forked from lanadescheemaeker/logistic_models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_colormap.py
54 lines (47 loc) · 1.82 KB
/
make_colormap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# code from https://stackoverflow.com/questions/16834861/create-own-colormap-using-matplotlib-and-plot-color-scale
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
def make_colormap(seq):
"""Return a LinearSegmentedColormap
seq: a sequence of floats and RGB-tuples. The floats should be increasing
and in the interval (0,1).
"""
seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3]
cdict = {'red': [], 'green': [], 'blue': []}
for i, item in enumerate(seq):
if isinstance(item, float):
r1, g1, b1 = seq[i - 1]
r2, g2, b2 = seq[i + 1]
cdict['red'].append([item, r1, r2])
cdict['green'].append([item, g1, g2])
cdict['blue'].append([item, b1, b2])
return mcolors.LinearSegmentedColormap('CustomMap', cdict)
# code to make color lighter (0<amount<1) or darker (amount>1)
def change_color(color, amount=0.5):
"""
Lightens the given color by multiplying (1-luminosity) by the given amount.
Input can be matplotlib color string, hex string, or RGB tuple.
Examples:
>> lighten_color('g', 0.3)
>> lighten_color('#F034A3', 0.6)
>> lighten_color((.3,.55,.1), 0.5)
"""
import matplotlib.colors as mc
import colorsys
try:
c = mc.cnames[color]
except:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])
# example code
if __name__ == "__main__":
c = mcolors.ColorConverter().to_rgb
rvb = make_colormap([c('red'), c('violet'), 0.33, c('violet'), c('blue'), 0.66, c('blue')])
N = 1000
array_dg = np.random.uniform(0, 10, size=(N, 2))
colors = np.random.uniform(-2, 2, size=(N,))
plt.scatter(array_dg[:, 0], array_dg[:, 1], c=colors, cmap=rvb)
plt.colorbar()
plt.show()