-
Notifications
You must be signed in to change notification settings - Fork 1
/
VNS_NSGAII.py
1193 lines (1042 loc) · 54.9 KB
/
VNS_NSGAII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
import numpy as np
import time
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import copy
from Data_reader import TP, TRT, m, n, N, tot_number_operations, M_ij, PP, AGV_power, AUX_power, IDLE_power
total_Operation = tot_number_operations
# Parameters
Pop_size = 100
generation_num = 200
pm = 0.2 # Mutation probability
# Data initialization
M = list(range(1, m + 1))
I = list(range(1, n + 1))
O_ij = {job: list(range(1, N[job] + 1)) for job in range(1, n + 1)}
T_ijm = TP
# Step 1: Encoding and Initialization
class GA():
def __init__(self, I, M, O_ij, M_ij, T_ijm, Pop_size, total_Operation):
self.I = I # Job number
self.M = M # Machine number
self.O_ij = O_ij # Job_Process
self.M_ij = M_ij # Available machines for each assignment
self.T_ijm = T_ijm # Processing time for each assignment on available_machine machines
self.Pop_size = Pop_size # Population_mks size
self.total_Operation = total_Operation
# Random initialization
def Random_initial(self):
MS_RS = []
OS_RS = []
for i in self.I:
for j in self.O_ij[i]:
# Machine part (MS)
MS_RS.append(random.choice(self.M_ij[i, j]))
# Operation part (OS)
OS_RS.append(i)
random.shuffle(OS_RS)
RS = OS_RS + MS_RS
return RS
## Second step: Decoding
# Decoding the machine part from left to right, converting it into a machine order matrix and time order matrix T
# Decode T = based on machine assignment for each individual get the processing times for the assignment
def Decode_T(self, Pop_matrix): # Do not run separately
T_list = []
for a in range(len(Pop_matrix)): # For each chromosome
T = []
for b in range(self.total_Operation):
m = Pop_matrix[:][a][self.total_Operation:self.total_Operation * 2][
b] # Machine for the current assignment
i_j = list(self.M_ij.keys())[b][0] # Get the job number for this assignment
j_i = list(self.M_ij.keys())[b][1] # Get the assignment number for this assignment
T_total = self.T_ijm[i_j, j_i, m]
T.append(T_total)
T_list.append(T)
T_matrix = np.array(T_list)
return T_matrix
# Decode OS
def Decode_OS(self, Pop_matrix): # Decoding
# The sum of the number of operations of eligiblemachine jobs before the current job
T_matrix = self.Decode_T(Pop_matrix)
O_num_list = []
O_num = 0
for i in self.I:
O_num_list.append(O_num)
O_num += len(self.O_ij[i])
# Get the corresponding job-assignment group based on the assignment code
O_M_T_total = []
for a in range(len(Pop_matrix)): # For each chromosome
O_M_T = {}
for b in range(self.total_Operation):
O_i = Pop_matrix[:][a][0:self.total_Operation][b] # OS part of each chromosome
O_j = list(Pop_matrix[:][a][0:b + 1]).count(
O_i) # The number of times the current sequence number appears, i.e., the assignment number
T_matrix_column = O_num_list[
O_i - 1] + O_j - 1 # Column number of the current assignment arranged in positive order
O_M = Pop_matrix[:][a][self.total_Operation:self.total_Operation * 2][
T_matrix_column] # Machine selected for the current assignment
T_matrix_recent = T_matrix[a, T_matrix_column] # Time required for the current assignment
O_M_T[
O_i, O_j, O_M] = T_matrix_recent # Operations sorted by OS code and corresponding equipment fixture
O_M_T_total.append(O_M_T)
return O_M_T_total
# Operation insertion method
def Operation_insert(self, key, value):
M_arranged = {a: [] for a in M}
P_arranged = {a: [] for a in I}
AGV_arranged = []
All_arranged = {}
precedence_machine = {}
for a in range(self.total_Operation):
All_arranged[key[a]] = [] # Currently arranged operations
current_machine = key[a][2] # Machine for the current assignment
current_operation = key[a][1] # current assignment
current_product = key[a][0] # Current job
current_op_time = value[a] # Processing time for the current assignment
machine_pre = (precedence_machine.get(current_product) or 0)
if P_arranged[current_product] == []:
# first transport from LU
last_op_end_time = TRT[0, current_machine]
else:
# the end of previous assignment can be seen as actual finish time + transportation time to next machine
last_op_end_time = max(P_arranged[current_product])[1] + TRT[machine_pre, current_machine]
if M_arranged[current_machine] == []:
ta = max(last_op_end_time, 0)
self.arranged(M_arranged, current_machine, P_arranged, current_product, ta, current_op_time,
All_arranged, key, a)
if (TRT[machine_pre, current_machine] != 0):
# AGV scheduling initial time agv, transportation time, job, machine pre, machine post, initial time next assignment
AGV_arranged.append(
[last_op_end_time - TRT[machine_pre, current_machine], TRT[machine_pre, current_machine],
current_product, machine_pre, current_machine, ta])
else:
intersection = self.Find_gap(M_arranged[current_machine])
inters = copy.deepcopy(intersection)
while inters: # Check if it can break out of the loop!
