-
Notifications
You must be signed in to change notification settings - Fork 2
/
cryptlib.c
1096 lines (913 loc) · 25 KB
/
cryptlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Driver for /dev/crypto device (aka CryptoDev)
*
* Copyright (c) 2010,2011 Nikos Mavrogiannopoulos <nmav@gnutls.org>
* Portions Copyright (c) 2010 Michael Weiser
* Portions Copyright (c) 2010 Phil Sutter
*
* This file is part of linux cryptodev.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/ioctl.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/uaccess.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/cryptodev.h>
#include <crypto/aead.h>
#include <linux/rtnetlink.h>
#include <crypto/authenc.h>
#include "cryptodev_int.h"
#include "cipherapi.h"
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 3, 0))
#include <linux/asn1_ber_bytecode.h>
#include <crypto/akcipher.h>
#endif
#ifdef CRYPTODEV_ECDSA_ENABLE
#include <crypto/ecc.h>
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0))
extern const struct crypto_type crypto_givcipher_type;
#endif
// void print_buf(const u8 *buf, int len)
// {
// int i;
// for (i = 0; i < len; i++) {
// if (i % 0x10 == 0)
// printk(KERN_CONT "%05x: ", i);
// printk(KERN_CONT "%02x ", buf[i]);
// if ((i - 0xf) % 0x10 == 0)
// printk(KERN_CONT "\n");
// }
// printk(KERN_CONT "\n");
// }
static void cryptodev_complete(struct crypto_async_request *req, int err)
{
struct cryptodev_result *res = req->data;
if (err == -EINPROGRESS)
return;
res->err = err;
complete(&res->completion);
}
int cryptodev_get_cipher_keylen(unsigned int *keylen, struct session_op *sop,
int aead)
{
/*
* For blockciphers (AES-CBC) or non-composite aead ciphers (like AES-GCM),
* the key length is simply the cipher keylen obtained from userspace. If
* the cipher is composite aead, the keylen is the sum of cipher keylen,
* hmac keylen and a key header length. This key format is the one used in
* Linux kernel for composite aead ciphers (crypto/authenc.c)
*/
unsigned int klen = sop->keylen;
if (unlikely(sop->keylen > CRYPTO_CIPHER_MAX_KEY_LEN))
return -EINVAL;
if (aead && sop->mackeylen) {
if (unlikely(sop->mackeylen > CRYPTO_HMAC_MAX_KEY_LEN))
return -EINVAL;
klen += sop->mackeylen;
klen += RTA_SPACE(sizeof(struct crypto_authenc_key_param));
}
*keylen = klen;
return 0;
}
int cryptodev_get_cipher_key(uint8_t *key, struct session_op *sop, int aead)
{
/*
* Get cipher key from user-space. For blockciphers just copy it from
* user-space. For composite aead ciphers combine it with the hmac key in
* the format used by Linux kernel in crypto/authenc.c:
*
* [[AUTHENC_KEY_HEADER + CIPHER_KEYLEN] [AUTHENTICATION KEY] [CIPHER KEY]]
*/
struct crypto_authenc_key_param *param;
struct rtattr *rta;
int ret = 0;
if (aead && sop->mackeylen) {
/*
* Composite aead ciphers. The first four bytes are the header type and
* header length for aead keys
*/
rta = (void *)key;
rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
rta->rta_len = RTA_LENGTH(sizeof(*param));
/*
* The next four bytes hold the length of the encryption key
*/
param = RTA_DATA(rta);
param->enckeylen = cpu_to_be32(sop->keylen);
/* Advance key pointer eight bytes and copy the hmac key */
key += RTA_SPACE(sizeof(*param));
if (unlikely(copy_from_user(key, sop->mackey, sop->mackeylen))) {
ret = -EFAULT;
goto error;
}
/* Advance key pointer past the hmac key */
key += sop->mackeylen;
}
/* now copy the blockcipher key */
if (unlikely(copy_from_user(key, sop->key, sop->keylen)))
ret = -EFAULT;
error:
return ret;
}
/* Was correct key length supplied? */
static int check_key_size(size_t keylen, const char *alg_name,
unsigned int min_keysize, unsigned int max_keysize)
{
if (max_keysize > 0 && unlikely((keylen < min_keysize) ||
(keylen > max_keysize))) {
ddebug(1, "Wrong keylen '%zu' for algorithm '%s'. Use %u to %u.",
