-
Notifications
You must be signed in to change notification settings - Fork 0
/
loader.py
183 lines (150 loc) · 6.46 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
Data loader for nyt json files.
"""
import json
import random
import torch
import numpy as np
from utils import constant
from utils.helper import read_json
class Dataloader(object):
"""
Load data from json files, preprocess and prepare batches.
"""
def __init__(self, filename, batch_size, opt, vocab, evaluation=False):
self.batch_size = batch_size
self.opt = opt
self.vocab = vocab
self.eval = evaluation
self.label2id = constant.LABEL_TO_ID
data = read_json(filename)
self.raw_data = data
data = self.preprocess(data, vocab, opt)
self.num_examples = len(data)
# chunk into batches
data = [data[i:i+batch_size] for i in range(0, len(data), batch_size)]
self.data = data
print("{} batches created for {}".format(len(data), filename))
def preprocess(self, data, vocab, opt):
""" Preprocess the data and convert to ids. """
processed = []
for d in data:
# tokens
tokens = list(d['sentText'])
if opt['lower']:
tokens = [t.lower() for t in tokens]
# pos
pos = d['pos']
# mapping to ids
tokens = map_to_ids(tokens, vocab.word2id)
pos = map_to_ids(pos, constant.POS_TO_ID)
l = len(tokens) # real length of sentence
# labels
# RC_labels = gen_labels(d)
# BIO labels
NER_labels = [constant.BIO_TO_ID['O'] for _ in range(len(tokens))]
for en in d['en_list']:
if len(en) == 1:
en_index = d['sentText'].index(en[0])
NER_labels[en_index] = constant.BIO_TO_ID['S']
else:
sta, end = find_index(d['sentText'], en)
tmp_block = [constant.BIO_TO_ID['B']] + [constant.BIO_TO_ID['I'] for _ in range(end-sta-1)] + [constant.BIO_TO_ID['E']]
NER_labels[sta:end+1] = tmp_block
# mask for real length
mask_s = [1 for i in range(l)]
processed += [(tokens, pos, mask_s, (d['sentText'], d['relationMentions']), NER_labels)]
return processed
def __len__(self):
return len(self.data)
# 0: tokens, 1: pos, 2: mask_s, 3: RC_labels 4: NER_labels
def __getitem__(self, key):
""" Get a batch with index. """
if not isinstance(key, int):
raise TypeError
if key < 0 or key >= len(self.data):
raise IndexError
batch = self.data[key]
batch_size = len(batch)
batch = list(zip(*batch))
assert len(batch) == 5
# sort all fields by lens for easy RNN operations
lens = [len(x) for x in batch[0]]
batch, _ = sort_all(batch, lens)
# word dropout
if not self.eval:
words = [word_dropout(sent, self.opt['word_dropout']) for sent in batch[0]]
else:
words = batch[0]
# convert to tensors
words = get_long_tensor(words, batch_size)
pos = get_long_tensor(batch[1], batch_size)
# mask_s to tensors
mask_s = get_float_tensor(batch[2], batch_size)
# RC_labels to tensors
RC_labels = [gen_labels(sentText, relationMentions) for sentText, relationMentions in batch[3]]
RC_labels = padding_labels(RC_labels, batch_size)
# NER_labels to tensors
NER_labels = get_long_tensor(batch[4], batch_size)
return ((words, pos, mask_s), NER_labels, RC_labels)
def __iter__(self):
for i in range(self.__len__()):
yield self.__getitem__(i)
def gen_labels(sentText, relationMentions):
l = len(sentText)
labels = np.zeros((l,l,len(constant.LABEL_TO_ID)), dtype=np.float32)
for i, rm in enumerate(relationMentions):
h_e1, h_e2 = sentText.index(rm['em1Text'][0]), sentText.index(rm['em2Text'][0])
labels[h_e1][h_e2][constant.LABEL_TO_ID[rm['label']]] = 1
return labels
def find_index(sentText, en): # [sta, end]
for i in range(len(sentText)):
if sentText[i:len(en)+i] == en:
return i, len(en)+i-1
def map_to_ids(tokens, vocab):
ids = [vocab[t] if t in vocab else constant.UNK_ID for t in tokens]
return ids
def get_positions(start_idx, end_idx, length):
""" Get subj/obj position sequence. """
return list(range(-start_idx, 0)) + [0]*(end_idx - start_idx + 1) + \
list(range(1, length-end_idx))
def padding_labels(labels, batch_size):
""" Convert labels to a padded LongTensor. """
token_len = max(x.shape[0] for x in labels)
padded_labels = torch.FloatTensor(batch_size, token_len, token_len, len(constant.LABEL_TO_ID)).fill_(0)
for i, s in enumerate(labels):
padded_labels[i,:s.shape[0],:s.shape[0]] = torch.FloatTensor(s)
return padded_labels
def get_long_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded LongTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.LongTensor(batch_size, token_len).fill_(constant.PAD_ID)
for i, s in enumerate(tokens_list):
tokens[i, :len(s)] = torch.LongTensor(s)
return tokens
def get_float_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded FloatTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.FloatTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, :len(s)] = torch.FloatTensor(s)
return tokens
# use for selecting non tag RNNs output
def get_gather_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to gather index tensor. """
token_len = max(len(x) for x in tokens_list)
for x in tokens_list:
x += (token_len-len(x))*[1]
gather_index = []
for x in tokens_list:
gather_index.append([i for i in range(token_len) if x[i]!=0])
return torch.tensor(gather_index, dtype=torch.long)
def sort_all(batch, lens):
""" Sort all fields by descending order of lens, and return the original indices. """
unsorted_all = [lens] + [range(len(lens))] + list(batch)
sorted_all = [list(t) for t in zip(*sorted(zip(*unsorted_all), reverse=True))]
return sorted_all[2:], sorted_all[1]
def word_dropout(tokens, dropout):
""" Randomly dropout tokens (IDs) and replace them with <UNK> tokens. """
return [constant.UNK_ID if x != constant.UNK_ID and np.random.random() < dropout \
else x for x in tokens]