-
Notifications
You must be signed in to change notification settings - Fork 0
/
bleu_eval.py
84 lines (68 loc) · 2.84 KB
/
bleu_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from datasets import load_metric
import numpy as np
import json
import sys
from tokenizer_utils import create_tokenizer
from transformers import AutoTokenizer
from sacremoses import MosesDetokenizer, MosesTokenizer
import os
mt, md = MosesTokenizer(lang='en'), MosesDetokenizer(lang='en')
metric_bleu = load_metric("./bleu.py")
metric_sacrebleu = load_metric("./sacre_bleu.py")
metric_rouge = load_metric("./rouge.py")
tokenizer_mbert = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
def cal_metrics(data):
refs = [[md.detokenize(mt.tokenize(item[-1]))] for item in data]
preds = [md.detokenize(mt.tokenize(item[0])) for item in data]
sacre_results = metric_sacrebleu.compute(predictions=preds, references=refs)
print('***SacreBLEU score', round(sacre_results['score'], 2))
refs = [[tokenizer_mbert.tokenize(item[-1])] for item in data]
preds = [tokenizer_mbert.tokenize(item[0]) for item in data]
results = metric_bleu.compute(predictions=preds, references=refs)
print('*** tokenized BLEU score', round(results['bleu']*100, 2))
refs = [item[-1] for item in data]
preds = [item[0] for item in data]
results = metric_rouge.compute(predictions=preds, references=refs)
print('Rouge score', results)
return sacre_results['score']
def selectBest(sentences):
selfBleu = [[] for i in range(len(sentences))]
for i, s1 in enumerate(sentences):
for j, s2 in enumerate(sentences):
score = metric_sacrebleu.compute(predictions=[s1],
references=[[s2]])['score']
selfBleu[i].append(score)
for i, s1 in enumerate(sentences):
selfBleu[i][i] = 0
idx = np.argmax(np.sum(selfBleu, -1))
return sentences[idx]
input_file = sys.argv[1]
if os.path.exists(input_file):
with open(input_file, 'r') as f:
data = f.readlines()
data = [json.loads(item.strip('\n')) for item in data]
cal_metrics(data)
else:
path = '/'.join(input_file.split('/')[:-1])
prefix = input_file.split('/')[-1]
files = [os.path.join(path, f) for f in os.listdir(path) if f.startswith(prefix) and sys.argv[2] in f]
print(files)
refs = []
preds = []
for f in files:
print('===='+f.split('/')[-1])
with open(f, 'r') as fi:
data = fi.readlines()
data = [json.loads(item.strip('\n')) for item in data]
if not refs:
refs = [md.detokenize(mt.tokenize(item[-1])) for item in data]
if not preds:
preds = [[md.detokenize(mt.tokenize(item[0]))] for item in data]
else:
for idx, item in enumerate(data):
preds[idx].append(item[0])
preds = [selectBest(item) for item in preds]
data_buffer = []
for p, r in zip(preds, refs):
data_buffer.append([p,r])
cal_metrics(data_buffer)