keylen, alg_name, min_keysize, max_keysize);
return -EINVAL;
}
return 0;
}
int cryptodev_cipher_init(struct cipher_data *out, const char *alg_name,
uint8_t *keyp, size_t keylen, int stream, int aead)
{
int ret;
if (aead == 0) {
unsigned int min_keysize, max_keysize;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
struct crypto_tfm *tfm;
#else
struct ablkcipher_alg *alg;
#endif
out->async.s = cryptodev_crypto_alloc_blkcipher(alg_name, 0, 0);
if (unlikely(IS_ERR(out->async.s))) {
ddebug(1, "Failed to load cipher %s", alg_name);
return -EINVAL;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0))
tfm = crypto_skcipher_tfm(out->async.s);
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(5, 4, 0))
if ((tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 0, 0))
|| (tfm->__crt_alg->cra_type == &crypto_givcipher_type)
#endif
) {
struct ablkcipher_alg *alg;
alg = &tfm->__crt_alg->cra_ablkcipher;
min_keysize = alg->min_keysize;
max_keysize = alg->max_keysize;
} else
#endif
{
struct skcipher_alg *alg;
alg = crypto_skcipher_alg(out->async.s);
min_keysize = alg->min_keysize;
max_keysize = alg->max_keysize;
}
#else
alg = crypto_ablkcipher_alg(out->async.s);
min_keysize = alg->min_keysize;
max_keysize = alg->max_keysize;
#endif
ret = check_key_size(keylen, alg_name, min_keysize,
max_keysize);
if (ret)
goto error;
out->blocksize = cryptodev_crypto_blkcipher_blocksize(out->async.s);
out->ivsize = cryptodev_crypto_blkcipher_ivsize(out->async.s);
out->alignmask = cryptodev_crypto_blkcipher_alignmask(out->async.s);
ret = cryptodev_crypto_blkcipher_setkey(out->async.s, keyp, keylen);
} else {
out->async.as = crypto_alloc_aead(alg_name, 0, 0);
if (unlikely(IS_ERR(out->async.as))) {
ddebug(1, "Failed to load cipher %s", alg_name);
return -EINVAL;
}
out->blocksize = crypto_aead_blocksize(out->async.as);
out->ivsize = crypto_aead_ivsize(out->async.as);
out->alignmask = crypto_aead_alignmask(out->async.as);
ret = crypto_aead_setkey(out->async.as, keyp, keylen);
}
if (unlikely(ret)) {
ddebug(1, "Setting key failed for %s-%zu.", alg_name, keylen*8);
ret = -EINVAL;
goto error;
}
out->stream = stream;
out->aead = aead;
init_completion(&out->async.result.completion);
if (aead == 0) {
out->async.request = cryptodev_blkcipher_request_alloc(out->async.s, GFP_KERNEL);
if (unlikely(!out->async.request)) {
derr(1, "error allocating async crypto request");
ret = -ENOMEM;
goto error;
}
cryptodev_blkcipher_request_set_callback(out->async.request,
CRYPTO_TFM_REQ_MAY_BACKLOG,
cryptodev_complete, &out->async.result);
} else {
out->async.arequest = aead_request_alloc(out->async.as, GFP_KERNEL);
if (unlikely(!out->async.arequest)) {
derr(1, "error allocating async crypto request");
ret = -ENOMEM;
goto error;
}
aead_request_set_callback(out->async.arequest,
CRYPTO_TFM_REQ_MAY_BACKLOG,
cryptodev_complete, &out->async.result);
}
out->init = 1;
return 0;
error:
if (aead == 0) {
cryptodev_blkcipher_request_free(out->async.request);
cryptodev_crypto_free_blkcipher(out->async.s);
} else {
if (out->async.arequest)
aead_request_free(out->async.arequest);
if (out->async.as)
crypto_free_aead(out->async.as);
}
return ret;
}
void cryptodev_cipher_deinit(struct cipher_data *cdata)
{
if (cdata->init) {
if (cdata->aead == 0) {
cryptodev_blkcipher_request_free(cdata->async.request);
cryptodev_crypto_free_blkcipher(cdata->async.s);
} else {
if (cdata->async.arequest)
aead_request_free(cdata->async.arequest);
if (cdata->async.as)
crypto_free_aead(cdata->async.as);
}
cdata->init = 0;
}
}
static inline int waitfor(struct cryptodev_result *cr, ssize_t ret)
{
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&cr->completion);
/* At this point we known for sure the request has finished,
* because wait_for_completion above was not interruptible.
