5b4a2acd29064f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_da95283e26034646ad205320aa8900ad", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b69a1ecf8f1447ddb4f04e55212f6d97": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5f98553c1f4f4594a4b04d519700c077", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b6eed34455224c21aa7b56e9222fcf44": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3304bc08ecd648e6a566d74f17109680", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "b759d7fc0b0143e2bb2b1ca418deca36": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_1efe1b9781934efc9bf72d2632310f77",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b7c35383db9149c0bd7bc1b6c845e7c7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_908de16ce10a496b991f81cfa695f0e4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b7e9590766f74bbdb62ea28a5bbc0ff4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b817b83ccfed4b3daf48fdb2e0c33487": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ebd854f567124326b5e790eeffde107a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b81d313da9914c0dbc9401bb61e36cd2": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_306ec886b3264c6fa6df970754f7f603", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b83f5e4968a44cc1bed752f63c23d45a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b8ac74c5fc4b4eb499b6a196e187f2e5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_aab83555df50479a88c3538e90b68fdc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b8b1c716475e4043af7919e06253f606": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8008d0fc5ee848c5a60ae9fc6e0af2ca", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b90d6e06cf554533a8c4b2d0e7aead3a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5474b2535fdc4876932eb118f1f9da25", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b98c2692fc3c4837a405d58e2cb2aede": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a05e21f6174647dca22307a6ae256d40", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b9a655403dd74da18f452ca364b843d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ac6f8011d44f3396ba8b10c732253f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8d0d7952de7a4da4a759103ab22d2e37", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (3) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (3) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "b9c6b47990fe48aab0970677ab004b46": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9f506c4c28a4e38be7b3b16cf972e06": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_05199d53ef264ae6acb67ef478a436ae", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "ba1aa9d3a8414164b0a5f469e618a093": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_8aea416f223d4311a6cf9d4f1843df79",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ba49567d52134f59be958023a178943e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ba683955f5904919ad09b805dbbf6a5c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ddf39a4764c84bafb454073773b0b5f3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n     (RDF → ADB): Import 'homepage' (1) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'homepage' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ba86d6019c8a4be19f4fb3afc63e0830": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_2a09643054274217b1166b0ad5db22aa", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "bad0c11cb6ce497fb4c11bc03c533831": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bafb6c71b2174ce5a3b261d3c48cf0b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb24c652631f41bcbe0f9461372f8061": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b0aea30c1ae54e57aec64cfa3f5e0f66", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (3) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (3) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "bb3de533a75145bba916c21d660249ce": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb79559742424902a0693dc602c38f0e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb8162c2ad224fbc87044aa6b7dca2a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb8e13a4f24f4a33a7b72454d38e6092": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcaf27bfd2b94b088aee76f8c1c0b394": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcdf72b37a4d418ba3a7f97da7865629": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bce8c14036354838975daf20e8437b41": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd7c88d2b8ac430ebe4d6e8146ad4a50": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd8b2fd62451435a96df5db182c28f23": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5c5d3d5139c44a7abc6616d674aab82c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'inRegion' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'inRegion' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "bddbfacd0981464fb4bc7c3380d9293a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be38c1c4704e42eaab72fa917a31551f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be66a8a9c8544a8c9fa4d86468c57d05": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bea5ba1e9db740a29147d2a2f105c8a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c01224a7670240deb02a974dc360f0f2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0325b7f26d5436d99bee8a72fcd6d84": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_51c57fbccac34167855a2270c365b9b2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c050e033d5614e97a63b09513cb6eb10": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_9575b3b304784e31a335e371c2d5f3a5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c05911de0b4840c9a5cae04a58a58eec": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e00e4a5e870c4ae2ab15e9ee4dafbfb3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c05da93fed3d4d47a958f969dc575242": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4c0629fb41e446bcb8c5bf7a6ed97820", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c06094c52f354bf887b9573ef728ba6f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c09d4aa3bbb440eea986e872479dd746": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_04e0e2fbdcbf43bdb6fd3a1cb1b9a5ba", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Event' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Event' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c0e10fa9eeac4a66ab0a90c7b3c2fe80": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_ea6b9fdbcaa14135be29b6980706130f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'source' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'source' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c0e5df890daa49eba05e2b3fc0c3a096": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_113d67880f1f4a48a88e1425b163cdb8", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c1339ae8330144a0ba9a671411985389": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c17bf36fde304a7f841ec0f7657f1c4b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4c7729ca0129498a99a5c1a33117c21e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (12/12) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (12/12) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c1a0f2be84cd45749b0043f6510a4bfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2bcea063da949c2b0bf0730c41b55ac": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e7491ac5da904f1f8f06bc2643650839", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasLocation.js… \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/edge_collection/hasLocation.js… \n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c3109b609f56431188eda471f4755219": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c35fb525a58246eebbf2fef1bd336b5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c3e8856f18d64146a238e5ec533ba596": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_81b1364ffbd34ef688fb059f9e80afd1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c45d35ffd0884d7b9cf302de9a83f441": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bcdf72b37a4d418ba3a7f97da7865629", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Actor' (47) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Actor' (47) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c48a252f55d64e78aadc927d94de4b4f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_380f4a19bf51442e8bc93b77abe405d5", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: eventActor ▰▰▰▰▰▰▰ 0:00:01\n
\n", + "text/plain": "Collection: eventActor \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c49b5805f1bb4cd79fd87111fbd96118": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_23f1b6f7b7564c78aaf32ed5b7f382a2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Event' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━  91% (3000/3302) 0:00:01\n
\n", + "text/plain": "(ADB → RDF): 'Event' \u001b[38;2;151;196;35m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━\u001b[0m \u001b[35m 91%\u001b[0m (3000/3302) \u001b[33m0:00:01\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c4d12e6c75674af08b8adb827ab57615": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4d4cc4bf5c54d6691135b25ba4d0c84": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c4f776339f7248bc859bf49e61dbf37b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c50644b32a9a416eb8590251c6fcbcb0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d988cd5ee4a34d2e8f86fef5093907ce", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c5418daa64ef4c90ae44c7e845342cd2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5474e0551fd4080bb2c8b62cef9f3a1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_91ae98fc5b2e451ba177255edf131409", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'DataRPT_Literal' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/2) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'DataRPT_Literal' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/2) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c627a1455abe47ac921d1bd841cdd9c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c62a384e50324db581016107e3a22952": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c643b1c5505f4f0c83895c0b3e726657": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_900ea2b6683f4dbc89aa1360936bad45", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c685227c7509453ab0ba7c0a25ac3931": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_db1507b61b2447beb7226be27f091e63", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'type' (5) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'type' (5) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c734fb7abf734de8a786b74490dbdc45": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5483cddfc4a441bba4e38e06d531573b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'said' (1) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'said' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c7d57948e351