-
Notifications
You must be signed in to change notification settings - Fork 0
/
VIB_mao_Pr.py
258 lines (218 loc) · 10.6 KB
/
VIB_mao_Pr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from utils import constant
from utils.vocab import Vocab
SMALL = 1e-08
# 0: tokens, 1: pos, 2: mask_s, 3: labels
class ToyNet(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.K = args.K
self.rnn_hidden = args.rnn_hidden
self.max_sent_len = args.max_sent_len
print("loading pretrained emb......")
self.emb_matrix = np.load(args.dset_dir+'/'+args.dataset+'/embedding.npy')
print("loading dataset vocab......")
self.vocab = Vocab(args.dset_dir+'/'+args.dataset+'/vocab.pkl')
# create embedding layers
self.emb = nn.Embedding(self.vocab.size, args.emb_dim, padding_idx=constant.PAD_ID)
self.pos_emb = nn.Embedding(len(constant.POS_TO_ID), args.pos_dim) if args.pos_dim > 0 else None
# initialize embedding with pretrained word embeddings
self.init_embeddings()
# dropout
self.input_dropout = nn.Dropout(args.input_dropout)
# GRU for P(Trc|S,Y')
self.GRU_mean_rc = torch.nn.GRUCell(len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID), self.rnn_hidden*2)
self.GRU_std_rc = torch.nn.GRUCell(len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID), self.rnn_hidden*2)
# GRU for P(Tner|S,Y')
self.GRU_mean_ner = torch.nn.GRUCell(len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID), self.rnn_hidden*2)
self.GRU_std_ner = torch.nn.GRUCell(len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID), self.rnn_hidden*2)
# define r
self.r_mean_rc = nn.Parameter(torch.randn(self.max_sent_len, self.K))
self.r_std_rc = nn.Parameter(torch.randn(self.max_sent_len, self.K))
self.r_mean_ner = nn.Parameter(torch.randn(self.max_sent_len, self.K))
self.r_std_ner = nn.Parameter(torch.randn(self.max_sent_len, self.K))
# define encoder for the sharing representations S
self.BiLSTM = LSTMRelationModel(args)
# classifer1
self.Lr1 = nn.Linear(4*self.rnn_hidden, 2*self.rnn_hidden)
self.Cr1 = nn.Linear(2*self.rnn_hidden, len(constant.LABEL_TO_ID))
self.Cg1 = nn.Linear(2*self.rnn_hidden, len(constant.BIO_TO_ID))
# classifer2
self.Lr2 = nn.Linear(4*self.rnn_hidden, 2*self.rnn_hidden)
self.Cr2 = nn.Linear(2*self.rnn_hidden, len(constant.LABEL_TO_ID))
self.Cg2 = nn.Linear(2*self.rnn_hidden, len(constant.BIO_TO_ID))
# Fn
self.logsoft_fn1 = nn.LogSoftmax(dim=2)
self.logsoft_fn2 = nn.LogSoftmax(dim=3)
def init_embeddings(self):
if self.emb_matrix is None:
self.emb.weight.data[1:, :].uniform_(-1.0, 1.0)
else:
self.emb_matrix = torch.from_numpy(self.emb_matrix)
self.emb.weight.data.copy_(self.emb_matrix)
def get_statistics_batch(self, embeds, task):
if task == 'rc':
Y = embeds[0].reshape(-1, len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID))
H = embeds[1].reshape(-1, self.rnn_hidden*2)
mean = self.GRU_mean_rc(Y, H)
std = self.GRU_std_rc(Y, H)
# reshape to bsz, sqlen, hidden_size
mean = mean.reshape(embeds[1].size(0), embeds[1].size(1), -1)
std = std.reshape(embeds[1].size(0), embeds[1].size(1), -1)
elif task == 'ner':
Y = embeds[0].reshape(-1, len(constant.BIO_TO_ID)+len(constant.LABEL_TO_ID))
H = embeds[1].reshape(-1, self.rnn_hidden*2)
mean = self.GRU_mean_ner(Y, H)
std = self.GRU_std_ner(Y, H)
# reshape to bsz, sqlen, hidden_size
mean = mean.reshape(embeds[1].size(0), embeds[1].size(1), -1)
std = std.reshape(embeds[1].size(0), embeds[1].size(1), -1)
cov = std * std + SMALL
return mean, cov
def get_sample_from_param_batch(self, mean, cov, sample_size):
bsz, seqlen, tag_dim = mean.shape
z = torch.randn(bsz, sample_size, seqlen, tag_dim).cuda()
z = z * torch.sqrt(cov).unsqueeze(1).expand(-1, sample_size, -1, -1) + \
mean.unsqueeze(1).expand(-1, sample_size, -1, -1)
return z
def kl_div(self, param1, param2, real_len, mask_kl):
"""
Calculates the KL divergence between a categorical distribution and a
uniform categorical distribution.
