Skip to content

Latest commit

 

History

History
30 lines (20 loc) · 664 Bytes

README.md

File metadata and controls

30 lines (20 loc) · 664 Bytes

Critical Classes and Samples Discovering for Partial Domain Adaptation

Shuang Li, Kaixiong Gong, et al.

IEEE Transaction on Cybernetics (TCYB), 2022. [pdf]

This repository contains the code of our IEEE TCYB 2021 paper "Critical Classes and Samples Discovering for Partial Domain Adaptation".

Prerequisite

  • PyTorch >= 1.0.0
  • Python3
  • torchvision
  • PIL
  • argparse
  • numpy
  • tensorboardX

Getting Started

Train the method using the script:

sh scripts/office-31.sh

and you can alter the source & target list paths to specify the task for experiment.