-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_dgl.py
302 lines (282 loc) · 12.2 KB
/
train_dgl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import division
from __future__ import print_function
import time
import argparse
import numpy as np
import scipy.sparse as sp
import copy
from pathlib import Path
import torch
import torch.nn.functional as F
import torch.optim as optim
import dgl
from models.GCN import GCN
from models.GAT import GAT
from models.GraphSAGE import GraphSAGE
from models.APPNP import APPNP
from models.MoNet import MoNet
from models.GCNII import GCNII
from dgl.nn.pytorch.conv import SGConv
from models.utils import get_training_config
from data.utils import load_tensor_data, load_ogb_data, check_writable
from data.get_dataset import get_experiment_config
from utils.logger import get_logger
from utils.metrics import accuracy
def arg_parse(parser):
parser.add_argument('--dataset', type=str, default='cora', help='Dataset')
parser.add_argument('--teacher', type=str, default='GCN', help='Teacher Model')
parser.add_argument('--device', type=int, default=2, help='CUDA Device')
parser.add_argument('--labelrate', type=int, default=20, help='Label rate')
return parser.parse_args()
def choose_path(conf):
output_dir = Path.cwd().joinpath('outputs', conf['dataset'], conf['teacher'],
'cascade_random_' + str(conf['division_seed']) + '_' + str(args.labelrate))
check_writable(output_dir)
cascade_dir = output_dir.joinpath('cascade')
check_writable(cascade_dir)
return output_dir, cascade_dir
def choose_model(conf):
if conf['model_name'] == 'GCN':
model = GCN(
g=G,
in_feats=features.shape[1],
n_hidden=conf['hidden'],
n_classes=labels.max().item() + 1,
n_layers=1,
activation=F.relu,
dropout=conf['dropout']).to(conf['device'])
elif conf['model_name'] in ['GAT', 'SGAT']:
if conf['model_name'] == 'GAT':
num_heads = 8
else:
num_heads = 1
num_layers = 1
num_out_heads = 1
heads = ([num_heads] * num_layers) + [num_out_heads]
model = GAT(g=G,
num_layers=num_layers,
in_dim=features.shape[1],
num_hidden=8,
num_classes=labels.max().item() + 1,
heads=heads,
activation=F.relu,
feat_drop=0.6,
attn_drop=0.6,
negative_slope=0.2, # negative slope of leaky relu
residual=False).to(conf['device'])
elif conf['model_name'] == 'GraphSAGE':
model = GraphSAGE(in_feats=features.shape[1],
n_hidden=conf['embed_dim'],
n_classes=labels.max().item() + 1,
n_layers=2,
activation=F.relu,
dropout=0.5,
aggregator_type=conf['agg_type']).to(conf['device'])
elif conf['model_name'] == 'APPNP':
model = APPNP(g=G,
in_feats=features.shape[1],
hiddens=[64],
n_classes=labels.max().item() + 1,
activation=F.relu,
feat_drop=0.5,
edge_drop=0.5,
alpha=0.1,
k=10).to(conf['device'])
elif conf['model_name'] == 'MoNet':
model = MoNet(g=G,
in_feats=features.shape[1],
n_hidden=64,
out_feats=labels.max().item() + 1,
n_layers=1,
dim=2,
n_kernels=3,
dropout=0.7).to(conf['device'])
elif conf['model_name'] == 'SGC':
model = SGConv(in_feats=features.shape[1],
out_feats=labels.max().item() + 1,
k=2,
cached=True,
bias=False).to(conf['device'])