421a8cc2329cabdad6d1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f3fd59269d1740ef80c59a6dad9c2319", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c81a9e5eb7bd497783e94cced16b94d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8a31feebbbd4479bb4d3149f703b482": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4801a13b780346d888b36082869de287", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (5) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (5) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c9855520f70e4202956e0d0c5dcfac69": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9de6aa0f8464e86b5746365dff1bd28": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0d9071e019d242b8835bd761a1e7ccb6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "c9f80d60eb294a449579d9673201b333": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca414902580045019738e070dd4d345b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_defc0ab1aa6f4534b882322c9809cabf", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ca9ee619db5145a7b14ef9eaf7b282ef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cb0587dfec79428a8171b6e29aa7b75c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a8a41f5965ec45ed90c876c0b309b044", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cbd2e6e8012d489da9a645a46a5c86e6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5fe9196bb6434bc4a410828e6d966c1d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cbf2ac2f71e24256bcae1e4321e39d58": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_88337681b0304b969bbad61c5ec0c3b4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "cc13170e10c142a89c2d36848ef13812": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "cc29a014f37240619b3c1e774e5a6b3c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ccaa03e4315e4945b5fd1c01e084369d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ccbc35240b3648ae9b30318be78f7b79": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_f3bb03a8be4645cfa5f39fecdee44057",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cd435a80b43340cc81e55108f7c686b8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bddbfacd0981464fb4bc7c3380d9293a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/1) 0:00:00\n     (RDF → ADB): Import 'Property' (2) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (2) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cd5583d33cb74601a6c1d822f5014846": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd8d836cb70a42849cb48facc90fd6e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cdd0250b550f438c863d72f4706d9131": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_86fd50b8fd6f4dbf95b30557df477519", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cddf17d22f3447d199991a2ea1aa0564": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce2a57c811794249afb7fa5c49af992b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b29eb50fc0bc4a7b9abf6a7da3042f72", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ce982e0638b4403dba8bb46e8402d506": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ced9a003eb3c4db0b9c67cf5d4eba3ec": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4c00c2738c77446291a8a88da8061603", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'hasSource' ━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━  65% (2130/3302) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'hasSource' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;2;94;49;8m╸\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━\u001b[0m \u001b[35m 65%\u001b[0m (2130/3302) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cf1f8b24c7b64859b87bfea6a16f7dd6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf37b65d12b54c17b1ed4c98f85bff2b": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_850743cb94c341849186c864f3d1f51c", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "cf53bc54ba0745639e93548d2d70a5f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cfbd898fda734c0585f5c9901a4c629f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8fb1525ca3744f33a0be9f712507cb03", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'subClass' (0) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'subClass' (0) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d0006980ed5642088dfb0f4766723316": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d02585418dad49a89330b587b87e9c5a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d062be96b4164b0fa74f3492465b7a63": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5c6159ac9941405ea2399930e3385856", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Location' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/467) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Location' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/467) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d09c5ec60dce44c1a554ab5708e1a06a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_4e9d7516d4b447e9af814d0ef8e1a33e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d0fb3aac531b474d868868ed2bdceaac": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d6fbeecbce094ee681da46d7836b5501", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d1ae873ccd9b459b8c8074d0cf87ff84": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1bd0d1096f042db9f2e41892c8855ff": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_67989ac8ad2a4f1a9919736d384cd294", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'Actor' (47) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Actor' (47) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d2188b7ea4ec494591acd144708bd77a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f43396b324cf46b4b10c0f21e3917631", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d2a5ec6f84244ed58b1cbf3fadcffe9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2bc18ff98e142c58fdf18a9075d4c2b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2f6d27d78f943a38a86a253e8b445de": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8998ed5dbfd44af287e21c401cf9d209", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d313578b458c4028ad993f1ac95c743a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_5c748f9b979f4fe499a05558c49668ac", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Collection: inCountry ▰▰▰▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: inCountry \u001b[38;2;91;192;222m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d359bbfd2725461baca4d2bd87e7c8d5": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_67e0fafdd9634aa69ac889342be69b51", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'Country' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Country' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d3891a12da3149f78927bc97712eecba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d38bbde094c7431289f7601a13315025": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3abeb9ccf0c42ed8de36317f3c01a47": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_6c3b09e3d1cf4dff8702402fc413cca0", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Actor.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Actor.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d3cf60c5428e48d19db119ff4d747021": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_eae497edc98c4a2d81889d2cb4a3b621", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d3d17d3949b6429a8a29397f99936256": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_feebddc745d8419fb64f0d144dc5c95b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d49a46b7410047008abd6117ba5cde00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d4f26543a05649eab36d2d2e430bf868": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d508449fbe214b4e92027329c253ba28": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_29ce0c02552f4a80aba63d003d1d13bc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'hasSource' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasSource' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d515e99b328d4e118174560fa329af02": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d51d672e72484bf8abebd43741065c75": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_59c050129aa24f939162cf2a24329d1f", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d544f1ae4c1c4355b02b6b58ffe4e227": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d59751a9fa8045d884ebc30aeeadca70": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_7c21761ffbc04fd8a11c87bdcc07df64", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'likes' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d61489f2e3b34790905f0d2f5e32f17f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d61fc357d96646cbacbf74a072e3b738": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d62264402f0940f9a3658d834661d80a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_26ffe01988374a8ebcf74ed0c30773fc", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d66eb2a7b7f943e2b9bc8f3c3567da79": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d911bd1cb75941509e9f3578e037785b", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d6e781982c5f44fcba3fbd679e951358": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6fa32c7e0794b78972d889c2ce55546": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6fbeecbce094ee681da46d7836b5501": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d711c89e86da452ba56a5d0fa177fc6e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bafb6c71b2174ce5a3b261d3c48cf0b4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "d773e247a00b40f592d2b8a355d67eae": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "d793b865039d47fa966eb68c790b62a6": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "d7e12b91acdf4c68b11d967db6c533fa": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "d7e349f506e34b12b72bc284c874c515": {
+          "model_module": "@jupyter-widgets/base",