* This is important because otherwise hardware or driver
* might try to access memory which will be freed or reused for
* another request. */
if (unlikely(cr->err)) {
derr(0, "error from async request: %d", cr->err);
return cr->err;
}
break;
default:
return ret;
}
return 0;
}
ssize_t cryptodev_cipher_encrypt(struct cipher_data *cdata,
const struct scatterlist *src, struct scatterlist *dst,
size_t len)
{
int ret;
reinit_completion(&cdata->async.result.completion);
if (cdata->aead == 0) {
cryptodev_blkcipher_request_set_crypt(cdata->async.request,
(struct scatterlist *)src, dst,
len, cdata->async.iv);
ret = cryptodev_crypto_blkcipher_encrypt(cdata->async.request);
} else {
aead_request_set_crypt(cdata->async.arequest,
(struct scatterlist *)src, dst,
len, cdata->async.iv);
ret = crypto_aead_encrypt(cdata->async.arequest);
}
return waitfor(&cdata->async.result, ret);
}
ssize_t cryptodev_cipher_decrypt(struct cipher_data *cdata,
const struct scatterlist *src, struct scatterlist *dst,
size_t len)
{
int ret;
reinit_completion(&cdata->async.result.completion);
if (cdata->aead == 0) {
cryptodev_blkcipher_request_set_crypt(cdata->async.request,
(struct scatterlist *)src, dst,
len, cdata->async.iv);
ret = cryptodev_crypto_blkcipher_decrypt(cdata->async.request);
} else {
aead_request_set_crypt(cdata->async.arequest,
(struct scatterlist *)src, dst,
len, cdata->async.iv);
ret = crypto_aead_decrypt(cdata->async.arequest);
}
return waitfor(&cdata->async.result, ret);
}
/* Hash functions */
int cryptodev_hash_init(struct hash_data *hdata, const char *alg_name,
int hmac_mode, void *mackey, size_t mackeylen)
{
int ret;
hdata->async.s = crypto_alloc_ahash(alg_name, 0, 0);
if (unlikely(IS_ERR(hdata->async.s))) {
ddebug(1, "Failed to load transform for %s", alg_name);
return -EINVAL;
}
/* Copy the key from user and set to TFM. */
if (hmac_mode != 0) {
ret = crypto_ahash_setkey(hdata->async.s, mackey, mackeylen);
if (unlikely(ret)) {
ddebug(1, "Setting hmac key failed for %s-%zu.",
alg_name, mackeylen*8);
ret = -EINVAL;
goto error;
}
}
hdata->digestsize = crypto_ahash_digestsize(hdata->async.s);
hdata->alignmask = crypto_ahash_alignmask(hdata->async.s);
init_completion(&hdata->async.result.completion);
hdata->async.request = ahash_request_alloc(hdata->async.s, GFP_KERNEL);
if (unlikely(!hdata->async.request)) {
derr(0, "error allocating async crypto request");
ret = -ENOMEM;
goto error;
}
ahash_request_set_callback(hdata->async.request,
CRYPTO_TFM_REQ_MAY_BACKLOG,
cryptodev_complete, &hdata->async.result);
hdata->init = 1;
return 0;
error:
crypto_free_ahash(hdata->async.s);
return ret;
}
void cryptodev_hash_deinit(struct hash_data *hdata)
{
if (hdata->init) {
ahash_request_free(hdata->async.request);
crypto_free_ahash(hdata->async.s);
hdata->init = 0;
}
}
int cryptodev_hash_reset(struct hash_data *hdata)
