-
Notifications
You must be signed in to change notification settings - Fork 17.9k
/
mode_turtle.cpp
207 lines (165 loc) · 7.11 KB
/
mode_turtle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "Copter.h"
#if MODE_TURTLE_ENABLED
#define CRASH_FLIP_EXPO 35.0f
#define CRASH_FLIP_STICK_MINF 0.15f
#define power3(x) ((x) * (x) * (x))
bool ModeTurtle::init(bool ignore_checks)
{
// do not enter the mode when already armed or when flying
if (motors->armed() || SRV_Channels::get_dshot_esc_type() == 0) {
return false;
}
// perform minimal arming checks
if (!copter.mavlink_motor_control_check(*gcs().chan(0), true, "Turtle Mode")) {
return false;
}
// do not enter the mode if sticks are not centered or throttle is not at zero
if (!is_zero(channel_pitch->norm_input_dz())
|| !is_zero(channel_roll->norm_input_dz())
|| !is_zero(channel_yaw->norm_input_dz())
|| !is_zero(channel_throttle->norm_input_dz())) {
return false;
}
// turn on notify leds
AP_Notify::flags.esc_calibration = true;
return true;
}
void ModeTurtle::arm_motors()
{
if (hal.util->get_soft_armed()) {
return;
}
// stop the spoolup block activating
motors->set_spoolup_block(false);
// reverse the motors
hal.rcout->disable_channel_mask_updates();
change_motor_direction(true);
// disable throttle and gps failsafe
g.failsafe_throttle.set(FS_THR_DISABLED);
g.failsafe_gcs.set(FS_GCS_DISABLED);
g.fs_ekf_action.set(0);
// arm
motors->armed(true);
hal.util->set_soft_armed(true);
}
bool ModeTurtle::allows_arming(AP_Arming::Method method) const
{
return true;
}
void ModeTurtle::exit()
{
disarm_motors();
// turn off notify leds
AP_Notify::flags.esc_calibration = false;
}
void ModeTurtle::disarm_motors()
{
if (!hal.util->get_soft_armed()) {
return;
}
// disarm
motors->armed(false);
hal.util->set_soft_armed(false);
// un-reverse the motors
change_motor_direction(false);
hal.rcout->enable_channel_mask_updates();
// re-enable failsafes
g.failsafe_throttle.load();
g.failsafe_gcs.load();
g.fs_ekf_action.load();
}
void ModeTurtle::change_motor_direction(bool reverse)
{
AP_HAL::RCOutput::BLHeliDshotCommand direction = reverse ? AP_HAL::RCOutput::DSHOT_REVERSE : AP_HAL::RCOutput::DSHOT_NORMAL;
AP_HAL::RCOutput::BLHeliDshotCommand inverse_direction = reverse ? AP_HAL::RCOutput::DSHOT_NORMAL : AP_HAL::RCOutput::DSHOT_REVERSE;
if (!hal.rcout->get_reversed_mask()) {
hal.rcout->send_dshot_command(direction, AP_HAL::RCOutput::ALL_CHANNELS, 0, 10, true);
} else {
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; ++i) {
if (!motors->is_motor_enabled(i)) {
continue;
}
if ((hal.rcout->get_reversed_mask() & (1U << i)) == 0) {
hal.rcout->send_dshot_command(direction, i, 0, 10, true);
} else {
hal.rcout->send_dshot_command(inverse_direction, i, 0, 10, true);
}
}
}
}
void ModeTurtle::run()
{
const float flip_power_factor = 1.0f - CRASH_FLIP_EXPO * 0.01f;
const bool norc = copter.failsafe.radio || !rc().has_ever_seen_rc_input();
const float stick_deflection_pitch = norc ? 0.0f : channel_pitch->norm_input_dz();
const float stick_deflection_roll = norc ? 0.0f : channel_roll->norm_input_dz();
const float stick_deflection_yaw = norc ? 0.0f : channel_yaw->norm_input_dz();
const float stick_deflection_pitch_abs = fabsf(stick_deflection_pitch);
const float stick_deflection_roll_abs = fabsf(stick_deflection_roll);