ta = max(last_op_end_time, inters[0][0])
if ta + current_op_time <= inters[0][1]:
self.arranged(M_arranged, current_machine, P_arranged, current_product, ta, current_op_time,
All_arranged, key, a)
if (TRT[machine_pre, current_machine] != 0):
AGV_arranged.append([last_op_end_time - TRT[machine_pre, current_machine],
TRT[machine_pre, current_machine], current_product, machine_pre,
current_machine, ta])
break
else:
inters.pop(0)
precedence_machine[current_product] = current_machine
# if last assignment is selected, add agv schedule to report the job to the LU area
if current_operation == N[current_product]:
AGV_arranged.append(
[ta + current_op_time, TRT[current_machine, 0], current_product, current_machine, 0, ta])
return M_arranged, P_arranged, All_arranged, AGV_arranged
# Do not run separately
def arranged(self, M_arranged, current_machine, P_arranged, current_product, ta, current_op_time, All_arranged, key,
a):
M_arranged[current_machine] += [(ta, ta + current_op_time)]
P_arranged[current_product] += [(ta, ta + current_op_time)]
All_arranged[key[a]] += [ta, ta + current_op_time]
return M_arranged, P_arranged, All_arranged
# Find the idle time of the machine, do not run separately
def Find_gap(self, M_arranged):
arranged = sorted(M_arranged)
gap_list = []
if arranged != []:
for a in range(len(arranged) + 1):
if a == 0:
if arranged[a][0] != 0:
gap_list.append([0, arranged[a][0]])
elif a == len(arranged):
gap_list.append([arranged[a - 1][1], 9999])
else:
gap_list.append([arranged[a - 1][1], arranged[a][0]])
return gap_list
# Calculate the fitness of each individual
def makespan_calculation(self, time):
time_values = []
# add transportation time to LU to calculate makespan
# just check the time of last operations
for key in time.keys():
job, operation, machine = key
if operation == N[job]:
time_values.append(time[key][1] + TRT[(machine, 0)])
return max(time_values)
def energy_calculation(self, ALL_arranged, makespan, AGV_scheduling):
production_energy = 0
idle_energy = 0
agv_energy = 0
aux_energy = 0
total_production_time_machine = {}
# production energy
for key, time_interval in ALL_arranged.items():
job, operation, machine = key
start_time, end_time = time_interval
# Calculate energy consumed for the assignment on that machine during the time interval
production_energy += PP[(job, operation, machine)] / 60 * (end_time - start_time)
total_production_time_machine[machine] = (total_production_time_machine.get(machine) or 0) + (
end_time - start_time)
# machine in idle
for machine in M:
idle_energy += (makespan - (total_production_time_machine.get(machine) or 0)) * IDLE_power[machine - 1] / 60
# agv energy
for task in AGV_scheduling:
agv_energy += AGV_power / 60 * task[1]
aux_energy = makespan * AUX_power / 60
# total energy consumed
tot_energy = production_energy + idle_energy + agv_energy + aux_energy
return round(tot_energy, 4)
def crowding_distance_sort(self, last_front):
num_individuals = len(last_front)
last_front_distance = [0.0] * num_individuals # Initialize ordered distances
for obj_index in range(2):
# Get indices of individuals sorted by current objective
sorted_indices = sorted(range(num_individuals), key=lambda i: last_front[i][obj_index])
# Assign large distances to boundary individuals and all individuals with same value
last_front_distance[sorted_indices[0]] += 1000
last_front_distance[sorted_indices[-1]] += 1000
# Calculate the range of the current objective for normalisation
obj_min = last_front[sorted_indices[0]][obj_index]
obj_max = last_front[sorted_indices[-1]][obj_index]
obj_range = obj_max - obj_min if obj_max - obj_min > 0 else 1 # Avoid division by zero
# Calculate distances for intermediate individuals
for i in range(1, num_individuals - 1):
distance = last_front[sorted_indices[i + 1]][obj_index] - last_front[sorted_indices[i - 1]][obj_index]
# normalized distance assigned to the correct individual
last_front_distance[sorted_indices[i]] += distance / obj_range
return last_front_distance
def fast_non_dominated_sort(self, combined_results):
rank_fronts = []
# number of individuals which dominates the key
domination_counter = {}
# set of individuals which the key dominates
dominated_solutions = {i: set() for i in range(len(combined_results))}