{
int ret;
ret = crypto_ahash_init(hdata->async.request);
if (unlikely(ret)) {
derr(0, "error in crypto_hash_init()");
return ret;
}
return 0;
}
ssize_t cryptodev_hash_update(struct hash_data *hdata,
struct scatterlist *sg, size_t len)
{
int ret;
reinit_completion(&hdata->async.result.completion);
ahash_request_set_crypt(hdata->async.request, sg, NULL, len);
ret = crypto_ahash_update(hdata->async.request);
return waitfor(&hdata->async.result, ret);
}
int cryptodev_hash_final(struct hash_data *hdata, void *output)
{
int ret;
reinit_completion(&hdata->async.result.completion);
ahash_request_set_crypt(hdata->async.request, NULL, output, 0);
ret = crypto_ahash_final(hdata->async.request);
return waitfor(&hdata->async.result, ret);
}
#ifdef CIOCCPHASH
/* import the current hash state of src to dst */
int cryptodev_hash_copy(struct hash_data *dst, struct hash_data *src)
{
int ret, statesize;
void *statedata = NULL;
struct crypto_tfm *tfm;
if (unlikely(src == NULL || dst == NULL)) {
return -EINVAL;
}
reinit_completion(&src->async.result.completion);
statesize = crypto_ahash_statesize(src->async.s);
if (unlikely(statesize <= 0)) {
return -EINVAL;
}
statedata = kzalloc(statesize, GFP_KERNEL);
if (unlikely(statedata == NULL)) {
return -ENOMEM;
}
ret = crypto_ahash_export(src->async.request, statedata);
if (unlikely(ret < 0)) {
if (unlikely(ret == -ENOSYS)) {
tfm = crypto_ahash_tfm(src->async.s);
derr(0, "cryptodev_hash_copy: crypto_ahash_export not implemented for "
"alg='%s', driver='%s'", crypto_tfm_alg_name(tfm),
crypto_tfm_alg_driver_name(tfm));
}
goto out;
}
ret = crypto_ahash_import(dst->async.request, statedata);
if (unlikely(ret == -ENOSYS)) {
tfm = crypto_ahash_tfm(dst->async.s);
derr(0, "cryptodev_hash_copy: crypto_ahash_import not implemented for "
"alg='%s', driver='%s'", crypto_tfm_alg_name(tfm),
crypto_tfm_alg_driver_name(tfm));
}
out:
kfree(statedata);
return ret;
}
#endif /* CIOCCPHASH */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 3, 0))
/* This function is necessary because the bignums in Linux kernel are MSB first
* (big endian) as opposed to LSB first as OpenBSD crypto layer uses */
void reverse_buf(uint8_t *buf, size_t buf_len)
{
int i;
uint8_t *end;
uint8_t tmp;
end = buf + buf_len;
for (i = 0; i < buf_len/2; i++) {
end--;
tmp = *buf;
*buf = *end;
*end = tmp;
buf++;
}
}
int ber_wr_tag(uint8_t **ber_ptr, uint8_t tag)
{
**ber_ptr = tag;
*ber_ptr += 1;
return 0;
}
int ber_wr_len(uint8_t **ber_ptr, size_t len, size_t sz)
{
if (len < 127) {
**ber_ptr = len;
*ber_ptr += 1;
} else {
size_t sz_save = sz;
sz--;
**ber_ptr = 0x80 | sz;
while (sz > 0) {
*(*ber_ptr + sz) = len & 0xff;
len >>= 8;
sz--;
}
*ber_ptr += sz_save;
}
return 0;
}
int ber_wr_int(uint8_t **ber_ptr, uint8_t *crp_p, size_t sz)
{
int ret;
ret = copy_from_user(*ber_ptr, crp_p, sz);
// reverse_buf(*ber_ptr, sz);
