Projet contenant mes tests sur la fabrication d'une IA pour jouer aux échecs, fonctionnant uniquement en Deep Learning, en utilisant PyTorch. Le but est de voir ce qui est possible de faire en contraste avec les méthodes classiques de recherche d'arbre de jeu (minimax, alpha-beta pruning, etc.) n'utilisant que des algorithmes de notation et heuristiques.
├── src <- Code source du projet
├── docs <- Documentation du projet
│ └── static <- Fichiers statiques du README.md
├── tests <- Dossier contenants les tests logiciels
│ ├── units <- Tests unitaires
│ └── integrations <- Tests d'intégration
├── scripts <- Scripts utiles pour le projet (pas de CI/CD)
├── ruff.toml <- Fichier de configuration de Ruff
├── environment.yml <- Fichier de configuration de l'environnement conda
Ce projet nécessite d'avoir conda d'installé. Pour installer les dépendances, il suffit de lancer la commande suivante :
conda env create -f environment.yml
Vous pouvez mettre à jour l'environnement avec la commande suivante :
conda env update -f environment.yml
Ce projet utilise typer
pour créer une interface en ligne de commande. Pour lancer l'aide aux commandes, il suffit de lancer
la commande suivante :
python src
Ce projet est documenté en utilisant mkdocs
. Pour lancer la documentation, il suffit de lancer la commande suivante :
mkdocs serve
Et de se rendre à l'adresse http://localhost:8000
pour consulter la documentation.