Q = set()
for index1, individual1 in enumerate(combined_results):
domination_counter[index1] = 0
for index2, individual2 in enumerate(combined_results):
if index2 != index1:
if self.check_dominance(individual1, individual2):
dominated_solutions[index1].add(index2)
elif self.check_dominance(individual2, individual1):
domination_counter[index1] += 1
if domination_counter[index1] == 0:
Q.add(index1)
rank_fronts.append(Q)
i = 1
while rank_fronts[i - 1] != set():
Q = set()
for index1 in rank_fronts[i - 1]:
for index2 in dominated_solutions[index1]:
domination_counter[index2] -= 1
if domination_counter[index2] == 0:
Q.add(index2)
i += 1
rank_fronts.append(Q)
return rank_fronts
def fitness_VNS(self, time1, energy1):
combined_results = []
for i in range(len(time1)):
combined_results.append([time1[i], energy1[i]])
fronts = self.fast_non_dominated_sort(combined_results)
selected_individuals = []
current_front = 0
Pareto_ind = len(list(fronts[0]))
while len(selected_individuals) < len(time1):
selected_individuals.extend(list(fronts[current_front]))
current_front += 1
return selected_individuals, Pareto_ind
def fitness(self, time1, energy1):
combined_results = []
for i in range(len(time1)):
combined_results.append([time1[i], energy1[i]])
fronts = self.fast_non_dominated_sort(combined_results)
selected_individuals = []
current_front = 0
Pareto_ind = len(list(fronts[0]))
while len(selected_individuals) < min(self.Pop_size, len(time1)):
if len(fronts[current_front]) + len(selected_individuals) <= min(self.Pop_size, len(time1)):
selected_individuals.extend(list(fronts[current_front]))
current_front += 1
else:
# Sort the last Pareto front based on crowding distance
keys_last_front = list(fronts[current_front])
# Use keys_last_front to filter the combined_results list
last_front_individuals = [combined_results[key] for key in keys_last_front]
distances = self.crowding_distance_sort(last_front_individuals)
sorted_last_front = [ind for _, ind in
sorted(zip(distances, keys_last_front), key=lambda x: x[0], reverse=True)]
selected_individuals.extend(sorted_last_front[:(min(self.Pop_size, len(time1)) - len(selected_individuals))])
# rank individuals on the front based on crowding distance and peak the best ones
return selected_individuals, Pareto_ind
# for mating pool selection
def tournament_selection(self, time1, energy1, size_matingpool):
combined_results = []
for i in range(len(time1)):
combined_results.append([time1[i], energy1[i]])
fronts = self.fast_non_dominated_sort(combined_results)
sorted_front = []
selected_mating_pool = []
# sort each front based on crowding distance
for front in fronts:
if front != set():
# Sort the last Pareto front based on crowding distance
keys_front = list(front)
# Use keys_last_front to filter the combined_results list
front_individuals = [combined_results[key] for key in keys_front]
distances = self.crowding_distance_sort(front_individuals)
sorted_front.append(
[ind for _, ind in sorted(zip(distances, keys_front), key=lambda x: x[0], reverse=True)])
count = 0
while len(selected_mating_pool) < size_matingpool:
# Randomly select two distinct indices
i1, i2 = random.sample(range(len(combined_results)), 2)
# Determine the front index and position for each selected individual
front_index_i1, position_i1 = next(
((index, front.index(i1)) for index, front in enumerate(sorted_front) if i1 in front), (None, None))
front_index_i2, position_i2 = next(
((index, front.index(i2)) for index, front in enumerate(sorted_front) if i2 in front), (None, None))
# Compare the fronts and select the index from the lower front
if front_index_i1 < front_index_i2:
winner = i1
elif front_index_i2 < front_index_i1:
winner = i2
else:
# If in the same front, select the one that appears first, leveraging crowding distance
winner = i1 if position_i1 < position_i2 else i2
# Add the winner to the mating pool if it's not going to mate to himself
if len(selected_mating_pool) < int(Pop_size / 2):
selected_mating_pool.append(winner)
else:
if winner != selected_mating_pool[count]:
count += 1
selected_mating_pool.append(winner)
return selected_mating_pool
def check_dominance(self, solution1, solution2):
"""
- bool: True if solution1 dominates solution2, False otherwise.
