-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.yaml
56 lines (47 loc) · 1.53 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Training
defaults:
- config
hydra:
run:
dir: E:\yyb\cliport-master\cliport # ${train.train_dir}
dataset:
type: 'single' # 'single' or 'multi'
images: True
cache: True # load episodes to memory instead of reading from disk
augment:
theta_sigma: 60 # rotation sigma in degrees; N(mu = 0, sigma = theta_sigma).
train:
# folders
exp_folder: exps
train_dir: E:\yyb\cliport-master\data\packing-boxes-pairs-seen-colors-train # assembling-kits-seq-full-train # # ${root_dir}/${train.exp_folder}/${train.task}-${train.agent}-n${train.n_demos}-train
data_dir: E:\yyb\cliport-master\data # ${root_dir}/data
# task configs
task: packing-boxes-pairs-seen-colors # packing-boxes-pairs-seen-colors
agent: cliport # two_stream_full_clip_lingunet_lat_transporter
n_demos: 100
n_steps: 20000 # 201000# use 601000 for multi-task models
# hyper params
n_rotations: 36
batchnorm: False # important: False because batch_size=1
lr: 1e-4
attn_stream_fusion_type: 'add'
trans_stream_fusion_type: 'conv'
lang_fusion_type: 'mult'
# script configs
gpu: [0] # [0] # -1 for all
log: False # log metrics and stats to wandb
n_val: 10
val_repeats: 1
save_steps: [1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 40000, 80000, 120000, 160000, 200000, 300000, 400000, 500000, 600000, 800000, 1000000, 1200000]
load_from_last_ckpt: True
wandb:
run_name: 'cliport0'
logger:
entity: cliport
project: cliport
tags: []
group: train
offline: False
saver:
upload: False
monitor: 'val_loss'