+          "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "d7f0e36535a7471c89e7992b8d1b7c01": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_70bb188603354ddca66d4146ec8e471c",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d7f6a5acbacb4f95950ecb48616a024d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d84a5c85435840f0b1eee9c6f61f2bb7": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_efd59aa2a7474984af289f75f2c04b6a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'DataRPT_BNode' (0) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'DataRPT_BNode' (0) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d84cd061cf7440f287a581afe6f2e2a4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_0ada0c44b2294efb8e7dc0307bb19fef", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): Export 'subClass' (0) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'subClass' (0) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "d867c72e97bd48b686aac05d789729fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8b062e2e9da4af08c7e4d822f47c72e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8e05175e7e4468783b8f748cd69440b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8ee71ebbae045fd82b67ed6fcb1d2ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8f70e21fa5d4ef0a8185dd8537c8c42": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d911bd1cb75941509e9f3578e037785b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d96d5a9fba94419f93f6fc9f21e4ab10": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d988cd5ee4a34d2e8f86fef5093907ce": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da1a326b026644db9c1d3f956dbf35ed": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_465fbf12cec047dbb66c016aab1d876e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "da95283e26034646ad205320aa8900ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "daad61352bce433bb1d55a7120bf6782": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -5523,24 +54394,180 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_8392609e27f64746bd7cb584b43c9872", + "layout": "IPY_MODEL_6a1f66e50ad74367a52d2ae3f8f48f12", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n
\n" + "text/html": "
Collection: Actor ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Actor \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "8392609e27f64746bd7cb584b43c9872": { + "db06c3e74e6b4d0e87aba61e4386e521": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db1507b61b2447beb7226be27f091e63": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db4f225255194d17bb18112c8a4d10e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db682b0171354a50bc8e7ae48d5d49f1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5589,37 +54616,10 @@ "width": null } }, - "01f90b74e45242d6b630726096ced105": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_070a0cf984774302b8afaf5cf0a321bd", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: type \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     0:00:00 ArangoDB Import: type ▰▰▰▰▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "070a0cf984774302b8afaf5cf0a321bd": { + "db764534dfec4bc3a9ef40f37c154129": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5668,10 +54668,10 @@ "width": null } }, - "5a4cf49e7d584df18700cbb9b9415b4b": { + "dc0b77ee6c8b427da5b1969576a0fe55": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -5681,24 +54681,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2761dd724d38425b8595176fff7853b5", + "layout": "IPY_MODEL_ae8c90ad5c7d42c4b702373327e843a6", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): 'DataRPT_BNode' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'DataRPT_BNode' \u001b[38;2;151;196;35m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "2761dd724d38425b8595176fff7853b5": { + "dc71d23ca2c44ff39aad451bf7bb9bb8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5747,10 +54747,10 @@ "width": null } }, - "63d916b573c74a8b8bab9292113e70fe": { + "dcb2d51e15c7495fa7394660acfada07": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -5760,24 +54760,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_ab91635eae8b44f293e8498b34af26c7", + "layout": "IPY_MODEL_0bf8f16e94f848d6bb465dc307c0e90b", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(ADB → RDF): Export 'hasLocation' (3302) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'hasLocation' (3302) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "ab91635eae8b44f293e8498b34af26c7": { + "dce9a62edd304dd986fc904eaa2be8bd": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5826,37 +54826,10 @@ "width": null } }, - "a6f2feceec124ed7acefe4e82a9b4f35": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_c7709f76676146d09d595b62b3186fdb", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "c7709f76676146d09d595b62b3186fdb": { + "dd1262da5c7747bdb20dcfd9d0da8251": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5905,10 +54878,64 @@ "width": null } }, - "05b7c291aa4d4b54becbb0d09dc0e592": { + "dd221f9487144800895f876010e45db1": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f467e34102c644b3bb68bedb0fccf318", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (27402/27401) 0:00:03\n     (RDF → ADB): Import 'Country' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (27402/27401) \u001b[33m0:00:03\u001b[0m\n (RDF → ADB): Import 'Country' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "dd28a24eec3d4539bfc5be068fdb4717": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_945453c61da944a087f84fefa5a7d421", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "dd548245268443c9b84ad36e2b7659e0": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -5918,24 +54945,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_fc4fb9041d4343c1806556411b7aeb8c", + "layout": "IPY_MODEL_e4e29c64dbaf484b9d4d2ee2e820445e", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "fc4fb9041d4343c1806556411b7aeb8c": { + "ddf39a4764c84bafb454073773b0b5f3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5984,37 +55011,10 @@ "width": null } }, - "a62666647d2b425aaa2822b0f2a5e661": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_a8ff7f2a8ed54d6e8896c8afc8bd9a7a", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "a8ff7f2a8ed54d6e8896c8afc8bd9a7a": { + "de3564cef3e44c2fbc0a25953d1b4500": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6063,10 +55063,10 @@ "width": null } }, - "6fce329f1acc437eb5143b953cd0b7c8": { + "de3bbb53c6704b888d9b9754434bfdb9": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6076,24 +55076,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_f8c85c4dcb33421aaa10b481a5562a2a", + "layout": "IPY_MODEL_ee7a0a507eae44e192b9d10ffdaf26de", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n
\n" + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "f8c85c4dcb33421aaa10b481a5562a2a": { + "de5ed27e132945f58444c0fb1a797f17": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6142,10 +55142,91 @@ "width": null } }, - "6d1cbe4d1bb64a9194a03e88c6b1e5f3": { + "de76ab207aa24b5187e8df6a244330f4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_869184bdb77644ff9f5a7dfd62a20bc7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(ADB → RDF): 'subClassOf' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'subClassOf' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "de8a98213fa542af9f90496371ce7058": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_bb8162c2ad224fbc87044aa6b7dca2a9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "de930ca00f7d4853afa6d2cd832ecd06": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_78ac12ef772441a49ab15c1a583efed1", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "de9df9c6f97d493da4a4236a4673e0c2": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6155,24 +55236,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_ca680d45310b44de8dde511fb2bf9586", + "layout": "IPY_MODEL_cd5583d33cb74601a6c1d822f5014846", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): 'type' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/5) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'type' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/5) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "ca680d45310b44de8dde511fb2bf9586": { + "defc0ab1aa6f4534b882322c9809cabf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6221,37 +55302,10 @@ "width": null } }, - "84925f8f31824052ad993a42f966491f": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_79d0ebdd2a89415980760d64f679aa7b", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "79d0ebdd2a89415980760d64f679aa7b": { + "df5c71b2fdf34623aa3b78871280b391": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6300,10 +55354,10 @@ "width": null } }, - "28f9688942a248e288fbb727e7eebc62": { + "df96d0217860475fb2115fd656c8e075": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6313,24 +55367,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_11c4e7e954b44c4c86a9cc955be5ae1e", + "layout": "IPY_MODEL_3ecde2ba048344a9877afe06fae66e02", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: subPropertyOf \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     0:00:00 ArangoDB Import: subPropertyOf ▰▰▰▰▰▰▰\n
\n" + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "11c4e7e954b44c4c86a9cc955be5ae1e": { + "e00e4a5e870c4ae2ab15e9ee4dafbfb3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6379,10 +55433,10 @@ "width": null } }, - "5c491da14b26454dacc151d691dc8cda": { + "e0515ddef3b54c19a674914c12730848": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6392,24 +55446,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_637ca5bdeda34c628e155eb845822f7e", + "layout": "IPY_MODEL_63bac0edac794f03b66da29a7d1d933d", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): 'DataPGT_UnknownResource' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/1) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'DataPGT_UnknownResource' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/1) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "637ca5bdeda34c628e155eb845822f7e": { + "e077548daac5479a9092dd7985a85dc7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6458,37 +55512,10 @@ "width": null } }, - "14043b1e5a024c2c9de96dc1ef80cc69": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_c9bc8a0c2e2948349479061cb80f0634", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "c9bc8a0c2e2948349479061cb80f0634": { + "e097249a1e6c484f9d1c54e8e76bf5a4": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6537,10 +55564,10 @@ "width": null } }, - "645c43cc66e74996980bf761878dc058": { + "e108a1590816436995542b612fedce0c": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6550,24 +55577,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_378aa87bb1204456b3c458d5d7eb2451", + "layout": "IPY_MODEL_f777d49fe0d0408f8df7051c16a726e5", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: type \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: type ▰▰▰▰▱▱▱\n
\n" + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'type' (2) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (2) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "378aa87bb1204456b3c458d5d7eb2451": { + "e15e3352f99340069470a8d33416986f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6616,37 +55643,10 @@ "width": null } }, - "8b9f1ace152146efb018a69ffa44a923": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_bc2462ca91b245f5bc783e89af1be952", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "bc2462ca91b245f5bc783e89af1be952": {
+        "e1e3e373677b43dfa26d434d98a13ad9": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -6695,10 +55695,37 @@
             "width": null
           }
         },
-        "ad273e4bc37141e894b7aa9b3944c2ad": {
+        "e202d4e312114fae8ba6694151cfbbd5": {
           "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