"""
dominates = all(s1 <= s2 for s1, s2 in zip(solution1, solution2)) and any(
s1 < s2 for s1, s2 in zip(solution1, solution2))
return dominates
# Crossover, OS part (IPOX)
def IPOX(self, p1_OS, p2_OS):
num = random.randint(1, len(self.I) - 2) # Choose a random number
set1 = random.sample(self.I, k=num) # num jobs are placed in set1
c1_OS = np.zeros(self.total_Operation, dtype=int) # Initialize offspring
c2_OS = np.zeros(self.total_Operation, dtype=int)
c2_left = []
c1_left = []
for a in range(
len(p1_OS)): # The first parent chromosome has only jobs belonging to set1, in c1 indexed, in c2 in order
if p1_OS[a] in set1:
c1_OS[a] = p1_OS[a]
else:
c1_left.append(p1_OS[a])
if p2_OS[a] in set1:
c2_OS[a] = p2_OS[a]
else:
c2_left.append(p2_OS[a])
idx1 = -1
idx2 = -1
for c in range(self.total_Operation):
if c1_OS[c] == 0: # If this position is 0, it does not belong to set1
c1_OS[c] = c2_left[idx1] # Reverse order
idx1 -= 1
if c2_OS[c] == 0:
c2_OS[c] = c1_left[idx2]
idx2 -= 1
return c1_OS, c2_OS
# Uniform crossover, MS
def UX(self, p1, p2):
index = []
num = random.randint(1, self.total_Operation)
for a in range(0, self.total_Operation):
index.append(a)
set1 = random.sample(index, k=num)
set2 = list(set(index).difference(set(set1)))
c1_MS = np.zeros(self.total_Operation, dtype=int)
c2_MS = np.zeros(self.total_Operation, dtype=int)
for a in set1:
c1_MS[a] = p1[a]
c2_MS[a] = p2[a]
for b in set2:
c1_MS[b] = p2[b]
c2_MS[b] = p1[b]
return c1_MS, c2_MS
# OS mutation (swap any two positions)
def swap_mutation(self, os):
index = []
for a in range(0, self.total_Operation):
index.append(a)
set = random.sample(index, k=2)
temp = os[set[0]]
os[set[0]] = os[set[1]]
os[set[1]] = temp
return os
# MS mutation, reassign random operation to the best PT or best EC
def Random_MS(self, ms):
idx = random.randint(0, self.total_Operation - 1)
i_j = list(self.M_ij.keys())[idx][0] # Get the job number of the current assignment
j_i = list(self.M_ij.keys())[idx][1] # Get the assignment number of the current assignment
rand = random.random()
if rand < 0.5:
machine_time = []
for machine_idx in self.M_ij[i_j, j_i]:
machine_time.append(self.T_ijm[i_j, j_i, machine_idx])
min_value = min(machine_time)
min_indexes = [index for index, value in enumerate(machine_time) if value == min_value]
new_idx = random.choice(min_indexes)
else:
machine_energy = []
for machine_idx in self.M_ij[i_j, j_i]:
machine_energy.append(round(TP[i_j, j_i, machine_idx] / 60 * PP[i_j, j_i, machine_idx], 1))
min_value = min(machine_energy)
min_indexes = [index for index, value in enumerate(machine_energy) if value == min_value]
new_idx = random.choice(min_indexes)
ms[idx] = self.M_ij[i_j, j_i][new_idx]
return ms
def swap_os(self, os, job1, operation1, job2, operation2):
occurrence_count = 0
# Loop through the jobs_vector to find the index of the desired occurrence
for index, job in enumerate(os):
if job == job1:
occurrence_count += 1
if occurrence_count == operation1:
index1 = index
break # Stop searching once we find the desired occurrence
occurrence_count = 0
# Loop through the jobs_vector to find the index of the desired occurrence
for index, job in enumerate(os):
if job == job2:
occurrence_count += 1
if occurrence_count == operation2:
index2 = index
break # Stop searching once we find the desired occurrence
temp = os[index1]
os[index1] = os[index2]
os[index2] = temp
return os
## OS mutation (swap an assignment of the last 2 jobs that end trying to anticipate them)
# Critic assignment may be one that makes wait for precedence assignment or last assignment
def smart_swap_mutation(self, cos, schedule):
cos = []
for job in schedule[2]:
cos.append(job[0])
job_critic = max(schedule[1], key=lambda x: schedule[1][x][-1][1])
random_operation = random.choice([1, len(O_ij[job_critic])])
# select the correct assignment to swap
for key in schedule[2].keys():
if key[0] == job_critic and key[1] == random_operation:
machine_critic = key[2] # Return the machine part of the key
if random_operation == 1 and schedule[2][(job_critic, random_operation, machine_critic)][0] == TRT[
0, machine_critic]:
random_operation = random.choice([2, len(O_ij[job_critic])])
for key in schedule[2].keys():
if key[0] == job_critic and key[1] == random_operation:
machine_critic = key[2] # Return the machine part of the key
count = 0
var = True
while var is True:
if random_operation in [2, len(O_ij[job_critic])]:
# Find the key for the previous assignment
previous_key = next(((job, op, machine) for (job, op, machine), _ in schedule[2].items() if
job == job_critic and op == random_operation - 1), None)
if previous_key is not None:
if schedule[2][(job_critic, random_operation, machine_critic)][0] == schedule[2][previous_key][1] + TRT[previous_key[2], machine_critic]:
random_operation = random.choice([2, len(O_ij[job_critic])])
for key in schedule[2].keys():
if key[0] == job_critic and key[1] == random_operation:
machine_critic = key[2] # Return the machine part of the key
count += 1
if count == 10:
var = False
else:
var = False
else:
var = False
else:
var = False
job_critic_key = (job_critic, random_operation, machine_critic)
job_critic_time_frame = schedule[2].get(job_critic_key)
# Filter tasks performed on machine_critic and before the end time of job_critic's assignment
filtered_tasks = [(job, op, machine, start_end) for (job, op, machine), start_end in schedule[2].items()
if machine == machine_critic and start_end[1] <= job_critic_time_frame[
0] and job != job_critic]
# Sort filtered tasks by their end time to find the task closest to the start of job_critic's assignment
filtered_tasks.sort(key=lambda x: x[3][1], reverse=True) # Sort in descending order by end time
# Extract the job and assignment number of the task closest to job_critic's assignment start time
if filtered_tasks:
# Parameters for the job to find and its occurrence [(4, 2, 8, [40, 64]), (5, 2, 8, [22, 40]), (14, 1, 8, [2, 22])]
closest_task = filtered_tasks[0] # The first item after sorting will be the closest
job_to_find = closest_task[0] # Example job number to find
occurrence_to_find = closest_task[1] # Example occurrence (1st, 2nd, etc.)
