diff --git a/experiment_files/example_visualizations.json b/experiment_files/example_visualizations.json index 794bcc6..682147f 100644 --- a/experiment_files/example_visualizations.json +++ b/experiment_files/example_visualizations.json @@ -26,7 +26,7 @@ "objective_performance_keys": [ "time" ], - "cutoff_type": "fevals", + "cutoff_type": "time", "plot": { "plot_x_value_types": [ "fevals", @@ -44,6 +44,7 @@ "strategy_defaults": { "repeats": 100, "minimum_number_of_evaluations": 20, + "cutoff_margin": 1.1, "stochastic": true, "record_data": [ "time", diff --git a/src/autotuning_methodology/experiments.py b/src/autotuning_methodology/experiments.py index 01195a2..187f359 100755 --- a/src/autotuning_methodology/experiments.py +++ b/src/autotuning_methodology/experiments.py @@ -139,7 +139,7 @@ def execute_experiment(filepath: str, profiling: bool = False) -> tuple[dict, di assert cutoff_type == "fevals" or cutoff_type == "time", f"cutoff_type must be 'fevals' or 'time', is {cutoff_type}" curve_segment_factor: float = experiment.get("curve_segment_factor", 0.05) assert isinstance(curve_segment_factor, float), f"curve_segment_factor is not float, {type(curve_segment_factor)}" - strategies = get_strategies(experiment) + strategies: list[dict] = get_strategies(experiment) # add the kernel directory to the path to import the module, relative to the experiment file kernels_path = experiment_folderpath / Path(experiment["kernels_path"]) @@ -179,20 +179,22 @@ def execute_experiment(filepath: str, profiling: bool = False) -> tuple[dict, di strategy_name: str = strategy["name"] strategy_display_name: str = strategy["display_name"] stochastic = strategy["stochastic"] + cutoff_margin = strategy.get( + "cutoff_margin", 1.1 + ) # +10% margin, to make sure cutoff_point is reached by compensating for potential non-valid evaluations # noqa: E501 print(f" | - | using strategy '{strategy['display_name']}'") # setup the results description if "options" not in strategy: strategy["options"] = dict() - cutoff_margin = 1.1 # +10% margin, to make sure cutoff_point is reached by compensating for potential non-valid evaluations # noqa: E501 - - # TODO make sure this works correctly - # if cutoff_type == 'time': - # strategy['options']['time_limit'] = cutoff_point_time * cutoff_margin - # else: - strategy["options"]["max_fevals"] = min( - int(ceil(cutoff_point_fevals * cutoff_margin)), searchspace_stats.size - ) + + # set when to stop + if cutoff_type == "time": + strategy["options"]["time_limit"] = cutoff_point_time * cutoff_margin + else: + strategy["options"]["max_fevals"] = min( + int(ceil(cutoff_point_fevals * cutoff_margin)), searchspace_stats.size + ) results_description = ResultsDescription( experiment_folder_id, kernel_name,