           "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_f2b43ef11cf7421295d4c96b95c5e703",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e28d9f03ff10486fbe6f47ea396bc610": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6708,24 +55735,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_90ded7fa35bf4d7b9158a6245254bd61", + "layout": "IPY_MODEL_2cd5ecb36d81498595f558f842e23c05", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "90ded7fa35bf4d7b9158a6245254bd61": { + "e2dab9c4ac714611a7d92f5d54e1a28b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6774,37 +55801,10 @@ "width": null } }, - "bbd05eae3a9c4a87abfb89b2fa305df1": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_fb5ba4b4ac504bbcae9d2f87e29fae08", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataPGT_UnknownResource \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     0:00:00 ArangoDB Import: DataPGT_UnknownResource ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "fb5ba4b4ac504bbcae9d2f87e29fae08": { + "e34293eb4991417b9519a1029276803a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6853,37 +55853,10 @@ "width": null } }, - "187eb516a1ae418b9f5599e5388a6c54": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_f57975d49e7a49d0a7c4bac35af2e707", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "f57975d49e7a49d0a7c4bac35af2e707": {
+        "e39bf2d80ac94271bdeabee0c0c3cbb1": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -6932,10 +55905,37 @@
             "width": null
           }
         },
-        "e6cabf8b877c4a529dc06c11d2799dc7": {
+        "e3ed2561d46c462492517def810ef87a": {
           "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
           "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_9133433c68334384a838e7bb43d46a72",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e492859f96704105b908c0f9e94f5aed": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -6945,24 +55945,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4dab918581ac47f19d87c6ed4b5510d6", + "layout": "IPY_MODEL_06d16a9226c94ce99cc1ba0de6828a0f", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "4dab918581ac47f19d87c6ed4b5510d6": { + "e4e29c64dbaf484b9d4d2ee2e820445e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7011,37 +56011,10 @@ "width": null } }, - "5d24e5e2c2c94bd7be68cab18ed0d54a": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_1dbd5f86325c4634a3646a811d0c5b79", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataPGT_UnknownResource \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: DataPGT_UnknownResource ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "1dbd5f86325c4634a3646a811d0c5b79": { + "e58f215244e64ff68be337fd5a183058": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7090,10 +56063,145 @@ "width": null } }, - "9d7882a570e544f6984d5cd65db8e30f": { + "e5b22f764cb549bea4bafbbab1c80313": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f4c3e03b26e84299a72432247e3211c2", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "e6256c3b21914adc871cf4db6baf7fee": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_af651b267e5b4b11a2605b02f5a75ff3",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
Collection: Actor ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: Actor \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e62cf939fd2c47408098ba78de765f0a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_291de7e0668e447c917b3a7134cae0fd", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (253/252) 0:00:00\n     (RDF → ADB): Import 'Band' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (253/252) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Band' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e68bc4e082df4493ba36e26684b62fa0": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_c3109b609f56431188eda471f4755219", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/collection' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/collection' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e68cc58160134aa99a339cf9d726fd8a": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_387e8f25a72745968de20c93174fb8b3", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Literal' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Literal' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "e6c4596dd3914ee2b7c338eff8bcf647": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7103,24 +56211,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_917bdaff66d44d7584c83a15c825b348", + "layout": "IPY_MODEL_e58f215244e64ff68be337fd5a183058", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "917bdaff66d44d7584c83a15c825b348": { + "e7491ac5da904f1f8f06bc2643650839": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7169,10 +56277,10 @@ "width": null } }, - "eb7475d731a944c9b81f63b8590ff3f5": { + "e785484e947d4bce8dd4020c92d32681": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7182,76 +56290,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4b99b0630ce440dfb3de98cbea514472", + "layout": "IPY_MODEL_eb48ef60fdf0417082c2c74dff515ef3", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (7/7) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (7/7) 0:00:00\n
\n" + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "4b99b0630ce440dfb3de98cbea514472": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "39975c741ff64d7daa6606fbbb56cb8f": { + "e7b1063bfccb405ea38b0fac7e2ab121": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7261,24 +56317,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_970332934439402cbd8b34fa470e696a", + "layout": "IPY_MODEL_bb8e13a4f24f4a33a7b72454d38e6092", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (7/7) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: Property \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (7/7) 0:00:00\n     0:00:00 ArangoDB Import: Property ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(ADB → RDF): Export 'Event' (3302) ▰▰▰▰▰▰▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Event' (3302) \u001b[38;2;91;192;222m▰▰▰▰▰▰▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "970332934439402cbd8b34fa470e696a": { + "e7e96edf087640c5a618deb016e4d277": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7327,10 +56383,10 @@ "width": null } }, - "19ffc23068b44fb791f18c3ca93f255c": { + "e8100f2fe07643b280aef789317c55e4": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7340,24 +56396,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_c58529b8b756480fb8a7177b1b4f446c", + "layout": "IPY_MODEL_31df91153fe447bf8b4d5c2fbbded6e1", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "c58529b8b756480fb8a7177b1b4f446c": { + "e815564404004a3391d274458502ce9c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7406,37 +56462,10 @@ "width": null } }, - "6b9f73dfe80f47459fb99e11ca099d45": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_20ffded7a8164953ac6427b81f48d700", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "20ffded7a8164953ac6427b81f48d700": { + "e849e373b5fd4798b5efae255bba65e7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7485,37 +56514,10 @@ "width": null } }, - "f4604c4e93634d4eb397a73656b84428": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_a6aba994741c478db57553f48f0862e1", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "a6aba994741c478db57553f48f0862e1": { + "e86234b816a148f482c6f0d7fc241675": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7564,10 +56566,10 @@ "width": null } }, - "8e67325edc404ea0a3ea5831b402f2ba": { + "e8a65707044c47cea44e778d77ecd8a5": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7577,76 +56579,51 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_257df207329b4db3a6dcfe3488f44707", + "layout": "IPY_MODEL_ab8cd606859e4bfe8bb71c6096f8aa33", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "257df207329b4db3a6dcfe3488f44707": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "e8be2a32f6d341998985b2c1f4e3d9c9": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_95d6f533e8a240c3b0d4aad2e9580335", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
           }
         },
-        "c99dce27f0bd45d486888c8594159d7a": {
+        "e91a8d9c045142c88600528a20845161": {
           "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -7656,76 +56633,51 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_d1b248b830bc4de2be55d9e00c555cf1",
+            "layout": "IPY_MODEL_8de688d21cf147988f21e29a740ff08c",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (11/11) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Literal \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (11/11) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Literal ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'writer' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'writer' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "d1b248b830bc4de2be55d9e00c555cf1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "e9716ce6050143ad814e61e4be7c29c4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_fa8313cdc1884277a8b7b627d7873f75", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (4) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (4) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] } }, - "f73ac361e1a6496399a7e6ef8f536ed9": { + "e97722a842234f0da935308222ef07af": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7735,76 +56687,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_3e5ce57a43c44682ab27b341725c9cdc", + "layout": "IPY_MODEL_037bf3dcddc04024ab27ab2c67c6e494", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (11/11) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (11/11) 0:00:00\n
