Skip to content

Latest commit

 

History

History
18 lines (16 loc) · 3.22 KB

File metadata and controls

18 lines (16 loc) · 3.22 KB

Here's an extended curriculum for a Data Science program, aligning with Explore AI Academy modules and using books available online as PDFs:

Module Topics Covered Books (PDF Links)
Module 1: Introduction to Data Science Introduction to DS, Python for DS 1. "Python for Data Analysis" by Wes McKinney (PDF)
Module 2: Data Wrangling and Cleaning Data cleaning techniques, Pandas 1. "Data Wrangling with Python" by Jacqueline Kazil and Katharine Jarmul (PDF)
Module 3: Exploratory Data Analysis (EDA) EDA techniques, Visualization 1. "Python Data Science Handbook" by Jake VanderPlas (PDF)
Module 4: Data Visualization Data visualization principles, tools 1. "Fundamentals of Data Visualization" by Claus O. Wilke (PDF)
Module 5: Introduction to Machine Learning ML concepts, Statistical Learning 1. "An Introduction to Statistical Learning" by Gareth James et al. (PDF)
Module 6: Supervised Learning Regression, Classification, Model evaluation 1. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron (PDF)
Module 7: Unsupervised Learning Clustering, Dimensionality reduction 1. "Python Machine Learning" by Sebastian Raschka and Vahid Mirjalili (PDF)
Module 8: Time Series Analysis Time series modeling, Forecasting 1. "Time Series Analysis and Its Applications: With R Examples" by Robert H. Shumway and David S. Stoffer (PDF)
Module 9: Natural Language Processing (NLP) Text processing, NLP techniques 1. "Natural Language Processing with Python" by Steven Bird, Ewan Klein, and Edward Loper (PDF)
Module 10: Deep Learning Neural networks, Deep learning frameworks 1. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (PDF)
Module 11: Big Data and Spark Big Data concepts, Apache Spark 1. "Learning Spark" by Matei Zaharia et al. (PDF)
Module 12: Capstone Project Apply DS techniques to a real-world project -

This curriculum covers a comprehensive range of topics in Data Science, utilizing books available online as PDFs for self-study and exploration.