cos = Pop.swap_os(cos, job_to_find, occurrence_to_find, job_critic, random_operation)
return cos
# OS mutation (identifies and swap a job in a critical block)
def os_critical_block_mutation(self, cos, schedule):
cos = []
for job in schedule[2]:
cos.append(job[0])
list_machines = copy.deepcopy(M)
random.shuffle(list_machines)
# Sort the schedule based on the machine's index in list_machines, then by end time
sorted_schedule = sorted(schedule[2].items(), key=lambda x: (list_machines.index(x[0][2]), x[1][1]))
# Convert the sorted list of tuples back to a dictionary if needed
sorted_schedule_dict = dict(sorted_schedule)
block_operations = {}
current_end = []
for assignment in sorted_schedule_dict:
machine = assignment[2]
if machine not in block_operations:
current_end.append(-1)
block_operations[machine] = []
if current_end[-1] == sorted_schedule_dict[assignment][0]:
block_operations[machine][-1].append(assignment)
else:
block_operations[machine].append([assignment])
current_end.append(sorted_schedule_dict[assignment][1])
# random machines in which create the swap
machine_choices = [machine for machine in schedule[0] if schedule[0][machine]]
random_machines = random.sample(machine_choices, k=1)
# random gaps for each selected machines
random_indexes = {}
for machine in random_machines:
block_len = len(block_operations[machine])
if block_len > 1:
random_indexes[machine] = random.sample(range(0, block_len), k=1)
else:
random_indexes[machine] = [0] # Default to the only block if there's only one
# some indexes get swaped inside the block
# the eligible machine gets the previous operation that causes the waiting get swapped before
for machine in random_machines:
for index, gap in enumerate(block_operations[machine]):
if index in random_indexes[machine]:
if len(gap) > 1:
# If first block, swap first 2 operations of the block only if first operation starts after time required to reach the machine
if index == len(block_operations[machine]):
job1 = gap[0][0]
operation1 = gap[0][1]
job2 = gap[1][0]
operation2 = gap[1][1]
cos = Pop.swap_os(cos, job1, operation1, job2, operation2)
elif index == 0:
job1 = gap[-1][0]
operation1 = gap[-1][1]
job2 = gap[-2][0]
operation2 = gap[-2][1]
cos = Pop.swap_os(cos, job1, operation1, job2, operation2)
# If last block, swap first 2 operations of the block
elif index != 0 and index != len(block_operations[machine]):
job1 = gap[0][0]
operation1 = gap[0][1]
job2 = gap[1][0]
operation2 = gap[1][1]
cos = Pop.swap_os(cos, job1, operation1, job2, operation2)
if len(gap) > 2:
job1 = gap[-1][0]
operation1 = gap[-1][1]
job2 = gap[-2][0]
operation2 = gap[-2][1]
cos = Pop.swap_os(cos, job1, operation1, job2, operation2)
return cos
# MS mutation for VNS
def smart_MS_1(self, cms, schedule):
# reassign a random operation to its less utilised eligible machine
idx = random.randint(0, self.total_Operation - 1)
i_j = list(self.M_ij.keys())[idx][0] # Get the job number of the current assignment
j_i = list(self.M_ij.keys())[idx][1] # Get the assignment number of the current assignment
# Calculate total assignment time for each machine
machine_operation_time = {machine: sum(end - start for start, end in times) for machine, times in
schedule[0].items() if machine in M_ij[i_j, j_i]}
# Sort the machines based on total assignment time
sorted_machines_by_utilization = sorted(machine_operation_time.items(), key=lambda item: item[1])
new_idx = sorted_machines_by_utilization[0][0] # Get the machine with the minimum utilization time
cms[idx] = self.M_ij[i_j, j_i][M_ij[i_j, j_i].index(new_idx)]
return cms
def smart_MS_2(self, cms, schedule):
# reassign an operation performed on the machine that finishes last
filtered_schedule = {key: value for key, value in schedule[0].items() if value and len(value[-1]) > 1}
sorted_machines = sorted(filtered_schedule, key=lambda x: filtered_schedule[x][-1][1], reverse=True)
critic_machine = sorted_machines[0]
# Randomly choose a (job, assignment) performed on critic_machine
filtered_entries = [(job, operation) for (job, operation, machine), times in schedule[2].items() if
machine == critic_machine]
random_job_operation = random.choice(filtered_entries)
idx = -1
for el in N:
if el != random_job_operation[0]:
idx += N[el]
else:
idx += random_job_operation[1]
break
i_j = list(self.M_ij.keys())[idx][0] # Get the job number of the current assignment
j_i = list(self.M_ij.keys())[idx][1] # Get the assignment number of the current assignment