\n" + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (2) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (2) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "3e5ce57a43c44682ab27b341725c9cdc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "18f971e8a5564de3a443aeee11506522": { + "e9c373c0a0b14537bcca1d43a4aa7d58": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7814,24 +56714,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_1d2224ef32a2471390016c487eebdc03", + "layout": "IPY_MODEL_6bd89d16c4d649538dc7213f8abc7aed", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "1d2224ef32a2471390016c487eebdc03": { + "e9d399758a9c466188e5ed4c7076832a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7880,10 +56780,10 @@ "width": null } }, - "3cf793a681e54b49af833c758869e646": { + "e9dcbbb06e584549ba0adbf846ad8999": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7893,24 +56793,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_fb292dca1c644e00be5203be17eb9b09", + "layout": "IPY_MODEL_8ae0c9e3aa7841308a73424fa9fac059", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (20/20) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Literal \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (20/20) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Literal ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "fb292dca1c644e00be5203be17eb9b09": { + "ea218a29d344434abccaf303b0044dca": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7959,10 +56859,10 @@ "width": null } }, - "1edeb3a3438645c790a213a859131f95": { + "ea632dc371e54437b52c5b22112b0e8e": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -7972,24 +56872,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_da18f12264f94c8781507ed587f9fb53", + "layout": "IPY_MODEL_bad0c11cb6ce497fb4c11bc03c533831", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (20/20) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: Zenkey \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (20/20) 0:00:00\n     0:00:00 ArangoDB Import: Zenkey ▰▰▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (4/4) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (4) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (4/4) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (4) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "da18f12264f94c8781507ed587f9fb53": { + "ea6b9fdbcaa14135be29b6980706130f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8038,10 +56938,10 @@ "width": null } }, - "024794f3124547ec9826e3a94407a545": { + "ea833033e1c24a8faf3bec5e29418b5e": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8051,24 +56951,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_74c1efb3701d4a0983f6c5eea22402a6", + "layout": "IPY_MODEL_b9c6b47990fe48aab0970677ab004b46", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "74c1efb3701d4a0983f6c5eea22402a6": { + "ea91f40791f247118cbfd30f0a8e0209": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8117,10 +57017,10 @@ "width": null } }, - "4d596c6378df440a8a752ce055c26c1c": { + "ea9cbfeffdc64559af9b768846b634a5": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8130,24 +57030,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_d641f7f4975947d5ad4a9d473a3b6d45", + "layout": "IPY_MODEL_326423bae4c54057ad221e7c3077ad64", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (20/20) 0:00:00\n     (RDF → ADB): Import 'subClassOf' (8) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (20/20) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'subClassOf' (8) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "d641f7f4975947d5ad4a9d473a3b6d45": { + "eae1dc1f0c53488d9161546790aae34e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8196,37 +57096,10 @@ "width": null } }, - "083e78190707493a8fd6edf09b97b0cd": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_3bcca6a235ec46d491c9ccd7feb43335", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataPGT_UnknownResource \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataPGT_UnknownResource ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "3bcca6a235ec46d491c9ccd7feb43335": { + "eae497edc98c4a2d81889d2cb4a3b621": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8275,37 +57148,10 @@ "width": null } }, - "9054e242c46c4851b6fa80e61212c7ac": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_a4ca952e39824fdf8391419fa05a79b5", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "a4ca952e39824fdf8391419fa05a79b5": {
+        "eaeea446d3f74ed6adabfa5646ac05a2": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -8354,37 +57200,10 @@
             "width": null
           }
         },
-        "ae8d8107b06e44ca93dea02970a9f249": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_b0921c20c9064e24af4cc089d8391449",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_URIRef \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_URIRef ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "b0921c20c9064e24af4cc089d8391449": { + "eb1d608d4a384a19ae066051c956ce80": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8433,37 +57252,10 @@ "width": null } }, - "37b3248d6772424eb60a7e971ecd02b1": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_f634630cea00413faaa7b0411b55f795", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▰▰▰▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "f634630cea00413faaa7b0411b55f795": { + "eb48ef60fdf0417082c2c74dff515ef3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8512,10 +57304,10 @@ "width": null } }, - "7ab128ea18a746f4969526ebb3171a27": { + "eb609f79887b4c7b9c796b802290f645": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8525,24 +57317,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4e8d612cd3af44248421dc9dce4ae418", + "layout": "IPY_MODEL_3983a55e940b4729869ddcc63b83bb51", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: writer \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: writer ▰▰▰▰▰▰▰\n
\n" + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "4e8d612cd3af44248421dc9dce4ae418": { + "ebc417617758470db76e670fe62473d5": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8591,10 +57383,10 @@ "width": null } }, - "154e7c01b36e4a6f8f6b6c95ae930fbe": { + "ebd4df3b9f144ea18b91234936f1b6a2": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8604,24 +57396,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_da3673541a9a43d790679a1cd27b1e35", + "layout": "IPY_MODEL_6198ee915b6148259ac259d5d8709217", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "da3673541a9a43d790679a1cd27b1e35": { + "ebd854f567124326b5e790eeffde107a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8670,37 +57462,10 @@ "width": null } }, - "80bf39d6f8d24250b39ac0a599968566": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_48fc42804d1f4c39ab5c121c804c15db", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "48fc42804d1f4c39ab5c121c804c15db": { + "ec967562785641e6b0c0aaedd4946827": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8749,10 +57514,10 @@ "width": null } }, - "59396ffe39ea4b93beffcaf1107a99e7": { + "ece3c57da50247d28899dbc8f3178856": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8762,76 +57527,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2554a40b9c0145cabf9b130ce942e09e", + "layout": "IPY_MODEL_68a631ba14a04579a21076e608113f5b", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: source \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: source ▰▰▰▰▱▱▱\n
\n" + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "2554a40b9c0145cabf9b130ce942e09e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "024fb25b58194b49ad15c2ad689300fc": { + "ecf4cf0278e4442188384c7e7c2d7e56": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8841,24 +57554,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_7f8f299bbac840688fb806012e52afb2", + "layout": "IPY_MODEL_4353e4aefa3b4d9a9d57249b27df4932", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "7f8f299bbac840688fb806012e52afb2": { + "ed62ee4dc04b400887a85c9186864cd8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8907,10 +57620,37 @@ "width": null } }, - "643e339e031842f0907dc830b6ee151a": { + "ed9195442d784e6d8550886ee8d67aa5": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8e09ff0eb87345a88389b0a6780c1167", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "edba16230f7c4f9db1cbaa9ad78b8bbc": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -8920,24 +57660,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_f160e75392014b2c9ac8141dd6d429a3", + "layout": "IPY_MODEL_562c5eb6af7b48cab01a04d36df6d8a0", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (6/6) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Literal \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (6/6) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Literal ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "f160e75392014b2c9ac8141dd6d429a3": { + "edc4bc9e70c3451299599dc199951288": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8986,37 +57726,10 @@ "width": null } }, - "e9ce05ba301a42029120497a2856ce2c": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_2fc5d453ea01439589427d19fcb8a908", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (6/6) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: friend \u001b[38;2;91;192;222m▰▰▰▰▰▰▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (6/6) 0:00:00\n     0:00:00 ArangoDB Import: friend ▰▰▰▰▰▰▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "2fc5d453ea01439589427d19fcb8a908": { + "edc9a966c2634d9cbad3bac706115686": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9065,10 +57778,37 @@ "width": null } }, - "e4b9fdeb356d4317900435592a2cce8f": { + "ee08f8a0423141508d6163d09448e7a4": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3f2f2a4d7c484682bf12ded64a1ceee7", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ee1ee485ba5d4618906048b066e5b6b9": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -9078,24 +57818,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2e1a3dad266c4481a88f8e97cf89a1a6", + "layout": "IPY_MODEL_d6fa32c7e0794b78972d889c2ce55546", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): 'Actor' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/47) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Actor' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/47) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "2e1a3dad266c4481a88f8e97cf89a1a6": { + "ee751b1aded24d2fa4c07f2779e2a049": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9144,37 +57884,10 @@ "width": null } }, - "cca8a65fe7964b40b1b3903fd13a9ccc": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_9ad6a405ec67438d83837fa952e92912", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "9ad6a405ec67438d83837fa952e92912": { + "ee7a0a507eae44e192b9d10ffdaf26de": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9223,10 +57936,37 @@ "width": null } }, - "1521b81d67b44c878d14c9fca516442f": { + "eeaeab711cca4776bbf9d852b61d2744": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f65b348bdebe446ab8381f928147bb67", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "eee2941003754994b27156607ed4d79a": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -9236,24 +57976,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_8329cfb128b5412fa37e8449a3dcd1ed", + "layout": "IPY_MODEL_1d6d26d7b5a642529791ac860d335e29", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n
\n" + "text/html": "
(RDF → ADB): RPT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (3/3) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (3) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): RPT \u001b[38;2;191;35;196m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (3/3) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (3) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "8329cfb128b5412fa37e8449a3dcd1ed": { + "ef3be25a72514885a169017b63a4212f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9302,37 +58042,10 @@ "width": null } }, - "112e6b19eccb4d7d926a22e7ee4711ad": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_0d158161a3864a12b3bf3e5606653884", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "0d158161a3864a12b3bf3e5606653884": {
+        "ef946e47d6e74ed6a4441e6aeba6ac07": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -9381,37 +58094,10 @@
             "width": null
           }
         },