*ber_ptr += sz;
return ret;
}
/* calculate the size of the length field itself in BER encoding */
size_t ber_enc_len(size_t len)
{
size_t sz;
sz = 1;
if (len > 127) { /* long encoding */
while (len != 0) {
len >>= 8;
sz++;
}
}
return sz;
}
void *cryptodev_alloc_rsa_pub_key(struct kernel_crypt_pkop *pkop,
uint32_t *key_len)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *ber_key;
uint8_t *ber_ptr;
uint32_t ber_key_len;
size_t s_sz;
size_t e_sz;
size_t n_sz;
size_t s_enc_len;
size_t e_enc_len;
size_t n_enc_len;
int err;
/* BER public key format:
* SEQUENCE TAG 1 byte
* SEQUENCE LENGTH s_enc_len bytes
* INTEGER TAG 1 byte
* INTEGER LENGTH n_enc_len bytes
* INTEGER (n modulus) n_sz bytes
* INTEGER TAG 1 byte
* INTEGER LENGTH e_enc_len bytes
* INTEGER (e exponent) e_sz bytes
*/
e_sz = (cop->crk_param[1].crp_nbits + 7)/8;
n_sz = (cop->crk_param[2].crp_nbits + 7)/8;
e_enc_len = ber_enc_len(e_sz);
n_enc_len = ber_enc_len(n_sz);
/*
* Sequence length is the size of all the fields following the sequence
* tag, added together. The two added bytes account for the two INT
* tags in the Public Key sequence
*/
s_sz = e_sz + e_enc_len + n_sz + n_enc_len + 2;
s_enc_len = ber_enc_len(s_sz);
/* The added byte accounts for the SEQ tag at the start of the key */
ber_key_len = s_sz + s_enc_len + 1;
/* Linux asn1_ber_decoder doesn't like keys that are too large */
if (ber_key_len > 65535) {
return NULL;
}
ber_key = kmalloc(ber_key_len, GFP_DMA);
if (!ber_key) {
return NULL;
}
ber_ptr = ber_key;
err = ber_wr_tag(&ber_ptr, _tag(UNIV, CONS, SEQ)) ||
ber_wr_len(&ber_ptr, s_sz, s_enc_len) ||
ber_wr_tag(&ber_ptr, _tag(UNIV, PRIM, INT)) ||
ber_wr_len(&ber_ptr, n_sz, n_enc_len) ||
ber_wr_int(&ber_ptr, cop->crk_param[2].crp_p, n_sz) ||
ber_wr_tag(&ber_ptr, _tag(UNIV, PRIM, INT)) ||
ber_wr_len(&ber_ptr, e_sz, e_enc_len) ||
ber_wr_int(&ber_ptr, cop->crk_param[1].crp_p, e_sz);
if (err != 0) {
goto free_key;
}
*key_len = ber_key_len;
return ber_key;
free_key:
kfree(ber_key);
return NULL;
}
int crypto_bn_modexp(struct kernel_crypt_pkop *pkop)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *ber_key;
uint32_t ber_key_len;
size_t m_sz;
size_t c_sz;
size_t c_sz_max;
uint8_t *m_buf;
uint8_t *c_buf;
struct scatterlist src;
struct scatterlist dst;
int err;
ber_key = cryptodev_alloc_rsa_pub_key(pkop, &ber_key_len);
if (!ber_key) {
return -ENOMEM;
}
err = crypto_akcipher_set_pub_key(pkop->s, ber_key, ber_key_len);
if (err != 0) {
goto free_key;
}
m_sz = (cop->crk_param[0].crp_nbits + 7)/8;
c_sz = (cop->crk_param[3].crp_nbits + 7)/8;
m_buf = kmalloc(m_sz, GFP_DMA);
if (!m_buf) {
err = -ENOMEM;
goto free_key;
}
err = copy_from_user(m_buf, cop->crk_param[0].crp_p, m_sz);
if (err != 0) {
goto free_m_buf;
}
// reverse_buf(m_buf, m_sz);
c_sz_max = crypto_akcipher_maxsize(pkop->s);
// TODO check the condition