elif conf['model_name'] == 'GCNII':
if conf['dataset'] == 'citeseer':
conf['layer'] = 32
conf['hidden'] = 256
conf['lamda'] = 0.6
conf['dropout'] = 0.7
elif conf['dataset'] == 'pubmed':
conf['hidden'] = 256
conf['lamda'] = 0.4
conf['dropout'] = 0.5
model = GCNII(nfeat=features.shape[1],
nlayers=conf['layer'],
nhidden=conf['hidden'],
nclass=labels.max().item() + 1,
dropout=conf['dropout'],
lamda=conf['lamda'],
alpha=conf['alpha'],
variant=False).to(conf['device'])
return model
def train(all_logits, dur, epoch):
t0 = time.time()
model.train()
optimizer.zero_grad()
if conf['model_name'] in ['GCN', 'APPNP']:
logits = model(G.ndata['feat'])
elif conf['model_name'] in ['GAT', 'SGAT']:
logits, _ = model(G.ndata['feat'])
elif conf['model_name'] in ['GraphSAGE', 'SGC']:
logits = model(G, G.ndata['feat'])
elif conf['model_name'] == 'MoNet':
us, vs = G.edges(order='eid')
udeg, vdeg = 1 / torch.sqrt(G.in_degrees(us).float()), 1 / torch.sqrt(G.in_degrees(vs).float())
pseudo = torch.cat([udeg.unsqueeze(1), vdeg.unsqueeze(1)], dim=1)
logits = model(G.ndata['feat'], pseudo)
elif conf['model_name'] == 'GCNII':
logits = model(features, adj)
else:
raise ValueError(f'Undefined Model')
logp = F.log_softmax(logits, dim=1)
# we only compute loss for labeled nodes
loss = F.nll_loss(logp[idx_train], labels[idx_train])
acc_train = accuracy(logp[idx_train], labels[idx_train])
loss.backward()
optimizer.step()
dur.append(time.time() - t0)
model.eval()
if conf['model_name'] in ['GCN', 'APPNP']:
logits = model(G.ndata['feat'])
elif conf['model_name'] in ['GAT', 'SGAT']:
logits, _ = model(G.ndata['feat'])
elif conf['model_name'] in ['GraphSAGE', 'SGC']:
logits = model(G, G.ndata['feat'])
elif conf['model_name'] == 'MoNet':
us, vs = G.edges(order='eid')
udeg, vdeg = 1 / torch.sqrt(G.in_degrees(us).float()), 1 / torch.sqrt(G.in_degrees(vs).float())
pseudo = torch.cat([udeg.unsqueeze(1), vdeg.unsqueeze(1)], dim=1)
logits = model(G.ndata['feat'], pseudo)
elif conf['model_name'] == 'GCNII':
logits = model(features, adj)
else:
raise ValueError(f'Undefined Model')
logp = F.log_softmax(logits, dim=1)
# we save the logits for visualization later
all_logits.append(logp.cpu().detach().numpy())
loss_val = F.nll_loss(logp[idx_val], labels[idx_val])
acc_val = accuracy(logp[idx_val], labels[idx_val])
acc_test = accuracy(logp[idx_test], labels[idx_test])
print('Epoch %d | Loss: %.4f | loss_val: %.4f | acc_train: %.4f | acc_val: %.4f | acc_test: %.4f | Time(s) %.4f' % (
epoch, loss.item(), loss_val.item(), acc_train.item(), acc_val.item(), acc_test.item(), dur[-1]))
return acc_val, loss_val
def model_train(conf, model, optimizer, all_logits):
dur = []
best = 0
cnt = 0
epoch = 1
while epoch < conf['max_epoch']:
acc_val, loss_val = train(all_logits, dur, epoch)
epoch += 1
if acc_val >= best:
best = acc_val
state = dict([('model', copy.deepcopy(model.state_dict())),
('optim', copy.deepcopy(optimizer.state_dict()))])
cnt = 0
else:
cnt += 1
if cnt == conf['patience'] or epoch == conf['max_epoch']:
print("Stop!!!")