-        "943dbdccdee14f9181cd6ddb5649ba6e": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_9d2fc8f153f6417199bff4da8ff1da9d",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "9d2fc8f153f6417199bff4da8ff1da9d": { + "efcf3c8ce7424604b4726a5fdf8f9a97": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9460,37 +58146,10 @@ "width": null } }, - "e9532a22334d4cb58d467aea26a078bd": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_64953fecd79344a288fe45e239340586", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (5/5) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: type \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (5/5) 0:00:00\n     0:00:00 ArangoDB Import: type ▰▰▰▰▰▰▰\n
\n" - }, - "metadata": {} - } - ] - } - }, - "64953fecd79344a288fe45e239340586": { + "efd05d0c9db0475b86d43a4a7a269fe1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9539,37 +58198,10 @@ "width": null } }, - "37aa954141534869942a355e348d1bc5": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_8c3d7146d54949aa8fe26416f332a39e", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "8c3d7146d54949aa8fe26416f332a39e": {
+        "efd59aa2a7474984af289f75f2c04b6a": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -9618,37 +58250,10 @@
             "width": null
           }
         },
-        "7a195dd506874f14b6ea7fdcb3e17d5c": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_f6059df303154670a928b198a0091d0a",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (9/9) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (9/9) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "f6059df303154670a928b198a0091d0a": { + "eff0b0606bdc40c88ebbd0509f4e8f14": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9690,44 +58295,17 @@ "overflow": null, "overflow_x": null, "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0e1a16d9193541d6828cc29365915a45": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_6fee3fa7e01e45a89733e4ac0f084a27", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (9/9) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: mentionedBy \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (9/9) 0:00:00\n     0:00:00 ArangoDB Import: mentionedBy ▰▰▰▰▰▰▰\n
\n" - }, - "metadata": {} - } - ] + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6fee3fa7e01e45a89733e4ac0f084a27": { + "eff7fd5f3f574ed38cfcafb5495e83c0": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9776,10 +58354,37 @@ "width": null } }, - "4853f718f1d644ba8c2831dde6ecf641": { + "f04b940f370643f68cca247a8cc5f952": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f6bd0240ca004ff09b268afae04470de", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "f0ae785301df4dd08619c600dc98d04d": {
+          "model_module": "@jupyter-widgets/output",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -9789,24 +58394,24 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_fabb5e3ab845455c85f9d3d6e1345bdc",
+            "layout": "IPY_MODEL_eaeea446d3f74ed6adabfa5646ac05a2",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): Export 'Country' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(ADB → RDF): Export 'Country' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "fabb5e3ab845455c85f9d3d6e1345bdc": { + "f0da88487b40424392885d47c76e5c8e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9855,10 +58460,37 @@ "width": null } }, - "4b38704a488949bcb63948eef58eb730": { + "f12398082c0d4dd3961a166418f65f51": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_e097249a1e6c484f9d1c54e8e76bf5a4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f139ed160d5641fc8603a7e27f4739d1": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -9868,24 +58500,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_51b70484aef7409eb48c1ea0c17250dd", + "layout": "IPY_MODEL_1833ea424b6944919951e027db237691", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Literal \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Literal ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "51b70484aef7409eb48c1ea0c17250dd": { + "f20624e96bcc46da8201c667f5affd34": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9934,10 +58566,37 @@ "width": null } }, - "57b393748251483d8c654588ae791281": { + "f27e93a7fb054bc68b2030ed0d7a01a2": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_52d16d34612d42a5ace968d4104c89ed", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'type' (1) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'type' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f280bf45be9947bfa83e5d2ad1ffdd48": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -9947,24 +58606,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_e848cf868d484e5f9481f558c2cb3258", + "layout": "IPY_MODEL_5b08d7a0cd37421fac9dd182c7e803a3", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataPGT_UnknownResource \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     0:00:00 ArangoDB Import: DataPGT_UnknownResource ▰▱▱▱▱▱▱\n
\n" + "text/html": "
Collection: hasLocation ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "Collection: hasLocation \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "e848cf868d484e5f9481f558c2cb3258": { + "f2b43ef11cf7421295d4c96b95c5e703": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10013,37 +58672,10 @@ "width": null } }, - "c2a362f33de74b39826d2fd604cf0d31": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_4e7fd35dbbbb4f9daacf07b88db681a0", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "4e7fd35dbbbb4f9daacf07b88db681a0": {
+        "f2c7dcc0c0c848e18722c628f78b8676": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -10092,10 +58724,118 @@
             "width": null
           }
         },
-        "ced8ec6902a64643bbbb60c6ea26d614": {
+        "f2ea318f46fa4045898a74adb4282073": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_d8f70e21fa5d4ef0a8185dd8537c8c42",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f3091863c2ce495b8846ca16c240bac6": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3c6e454224c346ae820de03d069583ad", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f334a52987ad4a0a9487c841b4eb4ab3": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_78620943d50549a3a57dbb4302b174be", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f3738174a0b445429dc6942b109d7b23": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_3ec735ec0be8406e93b98c8fc5faa94d", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
\n",
+                  "text/plain": ""
+                },
+                "metadata": {},
+                "output_type": "display_data"
+              }
+            ]
+          }
+        },
+        "f383807d016240daa720e0128fe960e5": {
+          "model_module": "@jupyter-widgets/output",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -10105,24 +58845,24 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_8bf27d1fd914448f963c8712a4b45e5d",
+            "layout": "IPY_MODEL_d49a46b7410047008abd6117ba5cde00",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_URIRef \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_URIRef ▰▱▱▱▱▱▱\n
\n" + "text/html": "
(ADB → RDF): 'Location' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/467) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Location' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/467) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "8bf27d1fd914448f963c8712a4b45e5d": { + "f3bb03a8be4645cfa5f39fecdee44057": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10171,37 +58911,10 @@ "width": null } }, - "d7c6faacc1ad440ca7cb2cd85d73fcea": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_e915b6a5e59d4d0e9216696a0c62b4ba", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "e915b6a5e59d4d0e9216696a0c62b4ba": { + "f3fd59269d1740ef80c59a6dad9c2319": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10250,37 +58963,10 @@ "width": null } }, - "c5014016a5d146e9890bf9e3c2d4ba66": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_9f08e2fde54b435491cc851d1bd8252f", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "9f08e2fde54b435491cc851d1bd8252f": {
+        "f3fe3d08163449909f5161eb0c8d3ce4": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -10323,43 +59009,16 @@
             "overflow_x": null,
             "overflow_y": null,
             "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "549aa1199ec24346a2a3dbd9345538b5": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_c28750b44fd341e79a4f5115b38fa405",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: DataRPT_Statement \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n     0:00:00 ArangoDB Import: DataRPT_Statement ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c28750b44fd341e79a4f5115b38fa405": { + "f433163973a148f7ae20eaa83425e8b9": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10408,37 +59067,10 @@ "width": null } }, - "9df9935236354a1eb485cca94f84d49b": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_438cec8683814d69ad6c93ee234038df", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (10/10) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: Property \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (10/10) 0:00:00\n     0:00:00 ArangoDB Import: Property ▰▱▱▱▱▱▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "438cec8683814d69ad6c93ee234038df": { + "f43396b324cf46b4b10c0f21e3917631": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10487,10 +59119,10 @@ "width": null } }, - "e812902851574e0399a9c8b9127a464d": { + "f45d3a94b0df4882b4e1bbb4194d0e2f": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -10500,24 +59132,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4060b9b79c4e45ae9030259327cf4ebd", + "layout": "IPY_MODEL_a5ffe50661654304a6368878b509264c", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): Write Col Statements ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Write Col Statements \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "4060b9b79c4e45ae9030259327cf4ebd": { + "f467e34102c644b3bb68bedb0fccf318": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10566,37 +59198,10 @@ "width": null } }, - "592121dd0a6e4ffcb7ed98e2bc34cfcc": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_f97f8e9c73964e49b702b95425bfd8ce", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (RPT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (712/712) \u001b[33m0:00:00\u001b[0m\n", - "text/html": "
RDF → ADB (RPT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (712/712) 0:00:00\n
