-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_belfusion.py
executable file
·136 lines (111 loc) · 5.62 KB
/
train_belfusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import torch
import data_loader as module_data
import models.diffusion as module_diffusion
import models as module_arch
from trainer import DiffusionTrainer
from utils import prepare_device, read_json, set_global_seed, add_dict_to_argparser, update_config_with_arguments
from parse_config import ConfigParser
import os
from datetime import datetime
import random
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# fix random seeds for reproducibility
DEFAULT_SEED = 6
# this will be overriden in config file only when set as arguments
ARGS_CONFIGPATH = dict( # alias for CLI argument: route in config file
name=("name", ),
batch_size=("trainer", "batch_size"),
)
ARGS_TYPES = dict(
name=str,
batch_size=int,
)
def main(config_dict, resume):
unique_id = datetime.now().strftime(r'%y%m%d_%H%M%S') + f"_{random.randint(0,1000):03d}"
config = ConfigParser(config_dict, resume=args.resume, run_id=unique_id)
seed = config["seed"]
set_global_seed(seed)
logger = config.get_logger('train')
if resume:
logger.info("---------------------- RESUMED ----------------------")
data_loader = config.init_obj('data_loader_training', module_data)
logger.info(f"Number of training samples: {data_loader.n_samples}")
valid_data_loader = None
if 'data_loader_validation' in config.config:
valid_data_loader = config.init_obj('data_loader_validation', module_data)
logger.info(f"Number of validation samples: {valid_data_loader.n_samples}")
elif 'validation_split' not in config['data_loader_training']['args']: # no validation set, no validation split % set => no validation at all!
logger.warning(f"Validation set was not loaded!")# Training will run for {epochs} epochs.")
pass
model = config.init_obj('arch', module_arch)
if not resume:
logger.info('Trainable parameters: {}'.format(model.get_params()))
# prepare for (multi-device) GPU training
for i in range(torch.cuda.device_count()):
logger.info(f"> GPU {i} ready: {torch.cuda.get_device_name(i)}")
device, device_ids = prepare_device(config['n_gpu'])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
samples_epoch = config['trainer']['samples_epoch'] if 'samples_epoch' in config['trainer'] else None
valid_frequency = config['trainer']['validation_frequency']
if valid_frequency > 0:
logger.info(f"Running validation {valid_frequency} times per epoch.")
else:
logger.info(f"Validation is not activated.")
es = config['trainer']['early_stop']
assert (es not in (0,-1) and valid_frequency not in (0,-1)) or es in (0,-1), logger.error(f"Combination not possible: early_stop={es} and valid_frequency={valid_frequency}")
# init diffusion
diffusion = config.init_obj('diffusion', module_diffusion)
load_mmgt=config["trainer"]["load_mmgt"] if "load_mmgt" in config["trainer"] else False
ema_args = {
"ema_active": config["trainer"]['ema_active'] if "ema_active" in config["trainer"] else False,
"ema_decay": config["trainer"]['ema_decay'] if "ema_decay" in config["trainer"] else 0.995,
"step_start_ema": config["trainer"]['step_start_ema'] if "step_start_ema" in config["trainer"] else 2000,
"update_ema_every": config["trainer"]['update_ema_every'] if "update_ema_every" in config["trainer"] else 10,
}
trainer = DiffusionTrainer(model, diffusion, optimizer,
debug=False,
config=config,
device=device,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
validation_frequency=valid_frequency,
samples_epoch=samples_epoch,
seed=seed,
load_mmgt=load_mmgt,
**ema_args
)
# ----------------------------------------------- TRAINING -----------------------------------------------
logger.info(f"Starting training (epochs={config['trainer']['epochs']}, early_stop={es})...")
trainer.train()
logger.info(f"Training finished!")
logger.info('=' * 80)
def create_argparser():
"""
for key in defaults_to_config.keys():
assert key in defaults, f"[code error] key '{key}' has no config path associated."
"""
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-s', '--seed', default=DEFAULT_SEED, type=int,
help='random seed')
add_dict_to_argparser(parser, ARGS_TYPES)
return parser
if __name__ == '__main__':
args = create_argparser().parse_args()
config_path = os.path.join(os.path.dirname(args.resume), "config.json") if args.resume else args.config
config_dict = read_json(config_path)
update_config_with_arguments(config_dict, args, ARGS_TYPES, ARGS_CONFIGPATH)
config_dict["seed"] = args.seed
config_dict["config_path"] = args.config
main(config_dict, resume=args.resume is not None)