if (c_sz > c_sz_max) {
err = -EINVAL;
goto free_m_buf;
}
c_buf = kzalloc(c_sz_max, GFP_KERNEL);
if (!c_buf) {
goto free_m_buf;
}
sg_init_one(&src, m_buf, m_sz);
sg_init_one(&dst, c_buf, c_sz);
init_completion(&pkop->result.completion);
akcipher_request_set_callback(pkop->req, 0,
cryptodev_complete, &pkop->result);
akcipher_request_set_crypt(pkop->req, &src, &dst, m_sz, c_sz);
err = crypto_akcipher_encrypt(pkop->req);
err = waitfor(&pkop->result, err);
if (err == 0) {
reverse_buf(c_buf, pkop->req->dst_len);
err = copy_to_user(cop->crk_param[3].crp_p, c_buf, c_sz);
}
kfree(c_buf);
free_m_buf:
kfree(m_buf);
free_key:
kfree(ber_key);
return err;
}
#ifdef CRYPTODEV_ECDSA_ENABLE
void *cryptodev_alloc_ecdsa_priv_key(struct kernel_crypt_pkop *pkop,
uint32_t *key_len)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *key_buf;
uint32_t key_buf_len;
uint8_t *d;
size_t d_sz;
uint8_t curve_id_in;
uint8_t curve_id;
uint8_t nbytes;
/*
* ECDSA private key format:
* VERSION: 1 Byte
* CURVE_ID: 1 Byte
* D: CURVE_DIGITS_BYTES
*/
if (unlikely(copy_from_user(&curve_id_in, cop->crk_param[0].crp_p, 1))) {
return NULL;
}
switch (curve_id_in) {
case CRYPTO_ECC_CURVE_NIST_P192:
curve_id = ECC_CURVE_NIST_P192;
nbytes = ECC_CURVE_NIST_P192_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT;
break;
case CRYPTO_ECC_CURVE_NIST_P256:
curve_id = ECC_CURVE_NIST_P256;
nbytes = ECC_CURVE_NIST_P192_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT;
break;
default:
return NULL;
}
key_buf_len = 2 + nbytes;
key_buf = kzalloc(key_buf_len, GFP_DMA);
d_sz = (cop->crk_param[2].crp_nbits + 7)/8;
/* Set version */
key_buf[0] = 1;
/* Set cureve ID */
key_buf[1] = curve_id;
/* Copy d*/
d = key_buf + 2;
if (unlikely(copy_from_user(d, cop->crk_param[2].crp_p, d_sz))) {
goto free_key;
}
reverse_buf(d, d_sz);
*key_len = key_buf_len;
return key_buf;
free_key:
kfree(key_buf);
printk("fail\n");
return NULL;
}
void *cryptodev_alloc_ecdsa_pub_key(struct kernel_crypt_pkop *pkop,
uint32_t *key_len)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *key_buf;
uint32_t key_buf_len;
uint8_t curve_id_in;
uint8_t curve_id;
uint8_t nbytes;
uint8_t *Qx;
uint8_t *Qy;
size_t qx_sz;
size_t qy_sz;
/*
* ECDSA public key format:
* VERSION: 1 Byte
* CURVE_ID: 1 Byte
* D: CURVE_DIGITS_BYTES (0 in public key)
* Qx: CURVE_DIGITS_BYTES
* Qy: CURVE_DIGITS_BYTES
*/
if (unlikely(copy_from_user(&curve_id_in, cop->crk_param[0].crp_p, 1))) {
return NULL;
}
switch (curve_id_in) {
case CRYPTO_ECC_CURVE_NIST_P192:
curve_id = ECC_CURVE_NIST_P192;
nbytes = ECC_CURVE_NIST_P192_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT;
break;
case CRYPTO_ECC_CURVE_NIST_P256:
curve_id = ECC_CURVE_NIST_P256;
nbytes = ECC_CURVE_NIST_P256_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT;
break;
default:
return NULL;
}
key_buf_len = 2 + 3 * nbytes;