\n" - }, - "metadata": {} - } - ] - } - }, - "f97f8e9c73964e49b702b95425bfd8ce": { + "f4bb379438d74bcc8c9312d491e37fa7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10645,37 +59250,10 @@ "width": null } }, - "08d34c739434405f978686d42aeeb19f": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_959e973b22064935a4049e2abf3fcae9", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (712/712) \u001b[33m0:00:00\u001b[0m\n \u001b[33m0:00:00\u001b[0m ArangoDB Import: Band \u001b[38;2;91;192;222m▰▰▰▰▰▰▱\u001b[0m\n", - "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (712/712) 0:00:00\n     0:00:00 ArangoDB Import: Band ▰▰▰▰▰▰▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "959e973b22064935a4049e2abf3fcae9": { + "f4c3e03b26e84299a72432247e3211c2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10724,37 +59302,10 @@ "width": null } }, - "f3f4df888914429991fc99815945eec3": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_93015aba6cd44f658d916ae5438215d4", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "93015aba6cd44f658d916ae5438215d4": {
+        "f4d86a9622e74997aa7516410d0b7d92": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -10803,37 +59354,10 @@
             "width": null
           }
         },
-        "b1cf0e4931b146aa80a042d5ed5a40eb": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_3ea41bbbaf13430abeacec550f35db15",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "RDF → ADB (PGT) \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (28/28) \u001b[33m0:00:00\u001b[0m\n     \u001b[33m0:00:00\u001b[0m ArangoDB Import: Album \u001b[38;2;91;192;222m▰▰▰▰▰▰▱\u001b[0m\n",
-                  "text/html": "
RDF → ADB (PGT) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (28/28) 0:00:00\n     0:00:00 ArangoDB Import: Album ▰▰▰▰▰▰▱\n
\n" - }, - "metadata": {} - } - ] - } - }, - "3ea41bbbaf13430abeacec550f35db15": { + "f4e4607b23a54074b058c823703b1c53": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10882,10 +59406,10 @@ "width": null } }, - "da99d4ce9fcf46849c180ddc91b56d74": { + "f500a92dca614fbe97190ea07b76f391": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -10895,24 +59419,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_32c7178c7ede492bb3640eb6840df54c", + "layout": "IPY_MODEL_1980f083a8a24d118d4929daae64b05d", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "32c7178c7ede492bb3640eb6840df54c": { + "f529a9ce3a0a4fdf832eae87d164d458": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10961,10 +59485,64 @@ "width": null } }, - "5e7049f740dc48e3a043096f8cf210d7": { + "f546c39ec32440478213a3d65d4bc56f": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_377819d3b19240fbb1afdbe5b5cc3d19", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'DataRPT_Statement' (1) ▰▰▰▰▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'DataRPT_Statement' (1) \u001b[38;2;91;192;222m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f5486bbcd6a542029db8c33230db6fbf": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_00aeacee663742bca19ea1564d49593a", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'source' (1) ▰▰▰▰▰▰▰ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT \u001b[38;2;8;71;158m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'source' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▰▰\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f586ae31f10141c7afe0f6baa1794d03": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -10974,24 +59552,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_01de28d679514165b0dfab5caca30ccd", + "layout": "IPY_MODEL_93ce4c6d2f2f43fa95a2a443f3321e4b", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "01de28d679514165b0dfab5caca30ccd": { + "f5b15a86202840cca452980125b90c48": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -11040,37 +59618,10 @@ "width": null } }, - "4a3cb1d982804f9da9d52c3f51ae5848": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_dd71c676c2d4402babc5a36eaa7c1dc3", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "dd71c676c2d4402babc5a36eaa7c1dc3": {
+        "f5d10a6ad6124b15829f3d9d64880c79": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11119,10 +59670,10 @@
             "width": null
           }
         },
-        "91b2d0ebba5e4e60a6b5af29c62d0934": {
+        "f63d3988a9ce4174bd5e85f2f87b29b9": {
           "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -11132,24 +59683,24 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_d32cb14a98fa473f806e5aa2df849bd0",
+            "layout": "IPY_MODEL_393a3b2b1fab47b3836ce742c9491594",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "d32cb14a98fa473f806e5aa2df849bd0": { + "f65b348bdebe446ab8381f928147bb67": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -11198,37 +59749,10 @@ "width": null } }, - "37a20406c9e5446597d98c3d20c39bcd": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_7e7385eb03874dd8b82abae0e45bd190", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "7e7385eb03874dd8b82abae0e45bd190": {
+        "f6bd0240ca004ff09b268afae04470de": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11263,51 +59787,24 @@
             "max_height": null,
             "max_width": null,
             "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "76167581df114302aa01459efd638b45": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_2e918c84645442bc8157a1b0007b44b8",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
           }
         },
-        "2e918c84645442bc8157a1b0007b44b8": {
+        "f6ddbd6c083449d1b675b1829c5b682f": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11356,37 +59853,10 @@
             "width": null
           }
         },
-        "a87f8d8d02ad4d43b4c2d50af33c190e": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_5ba8741dc8e84ba29ac165632f1338b4",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "5ba8741dc8e84ba29ac165632f1338b4": {
+        "f711293be6064fbeb78a10e36fb4ca3c": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11435,37 +59905,10 @@
             "width": null
           }
         },
-        "da01125aa5a2460580d7f3e93c4b3337": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_3d5840265d25455ba6c31be393495166",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "3d5840265d25455ba6c31be393495166": {
+        "f73f626669b544d6a475cb528aada059": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11514,37 +59957,10 @@
             "width": null
           }
         },
-        "040f782f0d1246ebb4d063aaca760a30": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_725a546ad4204ba9bbe123595f1fd2eb",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "725a546ad4204ba9bbe123595f1fd2eb": {
+        "f74aa3ab9aff44f89396316e51f9774a": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11593,37 +60009,10 @@
             "width": null
           }
         },
-        "1693936c80574039baabe485bf9e8c30": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_ab34b34d32b44f068a3db30f10161375",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "ab34b34d32b44f068a3db30f10161375": {
+        "f7641041d47e4ac89ba017b5838dc440": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11672,37 +60061,10 @@
             "width": null
           }
         },
-        "db29617659e4471a8c6da3867488e0c0": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_3f68478dc6ca4de0836c2f076a662db6",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "3f68478dc6ca4de0836c2f076a662db6": {
+        "f777d49fe0d0408f8df7051c16a726e5": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11751,10 +60113,37 @@
             "width": null
           }
         },
-        "aeb95feadd7c4a2ea7ab68e4cef4769e": {
+        "f86c993cec21489983df88cee2ab5b2a": {
           "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
           "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_8348424c59c94f279f061d2ba339b17d",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Class.json  0…\n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Class.json \u001b[33m0…\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f8c653de7fdd4d28a0b4e855e31f8497": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -11764,24 +60153,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_915a778f31594b388a70246762b0057b", + "layout": "IPY_MODEL_930632942d004d67aca96d6b1dd1f4f8", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'mentionedBy' (1) ▰▰▰▰▰▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'mentionedBy' (1) \u001b[38;2;91;192;222m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "915a778f31594b388a70246762b0057b": { + "f8e863f9e8d445b9a9f70a3ebe71cc22": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -11830,37 +60219,10 @@ "width": null } }, - "68106dfc027d4fe1b68156727f3bae0b": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_421d813ceee343b9928d8fe028d1db5b", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "421d813ceee343b9928d8fe028d1db5b": {
+        "f90e31d881904ee1b8f31b089a3e95d2": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11909,37 +60271,10 @@
             "width": null
           }
         },
-        "e77bdee916364cf89751153cb4db42d2": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_11eadb79690041718e237c0d3f02e4b0",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "11eadb79690041718e237c0d3f02e4b0": {
+        "f931874b27c84f2a9d8c0b6ef67f764f": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -11988,10 +60323,37 @@
             "width": null
           }
         },
-        "999e52c9cf694d38a0e1a97d7a39f123": {
+        "f93c03087ce94becaee30819a8ccd195": {
           "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
           "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_ab184d09c37043dbb7218a9748f24b31",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "f98fd73455d24b718e6c0217cacc5ebb": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -12001,24 +60363,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_782c4ad9a2294bba9114794e10b300fb", + "layout": "IPY_MODEL_d8ee71ebbae045fd82b67ed6fcb1d2ca", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "782c4ad9a2294bba9114794e10b300fb": { + "fa0b56ec689c405d9903de685af4e39e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12051,53 +60413,26 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "19cf8acb80354d00bd7eee5247c2b140": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_d43c050a27ae4c5ea162a8853b9baa54", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
           }
         },
-        "d43c050a27ae4c5ea162a8853b9baa54": {
+        "fa8313cdc1884277a8b7b627d7873f75": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12146,37 +60481,10 @@
             "width": null
           }
         },
-        "4ed1c45eca21411ab21ac14d326cea64": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_3b216fedf7524d4eac8dea7027d2722e",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "3b216fedf7524d4eac8dea7027d2722e": {
+        "fab556deb44348ee88db08d6e4166484": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12225,10 +60533,10 @@
             "width": null
           }
         },
-        "ece557abbd214ce2a29e8aed9eed02bb": {
+        "fabcaecd1a0843afaf433bc2df936725": {
           "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -12238,24 +60546,24 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_6ab1331544f344b48e509c58a1ef9aff",
