-
Notifications
You must be signed in to change notification settings - Fork 1
/
gekko_co_gen_storage_both.py
222 lines (181 loc) · 6.57 KB
/
gekko_co_gen_storage_both.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import utilities as util
def model(t, plot=False, disp=False, ramp=4, imode=6, nodes='', solver=3,
mv_step_hor='', cv_type=1, max_time='',
# server='https://gekko.apmonitor.com'):
server='http://byu.apmonitor.com'):
m = GEKKO(remote=True, server=server)
m.time = t
m.options.SOLVER = solver # 3
m.options.IMODE = imode # 6
# m.options.NODES = 2
if nodes == '':
pass
else:
m.options.NODES = nodes # 4
# m.options.CV_TYPE = 2 # 1 = Linear penalty from a dead-band trajectory
# m.options.CV_TYPE = 1 # 1 = Linear penalty from a dead-band trajectory
m.options.CV_TYPE = cv_type # 1 = Linear penalty from a dead-band trajectory
m.options.MAX_ITER = 600 #300 # Default is 100
m.options.MAX_ITER = 1000
if max_time == '':
pass
else:
m.options.MAX_TIME = max_time
p = m.SV(10) # production (constant)
#p.STATUS = 0
s = m.Var(0.1, lb=0) # storage inventory
stored = m.SV() # store energy rate
recovery = m.SV() # recover energy rate
vx = m.SV(lb=0) # recover slack variable
vy = m.SV(lb=0) # store slack variable
# m.periodic(s)
# m.Obj(1e4*(s[len(t)]-s[0])**2)
eps = 0.85 # Storage efficiency
d = m.MV((-20*np.sin(np.pi*t/12*24)+100)/10)
d_h = m.MV((15*np.cos(np.pi*t/12*24)+150)/10)
p_h_initial = m.Intermediate(p*1.5)
p_h = m.SV(p_h_initial)
s_h = m.Var(0.5,lb=0)
stored_h = m.SV()
recovery_h = m.SV()
renewable = (20*np.cos(np.pi*t/6*24)+20)/10 #renewable energy source
center = np.ones(len(t))
num = len(t)
center[0:int(num/4)] = 0
center[-int(num/4):] = 0
renewable *= center
r = m.Param(renewable)
r1 = m.MV(ub=3,lb=-3)
r1.STATUS=1
m.periodic(s_h)
zx = m.SV(lb=0)
zy = m.SV(lb=0)
eps_h = 0.8 # heat storage efficiency
m.Equations([p + r + recovery/eps - stored >= d,
p + r - d == vx - vy,
stored == p + r - d + vy,
recovery == d - p - r + vx,
s.dt() == stored - recovery/eps,
p.dt() == r1,
# vx * vy <= 0,
stored * recovery <= 0,
p_h + recovery_h/eps_h - stored_h >= d_h,
p_h - d_h == zx - zy,
stored_h == p_h - d_h + zy,
recovery_h == d_h - p_h + zx,
s_h.dt() == stored_h - recovery_h/eps_h,
stored_h * recovery_h <= 0,
p_h == 1.5 * p
]
)
m.Minimize(p)
# Solve the optimization model (enforces disp=True)
txt = util.solve_and_get_txt(m)
# Get additional APMonitor values
out = util.get_apm_values(txt)
M = m.options
message = M.APPINFO
if message == 0:
message = "Optimization terminated successfully"
## Need to define feasibility function for this model before this will work
# consCheck = [
# gen.value, t,
# dgen.value
# ]
# feasible, error1 = fs.load_feasibility(consCheck, tol=1e-6)
feasible, error1 = 'Not tested', 'NA'
info = {
'Model':'Gekko tri-gen',
'time_steps':len(t),
'fcalls':M.ITERATIONS,
'gcalls':'NA',
'f':M.OBJFCNVAL,
'feasible':feasible,
'ramp err':error1,
'total err':error1,
'time (s)':M.SOLVETIME,
'message':message,
'status':M.APPSTATUS,
'path':m._path
}
data = {
'Demand 1': d,
'Demand 2': d_h,
'Production 1': p,
'Production 2': p_h,
'Storage 1': s,
'Stored 1': stored,
'Recovered 1': recovery,
'Slack 1x': vx,
'Slack 1y': vy,
'Storage 2': s_h,
'Stored 2': stored_h,
'Recovered 2': recovery_h,
'Slack 2x': zx,
'Slack 2y': zy,
'Ramp Rate 1': r1,
'Renewable': r,
't': t
}
# Add in the APMonitor data
info = {**info, **out}
return info, data
#%%
if __name__ == '__main__':
# Solve model
t = np.linspace(0, 24, 24*3+1)/24 # 25)
t = np.linspace(0, 1, 73)
# t = np.linspace(0, 1, 101)
# t = np.linspace(0, 1, 8)
info, data = model(t, plot=False, disp=True, nodes=2, cv_type=2)
print(info['fcalls'])
t = np.array(data['t'])
d = np.array(data['Demand 1'])
p = np.array(data['Production 1'])
d_h = np.array(data['Demand 2'])
p_h = np.array(data['Production 2'])
r = np.array(data['Renewable'])
r1 = np.array(data['Ramp Rate 1'])
s = np.array(data['Storage 1'])
stored = np.array(data['Stored 1'])
recovery = np.array(data['Recovered 1'])
s_h = np.array(data['Storage 2'])
stored_h = np.array(data['Stored 2'])
recovery_h = np.array(data['Recovered 2'])
#%%
# Plot solution
fig, axes = plt.subplots(5, 1, figsize=(5, 5.1), sharex=True)
axes = axes.ravel()
ax = axes[0]
ax.plot(t, d, 'r-', label='Demand 1 ($d_1$)')
ax.plot(t, p,'b:', label='Production 1 ($g_1$)', linewidth=2)
# ax.plot(t,n[:-1], 'k--', label='Net ($d_1-R_1$)')
ax.plot(t, d - r, 'k--', label='Net ($d_1-R_1$)')
ax = axes[1]
ax.plot(t,r, 'b-',label='Source 1 ($R_1$)')
ax.plot(t,r1, 'k--', label='Ramp Rate ($r$)')
ax = axes[2]
ax.plot(t,s, 'k-', label='Storage 1 ($e_1$)')
ax.plot(t,stored,'g--',label='Stored ($e_{in,1}$)')
ax.plot(t,recovery,'b:',label='Recovered ($e_{out,1}$)', linewidth=2)
ax = axes[3]
ax.plot(t,d_h, 'r-', label='Demand 2 ($d_2$)')
ax.plot(t[1:], p_h[1:],'b:', label='Production 2 ($g_2$)',
linewidth=2)
#ax.plot(t[1:],p_prod[1:], 'b--',label='Supplemental Heat Production')
ax = axes[4]
ax.plot(t,s_h, 'k-', label='Storage 2 ($e_2$)')
ax.plot(t,stored_h,'g--',label='Stored ($e_{in,2}$)')
ax.plot(t[1:],recovery_h[1:],'b:',label='Recovered ($e_{out,2}$)',
linewidth=2)
ax.set_xlabel('Time')
for ax in axes:
ax.legend(loc='center left',bbox_to_anchor = (1,0.5),frameon=False)
ax.grid()
ax.set_xlim(0, 1)
plt.tight_layout()
plt.savefig('6-energy-storage.pdf', bbox_inches = 'tight')