# print("Saving cascade info...")
# all_logits = all_logits[: -cnt]
# if cascade_dir is not None:
# for i in range(len(all_logits)):
# np.savetxt(cascade_dir.joinpath(str(i) + '.txt'),
# np.exp(all_logits[i]),
# fmt='%.4f', delimiter='\t')
break
model.load_state_dict(state['model'])
optimizer.load_state_dict(state['optim'])
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(np.sum(dur)))
def test(conf):
model.eval()
if conf['model_name'] in ['GCN', 'APPNP']:
logits = model(G.ndata['feat'])
elif conf['model_name'] in ['GAT', 'SGAT']:
logits, G.edata['a'] = model(G.ndata['feat'])
elif conf['model_name'] in ['GraphSAGE', 'SGC']:
logits = model(G, G.ndata['feat'])
elif conf['model_name'] == 'MoNet':
us, vs = G.edges(order='eid')
udeg, vdeg = 1 / torch.sqrt(G.in_degrees(us).float()), 1 / torch.sqrt(G.in_degrees(vs).float())
pseudo = torch.cat([udeg.unsqueeze(1), vdeg.unsqueeze(1)], dim=1)
logits = model(G.ndata['feat'], pseudo)
elif conf['model_name'] == 'GCNII':
logits = model(features, adj)
else:
raise ValueError(f'Undefined Model')
logp = F.log_softmax(logits, dim=1)
loss_test = F.nll_loss(logp[idx_test], labels[idx_test])
acc_test = accuracy(logp[idx_test], labels[idx_test])
print("Test set results: loss= {:.4f} acc_test= {:.4f}".format(
loss_test.item(), acc_test.item()))
return acc_test, logp
if __name__ == '__main__':
args = arg_parse(argparse.ArgumentParser())
config_path = Path.cwd().joinpath('models', 'train.conf.yaml')
conf = get_training_config(config_path, model_name=args.teacher)
config_data_path = Path.cwd().joinpath('data', 'dataset.conf.yaml')
conf['division_seed'] = get_experiment_config(config_data_path)['seed']
if args.device > 0:
conf['device'] = torch.device("cuda:" + str(args.device))
else:
conf['device'] = torch.device("cpu")
conf = dict(conf, **args.__dict__)
print(conf)
output_dir, cascade_dir = choose_path(conf)
logger = get_logger(output_dir.joinpath('log'))
print(output_dir)
print(cascade_dir)
# random seed
np.random.seed(conf['seed'])
torch.manual_seed(conf['seed'])
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Load data
if conf['dataset'] in ['arxiv']:
G, features, labels, idx_train, idx_val, idx_test = load_ogb_data(conf['dataset'], conf['device'])
else:
adj, adj_sp, features, labels, labels_one_hot, idx_train, idx_val, idx_test = \
load_tensor_data(conf['model_name'], conf['dataset'], args.labelrate, conf['device'])
G = dgl.graph((adj_sp.row, adj_sp.col)).to(conf['device'])
G.ndata['feat'] = features
print('We have %d nodes.' % G.number_of_nodes())
print('We have %d edges.' % G.number_of_edges())
# The first layer transforms input features of size of 5 to a hidden size of 5.
# The second layer transforms the hidden layer and produces output features of
# size 2, corresponding to the two groups of the karate club.
model = choose_model(conf)
if conf['model_name'] == 'GCNII':
if conf['dataset'] == 'pubmed':
conf['wd1'] = 0.0005
optimizer = optim.Adam([
{'params': model.params1, 'weight_decay': conf['wd1']},
{'params': model.params2, 'weight_decay': conf['wd2']},
], lr=conf['learning_rate'])
else:
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=conf['learning_rate'],
weight_decay=conf['weight_decay'])
all_logits = []
model_train(conf, model, optimizer, all_logits)
acc_test, logp = test(conf)
preds = logp.max(1)[1].type_as(labels).cpu().numpy()
labels = labels.cpu().numpy()
output = np.exp(logp.cpu().detach().numpy())
acc_test = acc_test.cpu().item()
np.savetxt(output_dir.joinpath('preds.txt'), preds, fmt='%d', delimiter='\t')
np.savetxt(output_dir.joinpath('labels.txt'), labels, fmt='%d', delimiter='\t')
np.savetxt(output_dir.joinpath('output.txt'), output, fmt='%.4f', delimiter='\t')
np.savetxt(output_dir.joinpath('test_acc.txt'), np.array([acc_test]), fmt='%.4f', delimiter='\t')
if 'a' in G.edata:
print('Saving Attention...')
edge = torch.stack((G.edges()[0], G.edges()[1]),0)
sp_att = sp.coo_matrix((G.edata['a'].cpu().detach().numpy(), edge.cpu()), shape=adj.cpu().size())
sp.save_npz(output_dir.joinpath('attention_weight.npz'), sp_att, compressed=True)