Parameters
----------
alpha : torch.Tensor
Parameters of the categorical or gumbel-softmax distribution.
Shape (N, D)
"""
mean1, cov1 = param1
mean2, cov2 = param2
bsz, seqlen, tag_dim = mean1.shape
var_len = tag_dim * real_len
cov2_inv = 1 / cov2
mean_diff = mean2 - mean1
mean_diff = mean_diff.view(bsz, -1)
cov1 = cov1.view(bsz, -1)
cov2 = cov2.view(bsz, -1)
cov2_inv = cov2_inv.view(bsz, -1)
mask_kl = mask_kl.view(bsz, -1)
temp = (mean_diff * cov2_inv*mask_kl).view(bsz, 1, -1)
KL = 0.5 * (torch.sum(torch.log(cov2)*mask_kl ,dim=1) - torch.sum(torch.log(cov1)*mask_kl, dim=1) - var_len
+ torch.sum(cov2_inv * cov1*mask_kl, dim=1) + torch.bmm(temp, mean_diff.view(bsz, -1, 1)).view(bsz))
return KL
# 0: tokens, 1: pos, 2: mask_s
def forward(self, inputs, num_sample=1):
tokens, pos, mask_s = inputs
tokens_embs = self.emb(tokens)
rnn_inputs = [tokens_embs]
if self.args.pos_dim > 0:
rnn_inputs += [self.pos_emb(pos)]
rnn_inputs = torch.cat(rnn_inputs, dim=2)
lens = mask_s.sum(dim=1)
rnn_inputs = self.input_dropout(rnn_inputs)
H = self.BiLSTM((rnn_inputs, lens))
# mask
s_len = H.size(1)
mask_NER = mask_s.unsqueeze(-1).repeat(1, 1, len(constant.BIO_TO_ID))
mask_tmp = mask_s.unsqueeze(-1).repeat(1, 1, len(constant.LABEL_TO_ID))
mask_tmp = mask_tmp.unsqueeze(1).repeat(1, s_len, 1, 1)
mask_RC = torch.zeros_like(mask_tmp)
real_len = mask_s.sum(dim=1).int()
for i in range(mask_tmp.size(0)):
mask_RC[i, :real_len[i], :real_len[i], :] = mask_tmp[i, :real_len[i], :real_len[i], :]
Hg = H
Hr = H
# Cg get y1'
logits_Cg = self.Cg1(Hg)
prob_Cg = F.softmax(logits_Cg, dim=2)
logits_Cg = self.logsoft_fn1(logits_Cg)
logits_Cg1 = logits_Cg * mask_NER
# Cr get y2'
e1 = Hr.unsqueeze(2).repeat(1, 1, s_len, 1)
e2 = Hr.unsqueeze(1).repeat(1, s_len, 1, 1)
e12 = torch.cat([e1, e2], dim=3)
e12 = F.relu(self.Lr1(e12), inplace=True)
del e1
del e2
prob_Cr = torch.sigmoid(self.Cr1(e12))
del e12
prob_Cr = prob_Cr * mask_RC
logits_Cr1 = prob_Cr
prob_Cr = torch.where(mask_RC==0, torch.zeros_like(prob_Cr)-10e10, prob_Cr)
prob_Cr = prob_Cr.max(dim=2)[0]
# P(Trc|S,Y')
Y = torch.cat([prob_Cr, prob_Cg], dim=2)
mean_rc, cov_rc = self.get_statistics_batch((Y, H), task='rc')
encoding_rc = self.get_sample_from_param_batch(mean_rc, cov_rc, num_sample)
# P(Tner|S,Y')
mean_ner, cov_ner = self.get_statistics_batch((Y, H), task='ner')
encoding_ner = self.get_sample_from_param_batch(mean_ner, cov_ner, num_sample)
# repeat mask
mask_NER = mask_NER.unsqueeze(1).repeat(1, num_sample, 1, 1)
mask_RC = mask_RC.unsqueeze(1).repeat(1, num_sample, 1, 1, 1)
Hg = encoding_ner
Hr = encoding_rc