# Filter out the critic_machine from the list of machines for the given job and operation
machines_except_critic = [machine for machine in self.M_ij[i_j, j_i] if machine != critic_machine]
# If there are machines left after excluding the critic_machine, choose one at random
if machines_except_critic:
new_idx = random.choice(machines_except_critic)
cms[idx] = new_idx
return cms
def smart_MS_3(self, cms, schedule):
# Worst assignments for energy is reassigned to the best
filtered_diff = {key: diff_dict[key] for key in diff_dict if key in schedule[2]}
max_key = max(filtered_diff, key=filtered_diff.get)
i_j, j_i, idx = max_key[0], max_key[1], list(filtered_diff.keys()).index(
max_key) # Extracting job and operation
machine_energy = []
for machine_idx in self.M_ij[i_j, j_i]:
machine_energy.append(energy[i_j, j_i, machine_idx])
min_value = min(machine_energy)
min_indexes = [index for index, value in enumerate(machine_energy) if value == min_value]
new_idx = random.choice(min_indexes)
cms[idx] = self.M_ij[i_j, j_i][new_idx]
return cms
def smart_MS_4(self, cms, schedule):
# Worst assignments for time is reassigned to the best
filtered_diff = {key: diff_best[key] for key in diff_best if key in schedule[2]}
max_key = max(filtered_diff, key=filtered_diff.get)
i_j, j_i, idx = max_key[0], max_key[1], list(filtered_diff.keys()).index(
max_key) # Extracting job and operation
machine_time = []
for machine_idx in self.M_ij[i_j, j_i]:
machine_time.append(self.T_ijm[i_j, j_i, machine_idx])
min_value = min(machine_time)
min_indexes = [index for index, value in enumerate(machine_time) if value == min_value]
new_idx = random.choice(min_indexes)
cms[idx] = self.M_ij[i_j, j_i][new_idx]
return cms
def gantt(result_sch):
# ALL contains the (job,assignment,machine): [initial time,final time]
ALL = result_sch[2]
fig, ax = plt.subplots()
makespan = 0
# colors
unique_job_ids = set(range(1, n + 1))
colors = plt.cm.tab20(np.linspace(0, 1, len(unique_job_ids)))
product_colors = {} # Dictionary to store product ID-color mapping
for jobs, color in zip(unique_job_ids, colors):
product_colors[jobs] = color
for key in ALL.keys():
color = product_colors[key[0]]
ax.barh(key[2], width=ALL[key][1] - ALL[key][0], height=0.6, left=ALL[key][0], color=color, edgecolor='black',
linewidth=0.3)
ax.text(ALL[key][0] + (ALL[key][1] - ALL[key][0]) / 2, key[2], str(key[0]) + "," + str(key[1]), ha='center',
va='center', fontsize=8)
if ALL[key][1] > makespan:
makespan = ALL[key][1]
for i, (t_inizio, duration, prodotto, mac_pre, mac_post, ta) in enumerate(result_sch[3]):
if mac_pre != 0 and mac_post != 0:
ax.barh(mac_pre + 0.4, duration, left=t_inizio, height=0.2, color='orange',
edgecolor='black')
ax.text(t_inizio + duration / 2, mac_pre + 0.4, str(prodotto) + str(mac_pre) + str(mac_post), ha='center',
va='center', color='black', fontsize=6)
if mac_pre == 0:
ax.barh(mac_post - 0.4, duration, left=ta - duration, height=0.2, color='orange',
edgecolor='black')
ax.text(ta - duration / 2, mac_post - 0.4, str(prodotto) + 'LU' + str(mac_post), ha='center',
va='center', color='black', fontsize=6)
if mac_post == 0:
if duration != 0:
ax.barh(mac_pre - 0.4, duration, left=t_inizio, height=0.2, color='orange',
edgecolor='black')
ax.text(t_inizio + duration / 2, mac_pre - 0.4, str(prodotto) + str(mac_pre) + 'LU', ha='center',
va='center', color='black', fontsize=6)
# Determine the locator parameters based on the makespan
if makespan <= 100:
major_tick_locator = 5
minor_tick_locator = 1
elif makespan <= 200: # Adjust these ranges as needed
major_tick_locator = 10
minor_tick_locator = 5
elif makespan <= 400: # Adjust these ranges as needed
major_tick_locator = 25
minor_tick_locator = 5
else:
major_tick_locator = 50
minor_tick_locator = 10
# Set the locator for the major ticks
ax.xaxis.set_major_locator(ticker.MultipleLocator(major_tick_locator))
# For minor ticks, set them according to the determined interval
ax.xaxis.set_minor_locator(ticker.MultipleLocator(minor_tick_locator))
# Only draw grid lines for the minor ticks (which are at every single unit)
ax.grid(which='minor', axis='x', linestyle=':', alpha=0.1)
# Optionally, if you want to see major grid lines as well (at multiples of 5), you can enable this:
ax.grid(which='major', axis='x', linestyle=':', alpha=0.2)
ax.set_xlabel("Time")
ax.set_ylabel("Machine")
ax.set_yticks(range(1, m + 1))
ax.set_yticklabels([f"M{i}" for i in range(1, m + 1)])
plt.show()
def pareto_front(gen_result):
plt.figure()
makespans = []
Energy = []
individuals_dominate = {i: 0 for i in range(len(gen_result))}