key_buf = kzalloc(key_buf_len, GFP_DMA);
qx_sz = (cop->crk_param[4].crp_nbits + 7)/8;
qy_sz = (cop->crk_param[5].crp_nbits + 7)/8;
/* Set version */
key_buf[0] = 1;
/* Set cureve ID */
key_buf[1] = curve_id;
/* Copy Qx, Qy*/
Qx = key_buf + 2 + nbytes;
Qy = Qx + nbytes;
if (unlikely(copy_from_user(Qx, cop->crk_param[4].crp_p, qx_sz))) {
goto free_key;
}
reverse_buf(Qx, qx_sz);
if (unlikely(copy_from_user(Qy, cop->crk_param[5].crp_p, qy_sz))) {
goto free_key;
}
reverse_buf(Qy, qy_sz);
// printk("qx\n");
// print_buf(Qx, qx_sz);
// printk("qy\n");
// print_buf(Qy, qx_sz);
*key_len = key_buf_len;
return key_buf;
free_key:
kfree(key_buf);
return NULL;
}
int cryptodev_ecdsa_sign(struct kernel_crypt_pkop *pkop)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *key_buf;
uint32_t key_buf_len;
size_t e_sz;
size_t sign_sz;
size_t sign_sz_max;
uint8_t *e_buf;
uint8_t *sign_buf;
struct scatterlist src;
struct scatterlist dst;
int err;
/*
* input:
* crk_param[0]: curve ID
* crk_param[1]: e, message
* crk_param[2]: d, private key
* output:
* crk_param[3]: r, signature
* crk_param[4]: s, signature
*/
key_buf = cryptodev_alloc_ecdsa_priv_key(pkop, &key_buf_len);
if (!key_buf) {
return -ENOMEM;
}
err = crypto_akcipher_set_priv_key(pkop->s, key_buf, key_buf_len);
if (err != 0) {
goto free_key;
}
e_sz = (cop->crk_param[1].crp_nbits + 7)/8;
if (cop->crk_param[3].crp_nbits != cop->crk_param[4].crp_nbits){
err = -EINVAL;
goto free_key;
}
sign_sz = (cop->crk_param[3].crp_nbits + 7)/8;
e_buf = kmalloc(e_sz, GFP_DMA);
if (!e_buf) {
err = -ENOMEM;
goto free_key;
}
err = copy_from_user(e_buf, cop->crk_param[1].crp_p, e_sz);
if (err != 0) {
goto free_e_buf;
}
reverse_buf(e_buf, e_sz);
// printk("e\n");
// print_buf(e_buf, e_sz);
sign_sz_max = crypto_akcipher_maxsize(pkop->s);
if (sign_sz * 2 < sign_sz_max) {
err = -EINVAL;
goto free_e_buf;
}
sign_buf = kzalloc(sign_sz * 2, GFP_KERNEL);
if (!sign_buf) {
goto free_e_buf;
}
sg_init_one(&src, e_buf, e_sz);
sg_init_one(&dst, sign_buf, sign_sz * 2);
init_completion(&pkop->result.completion);
akcipher_request_set_callback(pkop->req, 0,
cryptodev_complete, &pkop->result);
akcipher_request_set_crypt(pkop->req, &src, &dst, e_sz, sign_sz * 2);
err = crypto_akcipher_sign(pkop->req);
err = waitfor(&pkop->result, err);
if (err == 0) {
// reverse_buf(sign_buf, sign_sz);
err = copy_to_user(cop->crk_param[3].crp_p, sign_buf, sign_sz);
if (err) {
goto err;
}
// reverse_buf(sign_buf + sign_sz, sign_sz);
err = copy_to_user(cop->crk_param[4].crp_p, sign_buf + sign_sz, sign_sz);
if (err) {
goto err;
}
}
err:
kfree(sign_buf);
free_e_buf:
kfree(e_buf);
free_key:
kfree(key_buf);
return err;
}
int cryptodev_ecdsa_verify(struct kernel_crypt_pkop *pkop)
{
struct crypt_kop *cop = &pkop->pkop;
uint8_t *key_buf;
uint32_t key_buf_len;
size_t e_sz;
size_t r_sz;
size_t s_sz;
uint8_t *e_buf;
uint8_t *r_buf;