# use compressed Hg and Hr for classification
logits_Cg = self.Cg2(Hg)
logits_Cg = self.logsoft_fn2(logits_Cg)
logits_Cg2 = logits_Cg * mask_NER
e1 = Hr.unsqueeze(3).repeat(1, 1, 1, s_len, 1)
e2 = Hr.unsqueeze(2).repeat(1, 1, s_len, 1, 1)
e12 = torch.cat([e1, e2], dim=4)
e12 = F.relu(self.Lr2(e12), inplace=True)
del e1
del e2
logits_Cr = torch.sigmoid(self.Cr2(e12))
del e12
logits_Cr2 = logits_Cr * mask_RC
# caculate KL divergence for encoding_rc
seqlen, bsz = s_len, mask_s.size(0)
mask_kl = mask_s.unsqueeze(-1).repeat(1, 1, self.K)
mean_r_rc = self.r_mean_rc[:seqlen].unsqueeze(0).expand(bsz, -1, -1)
std_r_rc = self.r_std_rc[:seqlen].unsqueeze(0).expand(bsz, -1, -1)
cov_r_rc = std_r_rc * std_r_rc + SMALL
mean, cov = mean_rc, cov_rc
mean_r, cov_r = mean_r_rc, cov_r_rc
kl_div_rc = self.kl_div((mean, cov), (mean_r, cov_r), real_len, mask_kl)
# caculate KL divergence for encoding_ner
mean_r_ner = self.r_mean_ner[:seqlen].unsqueeze(0).expand(bsz, -1, -1)
std_r_ner = self.r_std_ner[:seqlen].unsqueeze(0).expand(bsz, -1, -1)
cov_r_ner = std_r_ner * std_r_ner + SMALL
mean, cov = mean_ner, cov_ner
mean_r, cov_r = mean_r_ner, cov_r_ner
kl_div_ner = self.kl_div((mean, cov), (mean_r, cov_r), real_len, mask_kl)
return self.args.beta1*kl_div_rc.mean()+self.args.beta2*kl_div_ner.mean(), logits_Cg1.view(-1, len(constant.BIO_TO_ID)), logits_Cr1.view(-1, len(constant.LABEL_TO_ID)), logits_Cg2.view(-1, len(constant.BIO_TO_ID)), logits_Cr2.view(-1, len(constant.LABEL_TO_ID))
# BiLSTM model
class LSTMRelationModel(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.in_dim = args.emb_dim + args.pos_dim
self.rnn = nn.LSTM(self.in_dim, self.args.rnn_hidden, 1, batch_first=True, \
dropout=0, bidirectional=True)
def encode_with_rnn(self, rnn_inputs, seq_lens, batch_size):
h0, c0 = rnn_zero_state(batch_size, self.args.rnn_hidden, 1, True)
rnn_inputs = nn.utils.rnn.pack_padded_sequence(rnn_inputs, seq_lens, batch_first=True)
rnn_outputs, (ht, ct) = self.rnn(rnn_inputs, (h0, c0))
rnn_outputs, _ = nn.utils.rnn.pad_packed_sequence(rnn_outputs, batch_first=True)
return rnn_outputs
def forward(self, inputs):
# unpack inputs
inputs, lens = inputs[0], inputs[1]
return self.encode_with_rnn(inputs, lens, inputs.size()[0])
# Initialize zero state
def rnn_zero_state(batch_size, hidden_dim, num_layers, bidirectional=True, use_cuda=True):
total_layers = num_layers * 2 if bidirectional else num_layers
state_shape = (total_layers, batch_size, hidden_dim)
h0 = c0 = Variable(torch.zeros(*state_shape), requires_grad=False)
if use_cuda:
return h0.cuda(), c0.cuda()
else:
return h0, c0