-
Notifications
You must be signed in to change notification settings - Fork 3
/
app_v4.py
116 lines (92 loc) · 4.45 KB
/
app_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
from streamlit_chat import message
import tempfile
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain.chains import ConversationalRetrievalChain
DB_FAISS_PATH = 'vectorstore/db_faiss'
# Loading the model
def load_llm():
llm = CTransformers(
model="llama-2-7b-chat.Q4_0.gguf",
model_type="llama",
max_new_tokens=512,
temperature=0.5
)
return llm
st.title("Chat with Crystal Quantum Shield 🤖")
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
if uploaded_file:
# Use tempfile because CSVLoader only accepts a file_path
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file_path = tmp_file.name
# Load the data using pandas for analysis and graphing, limit to 10 rows
df = pd.read_csv(tmp_file_path, nrows=10)
# Create two columns for layout
col1, col2 = st.columns(2)
# Column 1: Data Analysis and Visualization
with col1:
st.write("## Data Preview")
st.write(df.head())
# Display basic statistics
st.write("## Data Statistics")
st.write(df.describe())
# Data visualization
st.write("## Data Visualization")
# Example: Pairplot using Seaborn for numerical columns
if st.checkbox("Show Pairplot", key='pairplot'):
st.write("Pairplot of numerical columns:")
pairplot_fig = sns.pairplot(df.select_dtypes(include=['float64', 'int64']))
st.pyplot(pairplot_fig)
# Example: Correlation heatmap using Seaborn
if st.checkbox("Show Correlation Heatmap", key='heatmap'):
st.write("Correlation Heatmap:")
corr = df.corr()
heatmap_fig, ax = plt.subplots()
sns.heatmap(corr, annot=True, cmap='coolwarm', ax=ax)
st.pyplot(heatmap_fig)
# Column 2: Chatbot Interface
with col2:
st.write("## Chatbot Interface")
# Load data for chatbot
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','})
data = loader.load()
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
db = FAISS.from_documents(data, embeddings)
db.save_local(DB_FAISS_PATH)
llm = load_llm()
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
def conversational_chat(query):
result = chain.invoke({"question": query, "chat_history": st.session_state['history']})
st.session_state['history'].append((query, result["answer"]))
return result["answer"]
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello! Ask me anything about " + uploaded_file.name + " 🤗"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey! 👋"]
# Container for the chat history
response_container = st.container()
# Container for the user's text input
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
output = conversational_chat(user_input)
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
if st.session_state['generated']:
with response_container:
for i in range(len(st.session_state['generated'])):
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")