const float stick_deflection_yaw_abs = fabsf(stick_deflection_yaw);
const float stick_deflection_pitch_expo = flip_power_factor * stick_deflection_pitch_abs + power3(stick_deflection_pitch_abs) * (1 - flip_power_factor);
const float stick_deflection_roll_expo = flip_power_factor * stick_deflection_roll_abs + power3(stick_deflection_roll_abs) * (1 - flip_power_factor);
const float stick_deflection_yaw_expo = flip_power_factor * stick_deflection_yaw_abs + power3(stick_deflection_yaw_abs) * (1 - flip_power_factor);
float sign_pitch = stick_deflection_pitch < 0 ? -1 : 1;
float sign_roll = stick_deflection_roll < 0 ? 1 : -1;
float stick_deflection_length = sqrtf(sq(stick_deflection_pitch_abs) + sq(stick_deflection_roll_abs));
float stick_deflection_expo_length = sqrtf(sq(stick_deflection_pitch_expo) + sq(stick_deflection_roll_expo));
if (stick_deflection_yaw_abs > MAX(stick_deflection_pitch_abs, stick_deflection_roll_abs)) {
// If yaw is the dominant, disable pitch and roll
stick_deflection_length = stick_deflection_yaw_abs;
stick_deflection_expo_length = stick_deflection_yaw_expo;
sign_roll = 0;
sign_pitch = 0;
}
const float cos_phi = (stick_deflection_length > 0) ? (stick_deflection_pitch_abs + stick_deflection_roll_abs) / (sqrtf(2.0f) * stick_deflection_length) : 0;
const float cos_threshold = sqrtf(3.0f) / 2.0f; // cos(PI/6.0f)
if (cos_phi < cos_threshold) {
// Enforce either roll or pitch exclusively, if not on diagonal
if (stick_deflection_roll_abs > stick_deflection_pitch_abs) {
sign_pitch = 0;
} else {
sign_roll = 0;
}
}
// Apply a reasonable amount of stick deadband
const float crash_flip_stick_min_expo = flip_power_factor * CRASH_FLIP_STICK_MINF + power3(CRASH_FLIP_STICK_MINF) * (1 - flip_power_factor);
const float flip_stick_range = 1.0f - crash_flip_stick_min_expo;
const float flip_power = MAX(0.0f, stick_deflection_expo_length - crash_flip_stick_min_expo) / flip_stick_range;
// at this point we have a power value in the range 0..1
// normalise the roll and pitch input to match the motors
Vector2f input{sign_roll, sign_pitch};
motors_input = input.normalized() * 0.5;
// we bypass spin min and friends in the deadzone because we only want spin up when the sticks are moved
motors_output = !is_zero(flip_power) ? motors->thr_lin.thrust_to_actuator(flip_power) : 0.0f;
}
// actually write values to the motors
void ModeTurtle::output_to_motors()
{
// throttle needs to be raised
if (is_zero(channel_throttle->norm_input_dz())) {
const uint32_t now = AP_HAL::millis();
if (now - last_throttle_warning_output_ms > 5000) {
gcs().send_text(MAV_SEVERITY_WARNING, "Turtle: raise throttle to arm");
last_throttle_warning_output_ms = now;
}
disarm_motors();
return;
}
arm_motors();
// check if motor are allowed to spin
const bool allow_output = motors->armed() && motors->get_interlock();
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; ++i) {
if (!motors->is_motor_enabled(i)) {
continue;
}
const Vector2f output{motors->get_roll_factor(i), motors->get_pitch_factor(i)};
// if output aligns with input then use this motor
if (!allow_output || (motors_input - output).length() > 0.5) {
motors->rc_write(i, motors->get_pwm_output_min());
continue;
}
int16_t pwm = motors->get_pwm_output_min() + (motors->get_pwm_output_max() - motors->get_pwm_output_min()) * motors_output;
motors->rc_write(i, pwm);
}
}
#endif