+            "layout": "IPY_MODEL_c1339ae8330144a0ba9a671411985389",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
+                  "text/html": "
(ADB → RDF): 'Property' ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/7) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'Property' \u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/7) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "6ab1331544f344b48e509c58a1ef9aff": { + "fb584b5d386e4a7591bb48059cb7af87": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12304,37 +60612,10 @@ "width": null } }, - "dac740443d1b4936b1c7d6e0025dab60": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_215999732cca4a9e9237fea97da41c7c", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "215999732cca4a9e9237fea97da41c7c": {
+        "fb6fc4469af9424c9c8eaaec53ddf478": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12383,37 +60664,10 @@
             "width": null
           }
         },
-        "dcad9642f34e48ac95831e47bebb71ab": {
-          "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
-          "model_module_version": "1.0.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/output",
-            "_model_module_version": "1.0.0",
-            "_model_name": "OutputModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/output",
-            "_view_module_version": "1.0.0",
-            "_view_name": "OutputView",
-            "layout": "IPY_MODEL_c023cf980df348049a6eb21a1a2bafbf",
-            "msg_id": "",
-            "outputs": [
-              {
-                "output_type": "display_data",
-                "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "c023cf980df348049a6eb21a1a2bafbf": {
+        "fb7b8319d8c44e17b1e72f964c5a319b": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12462,10 +60716,10 @@
             "width": null
           }
         },
-        "e316eb6e5fe04a018a13296628dd2a05": {
+        "fbb89f7404f644b4adcb2e011bd39a2f": {
           "model_module": "@jupyter-widgets/output",
-          "model_name": "OutputModel",
           "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
           "state": {
             "_dom_classes": [],
             "_model_module": "@jupyter-widgets/output",
@@ -12475,24 +60729,24 @@
             "_view_module": "@jupyter-widgets/output",
             "_view_module_version": "1.0.0",
             "_view_name": "OutputView",
-            "layout": "IPY_MODEL_0cf06485b1e64de893b6741e8a9a0b02",
+            "layout": "IPY_MODEL_d2a5ec6f84244ed58b1cbf3fadcffe9d",
             "msg_id": "",
             "outputs": [
               {
-                "output_type": "display_data",
                 "data": {
-                  "text/plain": "",
-                  "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "0cf06485b1e64de893b6741e8a9a0b02": { + "fbc6745df8724e9e9379e3ab3b07b2c5": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12541,37 +60795,10 @@ "width": null } }, - "f596dd62da294dd08dc3832b6a250c6b": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_c6d902dd709e4ff0813ee13024cafc8b", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "c6d902dd709e4ff0813ee13024cafc8b": {
+        "fbdd9315fee8499b9445d1d41ff052ba": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12620,10 +60847,64 @@
             "width": null
           }
         },
-        "262cd26af17341e788a08be05ef71580": {
+        "fc193d6dec664d4e8b54b59ce18c8909": {
+          "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
+          "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_6fbf0c9ea5c543e694559524ccde9489",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (2/2) 0:00:00\n     (RDF → ADB): Import 'likes' (2) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (2/2) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (2) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fc20c290802a41db8737daee15189174": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_41a6f15ee08a4e4e8ec03d1497b5ad2e", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fc377f11c10c4d968c8a6caac22e0012": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -12633,24 +60914,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_6b6d00aa500348c887cc807117d44c8f", + "layout": "IPY_MODEL_06aca56f72fb4329b49cfcc532ac8116", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "6b6d00aa500348c887cc807117d44c8f": { + "fc64965fc2bb4303a2605992562de2df": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12699,10 +60980,37 @@ "width": null } }, - "ab70def2b20c4aa98ac4b314c1b22725": { + "fca5445e52624e6aabf3acea3b614d1a": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d793b865039d47fa966eb68c790b62a6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): PGT [Flatten Reified Triples (Query)] ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [Flatten Reified Triples (Query)] \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fceffadb163e4d74ae077a0e437bc879": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -12712,24 +61020,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_8050c7a1096f4d5da7c33fcf46b2beb8", + "layout": "IPY_MODEL_c01224a7670240deb02a974dc360f0f2", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (1/0) 0:00:00\n     (RDF → ADB): Import 'Property' (1) ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (1/0) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'Property' (1) \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "8050c7a1096f4d5da7c33fcf46b2beb8": { + "fd39fc51745a4de086c6b7ca00c3f832": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12778,10 +61086,10 @@ "width": null } }, - "5feb64f8e7384251bf4b677e4a0a5930": { + "fe07548f389642ecad02242a3297620e": { "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -12791,24 +61099,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_f4d04444620a4d7db41411775b828cf8", + "layout": "IPY_MODEL_ea218a29d344434abccaf303b0044dca", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' ▰▱▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF ↔ ADB): Extract Statements 'http://www.arangodb.com/key' \u001b[38;2;91;192;222m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "f4d04444620a4d7db41411775b828cf8": { + "fe3b2882a7ad4ff99044c20354c1c8c0": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -12857,37 +61165,10 @@ "width": null } }, - "19c036100dfc4aaa8e1dd3d976a686cb": { - "model_module": "@jupyter-widgets/output", - "model_name": "OutputModel", - "model_module_version": "1.0.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_9ffd32b73aef47809181329a473a4cb7", - "msg_id": "", - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "", - "text/html": "
\n"
-                },
-                "metadata": {}
-              }
-            ]
-          }
-        },
-        "9ffd32b73aef47809181329a473a4cb7": {
+        "fe56ad08950d44ae87c2f512092edd3d": {
           "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
           "model_module_version": "1.2.0",
+          "model_name": "LayoutModel",
           "state": {
             "_model_module": "@jupyter-widgets/base",
             "_model_module_version": "1.2.0",
@@ -12936,10 +61217,37 @@
             "width": null
           }
         },
-        "13e499e94c244d22aceff1fc56f07252": {
+        "fe58b0d093f24f3da92c546038fe1735": {
           "model_module": "@jupyter-widgets/output",
+          "model_module_version": "1.0.0",
           "model_name": "OutputModel",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/output",
+            "_model_module_version": "1.0.0",
+            "_model_name": "OutputModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/output",
+            "_view_module_version": "1.0.0",
+            "_view_name": "OutputView",
+            "layout": "IPY_MODEL_de3564cef3e44c2fbc0a25953d1b4500",
+            "msg_id": "",
+            "outputs": [
+              {
+                "data": {
+                  "text/html": "
(ADB → RDF): 'eventActor' ━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━  64% (4000/6252) 0:00:00\n
\n", + "text/plain": "(ADB → RDF): 'eventActor' \u001b[38;2;94;49;8m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;2;94;49;8m╸\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━\u001b[0m \u001b[35m 64%\u001b[0m (4000/6252) \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fed1fa7af3a744d6959ca223c349806b": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -12949,24 +61257,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_cb1d1da12c334be7b7409ae7653023d7", + "layout": "IPY_MODEL_6dd871296cf44b4686c58701864c723c", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
(RDF → ADB): PGT [RDF Literals] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   0% (0/0) 0:00:00\n
\n", + "text/plain": "(RDF → ADB): PGT [RDF Literals] \u001b[38;2;239;125;0m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m (0/0) \u001b[33m0:00:00\u001b[0m\n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "cb1d1da12c334be7b7409ae7653023d7": { + "feebddc745d8419fb64f0d144dc5c95b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -13015,10 +61323,37 @@ "width": null } }, - "4702e1b0f1e949c6991c1dfc391040d4": { + "ff0c11c9fd084a7790d7ae629772682f": { "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b7e9590766f74bbdb62ea28a5bbc0ff4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
(RDF → ADB): Flatten Reified Triples ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% (1/1) 0:00:00\n     (RDF → ADB): Import 'likes' (1) ▰▰▱▱▱▱▱ 0:00:00\n
\n", + "text/plain": "(RDF → ADB): Flatten Reified Triples \u001b[38;2;255;255;255m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m (1/1) \u001b[33m0:00:00\u001b[0m\n (RDF → ADB): Import 'likes' (1) \u001b[38;2;91;192;222m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "ff2e1f75ed3a42e9882c2ce5e5d748c9": { + "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", + "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", @@ -13028,24 +61363,24 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_a8473ae663be4d8d96df2dcbe31c3f99", + "layout": "IPY_MODEL_c4d4cc4bf5c54d6691135b25ba4d0c84", "msg_id": "", "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "", - "text/html": "
\n"
+                  "text/html": "
GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Country.json  \n
\n", + "text/plain": "GET: https://arangodb-dataset-library-ml.s3.amazonaws.com/open_intelligence_angola/vertex_collection/Country.json \n" }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ] } }, - "a8473ae663be4d8d96df2dcbe31c3f99": { + "ffc83e4385534117bc664c291338f355": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -13099,4 +61434,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/pyproject.toml b/pyproject.toml index 1f980d16..5bac4037 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -51,6 +51,8 @@ dev = [ "pytest-cov>=2.0.0", "coveralls>=3.3.1", "types-setuptools", + "sphinx", + "sphinx_rtd_theme", ] [project.urls]