for index1, individual1 in enumerate(gen_result):
for index2, individual2 in enumerate(gen_result):
if Pop.check_dominance(individual1, individual2):
individuals_dominate[index2] += 1
for i, individual in enumerate(gen_result):
if individuals_dominate[i] == 0:
makespans.append(individual[0])
Energy.append(individual[1])
# Plotting Pareto front for the current generation with colors
plt.scatter(makespans, Energy, marker='o', c='orange')
# Combine makespans and energy into a list of tuples
combined = list(zip(makespans, Energy))
# Convert the list of tuples into a set to remove duplicates
unique_combinations = set(combined)
print("Pareto Front:")
for makespan, energy in sorted(unique_combinations): # Sorting for better readability
print(makespan)
for makespan, energy in sorted(unique_combinations): # Sorting for better readability
print(energy)
plt.xlabel('Makespan')
plt.ylabel('Energy')
plt.title(f'Pareto Fronts Solution')
plt.show()
return sorted(unique_combinations)
sorted_M_ij = {}
for job_op, machines in M_ij.items():
sorted_machines = sorted(machines, key=lambda machine: TP.get((job_op[0], job_op[1], machine)))
sorted_M_ij[job_op] = sorted_machines
# Compute the difference in processing time for sequential machines in sorted_M_ij
diff_best = {}
for job_op, machines in sorted_M_ij.items():
for i, machine in enumerate(machines):
# Calculate the difference in processing times between this machine and the best one
current_time = TP[(job_op[0], job_op[1], machine)]
best_time = TP[(job_op[0], job_op[1], machines[0])]
diff_best[(job_op[0], job_op[1], machine)] = current_time - best_time
# energy consumed by a set of (job,assignment,machine) is given as PROD. TIME * PROD.POWER + PAUX * PROC. TIME / N_MACHINES
energy = {}
for element in [x for x in TP.keys()]:
energy[element] = round(TP[element]/60 * PP[element],2)
sorted_M_ij = {}
for job_op, machines in M_ij.items():
sorted_machines = sorted(machines, key=lambda machine: energy.get((job_op[0], job_op[1], machine)))
sorted_M_ij[job_op] = sorted_machines
# Compute the difference in processing time for sequential machines in sorted_M_ij
diff_dict = {}
for job_op, machines in sorted_M_ij.items():
for i, machine in enumerate(machines):
# Calculate the difference in processing times between this machine and the previous one
current_energy = energy[(job_op[0], job_op[1], machine)]
best_energy = energy[(job_op[0], job_op[1], machines[0])]
diff_dict[(job_op[0], job_op[1], machine)] = round(current_energy - best_energy,1)
old_time = time.time()
Pop = GA(I, M, O_ij, M_ij, T_ijm, Pop_size, total_Operation)
# Generating initial population
gen = 0
result_time_list = []
result_energy_list = []
result_time_list_energy = []
result_energy_list_makespan = []
draw_result_makespan = []
draw_result_energy = []
store_result = []
data_gen_store = []
pop_store_results = []
vns_total = []
iteration = []
iteration_energy = []
num_pareto = 0
for gennum in range(generation_num):
gen += 1
if gennum == 0:
# randomly generate initial population
# store individuals in pop list
Pop_list = []
for i in range(Pop_size):
Pop_list.append(Pop.Random_initial())
Pop_matrix = np.array(Pop_list)
# Operation Insertion Method
O_M_T_total = Pop.Decode_OS(Pop_matrix)
schedule_result_total = []
makespan_total = []
energy_total = []
data_gen = []
# For each chromosome, find the fitness and minimum value of the entire population
for order in range(len(O_M_T_total)):
key1 = list(O_M_T_total[order].keys())
value1 = list(O_M_T_total[order].values())
schedule_result = Pop.Operation_insert(key1, value1)
schedule_result_total.append(schedule_result) # Decoding results of the population
makespan_schedule = Pop.makespan_calculation(schedule_result[2])
makespan_total.append(makespan_schedule)
# energy calculation
energy_schedule = Pop.energy_calculation(schedule_result[2], makespan_schedule, schedule_result[3])
energy_total.append(energy_schedule)
store_result.append([makespan_schedule, energy_schedule])
data_gen.append([makespan_schedule, energy_schedule])
pop_store_results.append(data_gen)
data_gen_store.append(data_gen)
else:
data_gen = []
# Generating a new population
Pop_total = np.vstack((Pop_matrix, son_pop_matrix))
# Operation Insertion Method
O_M_T_total = Pop.Decode_OS(Pop_total)
schedule_result_total_else = []
makespan_total_else = []
energy_total_else = []
for order in range(len(O_M_T_total)): # For each chromosome, find the minimum value of the entire population
key1 = list(O_M_T_total[order].keys())
value1 = list(O_M_T_total[order].values())
schedule_result = Pop.Operation_insert(key1, value1)
schedule_result_total_else.append(schedule_result) # Decoding results of the population
makespan_schedule = Pop.makespan_calculation(schedule_result[2])
makespan_total_else.append(makespan_schedule)
# energy calculation
energy_schedule = Pop.energy_calculation(schedule_result[2], makespan_schedule, schedule_result[3])
energy_total_else.append(energy_schedule)
store_result.append([makespan_schedule, energy_schedule])
data_gen.append([makespan_schedule, energy_schedule])
data_gen_store.append(data_gen)
# add fitness function
# I need to return for each individual of the merged populations its rank and its crowding distance
select_index, num_pareto = Pop.fitness(makespan_total_else, energy_total_else)
print(num_pareto)
Pop_list = []
schedule_result_total = []
makespan_total = []
energy_total = []
pop_results = []
for a in select_index:
Pop_list.append(Pop_total[a])
makespan_total.append(makespan_total_else[a])
energy_total.append(energy_total_else[a])
schedule_result_total.append(schedule_result_total_else[a])
pop_results.append([makespan_total_else[a], energy_total_else[a]])
pop_store_results.append(pop_results)
Pop_matrix = np.array(Pop_list)
##index
index_pop = makespan_total.index(min(makespan_total))
result_cho = Pop_matrix[index_pop]
result_sch = schedule_result_total[index_pop]
# Calculate and print average, max, and min makespan
avg_makespan = round(np.mean(makespan_total), 2)
max_makespan = max(makespan_total)
min_makespan = min(makespan_total)
avg_energy = round(np.mean(energy_total), 2)
max_energy = round(max(energy_total), 2)
min_energy = round(min(energy_total), 2)
iteration.append([time.time() - old_time, min_makespan])
iteration_energy.append([time.time() - old_time, min_energy])
print("*")
print('Gen:', gen)
print('Makespan: Min:', min_makespan, 'Max:', max_makespan, 'Average:', avg_makespan)
print('Energy: Min:', min_energy, 'Max:', max_energy, 'Average:', avg_energy)
print('Best Makespan:', min_makespan, "Best makespan energy:",
energy_total[makespan_total.index(min(makespan_total))])
print('Best Energy:', min_energy,
'Best energy makespan:', makespan_total[energy_total.index(min(energy_total))])
# Crossover
C_pop_total = []
# APPLY TOURNAMENT SELECTION FOR MATING POOL
new_index = Pop.tournament_selection(makespan_total, energy_total, Pop_size)
for a in range(int(len(new_index) / 2)):
# Generate combinations of parents, perform crossover once in each loop, and generate the same number of offspring as parents
p1_idx = new_index[a]
p2_idx = new_index[int(len(new_index) / 2) + a]
p1_OS = list(Pop_matrix[p1_idx, :][0:total_Operation]) # Extract the OS segment from the initial population
p2_OS = list(Pop_matrix[p2_idx, :][0:total_Operation])
p1_MS = list(Pop_matrix[p1_idx, :][total_Operation:total_Operation * 2])
p2_MS = list(Pop_matrix[p2_idx, :][total_Operation:total_Operation * 2])
c1_OS, c2_OS = Pop.IPOX(p1_OS, p2_OS)
c1_MS, c2_MS = Pop.UX(p1_MS, p2_MS)
C_pop_total.append(list(c1_OS) + list(c1_MS))
C_pop_total.append(list(c2_OS) + list(c2_MS))
## Mutation
son_pop_total = [] # Mutation result
for list_pop in C_pop_total:
if random.random() < pm:
os = list_pop[0:total_Operation]
ms = list_pop[total_Operation:total_Operation * 2]
c_os = Pop.swap_mutation(os)
c_ms = Pop.Random_MS(ms)
son_pop_total.append(c_os + c_ms)
else:
son_pop_total.append(list_pop)
# Remove identical schedules
if gen in range(49, generation_num, 50):
duplicates = set()
# Compare every pair of selected indexes
for i, a1 in enumerate(select_index):
for a2 in select_index[i + 1:]: # Start from the next element to avoid comparing the same pair twice
# do not remove more than the number of sons to avoid errors of next population selection
if schedule_result_total_else[a1][2] == schedule_result_total_else[a2][2] and len(duplicates) < len(
son_pop_total):
duplicates.add(a2)
print(duplicates)
select_unique_index = [index for index in select_index if index not in duplicates]
Pop_list = []
for a in select_unique_index:
Pop_list.append(Pop_total[a])
# Select parents for Variable Neighbourhood Search every 5 generations
if gen in range(39, generation_num, 20):
pareto_individuals = random.sample(range(min(num_pareto, 100)), k=min(num_pareto, 2))
VNS_individuals = copy.deepcopy(pareto_individuals)
Other_individuals = random.sample(
[ind for ind in range(len(Pop_matrix) - 1) if ind not in pareto_individuals],
k=(20 - len(pareto_individuals)))
VNS_individuals.extend(Other_individuals)
for a in VNS_individuals: