forked from hjd1964/OnStep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlignHor.ino
489 lines (412 loc) · 15.4 KB
/
AlignHor.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// -----------------------------------------------------------------------------------
// GEOMETRIC ALIGN FOR ALT/AZ
//
// by Howard Dutton
//
// Copyright (C) 2012 to 2020 Howard Dutton
//
// -----------------------------------------------------------------------------------
// ADVANCED GEOMETRIC ALIGN FOR ALT/AZ MOUNTS (GOTO ASSIST)
#if MOUNT_TYPE == ALTAZM
// Initialize
void TGeoAlignH::init() {
avgAlt=0.0;
avgAzm=0.0;
ax1Cor=0; // align internal index for Axis1
ax2Cor=0; // align internal index for Axis2
altCor=0; // for geometric coordinate correction/align, - is below the Zenith, + above
azmCor=0; // - is right of the Zenith, + is left
doCor =0; // altitude axis/optics orthogonal correction
pdCor =0; // altitude axis/Azimuth orthogonal correction
dfCor =0; // altitude axis axis flex
tfCor =0; // tube flex
geo_ready=false;
}
// remember the alignment between sessions
void TGeoAlignH::readCoe() {
ax1Cor=nv.readFloat(EE_ax1Cor);
if (ax1Cor < -360 || ax1Cor > 360) { ax1Cor=0.0; DLF("ERR, readCoe(): bad NV ax1Cor"); }
ax2Cor=nv.readFloat(EE_ax2Cor);
if (ax2Cor < -360 || ax2Cor > 360) { ax2Cor=0.0; DLF("ERR, readCoe(): bad NV ax2Cor"); }
dfCor=nv.readFloat(EE_dfCor); // dfCor is ffCor for fork mounts
if (dfCor < -10 || dfCor > 10) { dfCor=0.0; DLF("ERR, readCoe(): bad NV dfCor"); }
tfCor=nv.readFloat(EE_tfCor);
if (tfCor < -10 || tfCor > 10) { tfCor=0.0; DLF("ERR, readCoe(): bad NV tfCor"); }
doCor=nv.readFloat(EE_doCor);
if (doCor < -10 || doCor > 10) { doCor=0.0; DLF("ERR, readCoe(): bad NV doCor"); }
pdCor=nv.readFloat(EE_pdCor);
if (pdCor < -10 || pdCor > 10) { pdCor=0.0; DLF("ERR, readCoe(): bad NV pdCor"); }
altCor=nv.readFloat(EE_altCor);
if (altCor < -10 || altCor > 10) { altCor=0.0; DLF("ERR, readCoe(): bad NV altCor"); }
azmCor=nv.readFloat(EE_azmCor);
if (azmCor < -10 || azmCor > 10) { azmCor=0.0; DLF("ERR, readCoe(): bad NV azmCor"); }
}
void TGeoAlignH::writeCoe() {
nv.writeFloat(EE_ax1Cor,ax1Cor);
nv.writeFloat(EE_ax2Cor,ax2Cor);
nv.writeFloat(EE_dfCor,dfCor); // dfCor is ffCor for fork mounts
nv.writeFloat(EE_tfCor,tfCor);
nv.writeFloat(EE_doCor,doCor);
nv.writeFloat(EE_pdCor,pdCor);
nv.writeFloat(EE_altCor,altCor);
nv.writeFloat(EE_azmCor,azmCor);
}
// Status
bool TGeoAlignH::isReady() {
return geo_ready;
}
// I=1 for 1st star, I=2 for 2nd star, I=3 for 3rd star
// N=total number of stars for this align (1 to 9)
// RA, Dec (all in degrees)
CommandErrors TGeoAlignH::addStar(int I, int N, double RA, double Dec) {
double a,z;
equToHor(haRange(LST()*15.0-RA),Dec,&a,&z);
// First star, just sync
if (I == 1) {
CommandErrors e=syncEqu(RA,Dec);
if (e != CE_NONE) return e;
}
mount[I-1].azm=getInstrAxis1();
mount[I-1].alt=getInstrAxis2();
horToEqu(mount[I-1].alt,mount[I-1].azm,&mount[I-1].ha,&mount[I-1].dec);
mount[I-1].azm=mount[I-1].azm/Rad;
mount[I-1].alt=mount[I-1].alt/Rad;
mount[I-1].ha=degRange(mount[I-1].ha)/Rad;
mount[I-1].dec=mount[I-1].dec/Rad;
actual[I-1].ha =haRange(LST()*15.0-RA);
actual[I-1].dec=Dec;
equToHor(actual[I-1].ha,actual[I-1].dec,&actual[I-1].alt,&actual[I-1].azm);
actual[I-1].alt=actual[I-1].alt/Rad;
actual[I-1].azm=actual[I-1].azm/Rad;
actual[I-1].ha =degRange(actual[I-1].ha)/Rad;
actual[I-1].dec=actual[I-1].dec/Rad;
if (getInstrPierSide() == PierSideWest) { actual[I-1].side=-1; mount[I-1].side=-1; } else
if (getInstrPierSide() == PierSideEast) { actual[I-1].side=1; mount[I-1].side=1; } else { actual[I-1].side=0; mount[I-1].side=0; }
// two or more stars and finished
if ((I >= 2) && (I == N)) model(N);
return CE_NONE;
}
// kick off modeling
void TGeoAlignH::model(int n) {
static bool busy=false;
static int numStars=0;
if (busy) return; // busy
if (n > 0) { numStars=n; return; } // command
if (numStars > 0) { busy=true; autoModel(numStars); busy=false; numStars=0; } // waiting to solve
}
// returns the correction to be added to the requested RA,Dec to yield the actual RA,Dec that we will arrive at
void TGeoAlignH::correct(double azm, double alt, double pierSide, double sf, double _deo, double _pd, double _pz, double _pe, double _df, double _ff, double _tf, double *z1, double *a1) {
double DO1,DOh;
double PD,PDh;
double PZ,PA;
double DF,DFd,TF,FF,FFd,TFh,TFd;
double cosAlt=cos(alt);
double tanAlt=tan(alt);
double sinAzm=sin(azm);
double cosAzm=cos(azm);
// ------------------------------------------------------------
// A. Misalignment due to tube/optics not being perp. to Dec axis
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0. At the SCP it
// becomes a (N) offset. Unchanged with meridian flips.
DO1 =_deo*sf;
// works on HA. meridian flips effect this in HA
DOh = DO1*(1.0/cosAlt)*pierSide;
// ------------------------------------------------------------
// B. Misalignment, Declination axis relative to Polar axis
// expressed as a correction to where the Polar axis is pointing
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0.
// At the SCP it is, again, a (S) offset
PD =_pd*sf;
// works on HA.
PDh = -PD*tanAlt*pierSide;
// ------------------------------------------------------------
// Misalignment, relative to NCP
// negative numbers are east of the pole
// C. polar left-right misalignment
PZ =_pz*sf;
// D. negative numbers are below the pole
// polar below-above misalignment
PA =_pe*sf;
// ------------------------------------------------------------
// Axis flex
DF =_df*sf;
DFd =-DF*(cosLat*cosAzm+sinLat*tanAlt);
// ------------------------------------------------------------
// Fork flex
FF =_ff*sf;
FFd =FF*cosAzm;
// ------------------------------------------------------------
// Optical axis sag
TF =_tf*sf;
TFh =TF*(cosLat*sinAzm*(1.0/cosAlt));
TFd =TF*(cosLat*cosAzm-sinLat*cosAlt);
// ------------------------------------------------------------
*z1 =(-PZ*cosAzm*tanAlt + PA*sinAzm*tanAlt + DOh + PDh + TFh);
*a1 =(+PZ*sinAzm + PA*cosAzm + DFd + FFd + TFd);
}
void TGeoAlignH::do_search(double sf, int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9)
{
long l,
_deo_m,_deo_p,
_pd_m,_pd_p,
_pz_m,_pz_p,
_pe_m,_pe_p,
_df_m,_df_p,
_tf_m,_tf_p,
_ff_m,_ff_p,
_oh_m,_oh_p,
_od_m,_od_p,
_deo,_pd,_pz,_pe, _df,_tf,_ff, _ode,_ohe;
double sf1=sf/(3600.0*Rad);
// search
// set Parameter Space
_deo_m=-p1+round(best_deo/sf); _deo_p=p1+round(best_deo/sf);
_pd_m =-p2+round(best_pd/sf); _pd_p=p2+round(best_pd/sf);
_pz_m =-p3+round(best_pz/sf); _pz_p=p3+round(best_pz/sf);
_pe_m =-p4+round(best_pe/sf); _pe_p=p4+round(best_pe/sf);
_tf_m =-p5+round(best_tf/sf); _tf_p=p5+round(best_tf/sf);
_ff_m =-p6+round(best_ff/sf); _ff_p=p6+round(best_ff/sf);
_df_m =-p7+round(best_df/sf); _df_p=p7+round(best_df/sf);
_od_m =-p8+round(best_ode/sf); _od_p=p8+round(best_ode/sf);
_oh_m =-p9+round(best_ohe/sf); _oh_p=p9+round(best_ohe/sf);
double ma,mz;
for (_deo=_deo_m; _deo <= _deo_p; _deo++)
for (_pd=_pd_m; _pd <= _pd_p; _pd++)
for (_pz=_pz_m; _pz <= _pz_p; _pz++)
for (_pe=_pe_m; _pe <= _pe_p; _pe++)
for (_df=_df_m; _df <= _df_p; _df++)
for (_ff=_ff_m; _ff <= _ff_p; _ff++)
for (_tf=_tf_m; _tf <= _tf_p; _tf++)
for (_ohe=_oh_m; _ohe <= _oh_p; _ohe++)
for (_ode=_od_m; _ode <= _od_p; _ode++) {
ode=((double)_ode)*sf1;
odw=-ode;
ohe=((double)_ohe)*sf1;
ohw=ohe;
// check the combinations for all samples
for (l=0; l < num; l++) {
mz=mount[l].azm;
ma=mount[l].alt;
if (mount[l].side == -1) // west of the mount
{
mz=mz+ohw;
ma=ma+odw;
} else
if (mount[l].side == 1) // east of the mount, default (fork mounts)
{
mz=mz+ohe;
ma=ma+ode;
}
correct(mz,ma,mount[l].side,sf1,_deo,_pd,_pz,_pe,_df,_ff,_tf,&z1,&a1);
delta[l].azm=actual[l].azm-(mz-z1);
if (delta[l].azm > PI) delta[l].azm=delta[l].azm-PI*2.0; else
if (delta[l].azm < -PI) delta[l].azm=delta[l].azm+PI*2.0;
delta[l].alt=actual[l].alt-(ma-a1);
delta[l].side=mount[l].side;
}
// calculate the standard deviations
sum1=0.0; for (l=0; l < num; l++) sum1=sum1+sq(delta[l].azm*cos(actual[l].alt)); sz=sqrt(sum1/(num-1));
sum1=0.0; for (l=0; l < num; l++) sum1=sum1+sq(delta[l].alt); sa=sqrt(sum1/(num-1));
max_dist=sqrt(sq(sz)+sq(sa));
// remember the best fit
if (max_dist < best_dist) {
best_dist =max_dist;
best_deo =((double)_deo)*sf;
best_pd =((double)_pd)*sf;
best_pz =((double)_pz)*sf;
best_pe =((double)_pe)*sf;
best_tf =((double)_tf)*sf;
best_df =((double)_df)*sf;
best_ff =((double)_ff)*sf;
if (p8 != 0) best_odw=odw*Rad*3600.0; else best_odw=best_pe/2.0;
if (p8 != 0) best_ode=ode*Rad*3600.0; else best_ode=-best_pe/2.0;
if (p9 != 0) best_ohw=ohw*Rad*3600.0;
if (p9 != 0) best_ohe=ohe*Rad*3600.0;
}
// keep the main loop running
loop2();
}
}
void TGeoAlignH::autoModel(int n) {
num=n; // how many stars?
lat=90.0/Rad; // 90 deg. latitude for Alt/Azm
cosLat=cos(lat);
sinLat=sin(lat);
best_dist =3600.0*180.0;
best_deo =0.0;
best_pd =0.0;
best_pz =0.0;
best_pe =0.0;
best_tf =0.0;
best_ff =0.0;
best_df =0.0;
best_ode =0.0;
best_ohe =0.0;
// figure out the average Az offset as a starting point
ohe=0;
for (l=0; l < num; l++) {
z1=actual[l].azm-mount[l].azm;
if (z1 > PI) z1=z1-PI*2.0;
if (z1 < -PI) z1=z1+PI*2.0;
ohe=ohe+z1;
}
ohe=ohe/num; best_ohe=round(ohe*Rad*3600.0); best_ohw=best_ohe;
// these don't apply for Alt/Az
Ff=0; Df=0;
// only search for cone error if > 2 stars
int Do=0; if (num > 2) Do=1;
// search, this can handle about 9 degrees of polar misalignment, and 4 degrees of cone error
// DoPdPzPeTfFf Df OdOh
do_search(16384,0 ,0,1,1,0, 0, 0,1,1);
do_search( 8192,Do,0,1,1,0, 0, 0,1,1);
do_search( 4096,Do,0,1,1,0, 0, 0,1,1);
do_search( 2048,Do,0,1,1,0, 0, 0,1,1);
do_search( 1024,Do,0,1,1,0, 0, 0,1,1);
do_search( 512,Do,0,1,1,0, 0, 0,1,1);
#ifdef HAL_SLOW_PROCESSOR
// DoPdPzPeTfFf Df OdOh
do_search( 256,Do,0,1,1,0, 0, 0,1,1);
do_search( 128,Do,0,1,1,0, 0, 0,1,1);
#else
if (num > 4) {
// DoPdPzPeTfFf Df OdOh
do_search( 256,Do,1,1,1,0,Ff,Df,1,1);
do_search( 128,Do,1,1,1,1,Ff,Df,1,1);
do_search( 64,Do,1,1,1,1,Ff,Df,1,1);
#ifdef HAL_FAST_PROCESSOR
do_search( 32,Do,1,1,1,1,Ff,Df,1,1);
do_search( 16,Do,1,1,1,1,Ff,Df,1,1);
#endif
} else {
do_search( 256,Do,0,1,1,0, 0, 0,1,1);
do_search( 128,Do,0,1,1,0, 0, 0,1,1);
do_search( 64,Do,0,1,1,0, 0, 0,1,1);
do_search( 32,Do,0,1,1,0, 0, 0,1,1);
#ifdef HAL_FAST_PROCESSOR
do_search( 16,Do,0,1,1,0, 0, 0,1,1);
#endif
}
#endif
// geometric corrections
doCor=best_deo/3600.0;
pdCor=best_pd/3600.0;
azmCor=best_pz/3600.0;
altCor=best_pe/3600.0;
tfCor=best_tf/3600.0;
#if MOUNT_TYPE == FORK || MOUNT_TYPE == ALTAZM
dfCor=best_ff/3600.0;
#else
dfCor=best_df/3600.0;
#endif
ax1Cor=best_ohw/3600.0;
ax2Cor=best_odw/3600.0;
geo_ready=true;
}
void TGeoAlignH::horToInstr(double Alt, double Azm, double *Alt1, double *Azm1, int PierSide) {
double p=1.0; if (PierSide == PierSideWest) p=-1.0;
double cosLat=cos(90.0/Rad); double sinLat=sin(90.0/Rad);
if (Alt > 90.0) Alt=90.0;
if (Alt < -90.0) Alt=-90.0;
// breaks-down near the Zenith (limited to > 1' from Zenith)
if (fabs(Alt) < 89.98333333) {
// initial rough guess at instrument HA,Dec
double z=Azm/Rad;
double a=Alt/Rad;
for (int pass=0; pass < 3; pass++) {
double sinAlt=sin(a);
double cosAlt=cos(a);
double sinAzm=sin(z);
double cosAzm=cos(z);
// ------------------------------------------------------------
// misalignment due to tube/optics not being perp. to Alt axis
// negative numbers are further (down) from the Zenith, swing to the
// horizon and the effect on Alt is 0. At the Nadir it
// becomes an (up) offset. Unchanged with meridian flips.
// expressed as a correction to the Zenith axis misalignment
double DOh=doCor*(1.0/cosAlt)*p;
// ------------------------------------------------------------
// misalignment due to Alt axis being perp. to Azm axis
double PDh=-pdCor*(sinAlt/cosAlt)*p;
#if MOUNT_TYPE == FORK || MOUNT_TYPE == ALTAZM
// Fork flex
double DFd=dfCor*cosAzm;
#else
// Axis flex
double DFd=-dfCor*(cosLat*cosAzm+sinLat*(sinAlt/cosAlt));
#endif
// Tube flex
double TFh=tfCor*(cosLat*sinAzm*(1.0/cosAlt));
double TFd=tfCor*(cosLat*cosAzm-sinLat*cosAlt);
// polar misalignment
double z1=-azmCor*cosAzm*(sinAlt/cosAlt) + altCor*sinAzm*(sinAlt/cosAlt);
double a1=+azmCor*sinAzm + altCor*cosAzm;
*Azm1=Azm + (z1+PDh+DOh+TFh);
*Alt1=Alt + (a1+DFd+TFd);
// improved guess at instrument Alt,Azm
z=*Azm1/Rad;
a=*Alt1/Rad;
}
} else {
// just ignore the the correction if right on the pole
*Azm1=Azm;
*Alt1=Alt;
}
// finally, apply the index offsets
*Azm1=*Azm1-ax1Cor;
*Alt1=*Alt1-ax2Cor*-p;
}
// takes the instrument equatorial coordinates and applies corrections to arrive at topocentric refracted coordinates
void TGeoAlignH::instrToHor(double Alt, double Azm, double *Alt1, double *Azm1, int PierSide) {
double p=1.0; if (PierSide == PierSideWest) p=-1.0;
double cosLat=cos(90.0/Rad); double sinLat=sin(90.0/Rad);
Azm=Azm+ax1Cor;
Alt=Alt+ax2Cor*-p;
if (Alt > 90.0) Alt=90.0;
if (Alt < -90.0) Alt=-90.0;
// breaks-down near the Zenith (limited to > 1' from Zenith)
if (fabs(Alt) < 89.98333333) {
double z=Azm/Rad;
double a=Alt/Rad;
double sinAlt=sin(a);
double cosAlt=cos(a);
double sinAzm=sin(z);
double cosAzm=cos(z);
// ------------------------------------------------------------
// misalignment due to tube/optics not being perp. to Alt axis
// negative numbers are further (S) from the Zenith, swing to the
// horizon and the effect on Alt is 0. At the Nadir it
// becomes a (N) offset. Unchanged with meridian flips.
// expressed as a correction to the Azm axis misalignment
double DOh=doCor*(1.0/cosAlt)*p;
// as the above offset becomes zero near the horizon, the affect
// works on Azm instead. meridian flips affect this in Azm
double PDh=-pdCor*(sinAlt/cosAlt)*p;
#if MOUNT_TYPE == FORK
// Fork flex
double DFd=dfCor*cosAzm;
#else
// Axis flex
double DFd=-dfCor*(cosLat*cosAzm+sinLat*(sinAlt/cosAlt));
#endif
// Tube flex
double TFh=tfCor*(cosLat*sinAzm*(1.0/cosAlt));
double TFd=tfCor*(cosLat*cosAzm-sinLat*cosAlt);
// ------------------------------------------------------------
// polar misalignment
double z1=-azmCor*cosAzm*(sinAlt/cosAlt) + altCor*sinAzm*(sinAlt/cosAlt);
double a1=+azmCor*sinAzm + altCor*cosAzm;
*Azm1=Azm - (z1+PDh+DOh+TFh);
*Alt1=Alt - (a1+DFd+TFd);
} else {
// just ignore the the correction if right on the pole
*Azm1=Azm;
*Alt1=Alt;
}
while (*Azm1 > 360.0) *Azm1-=360.0;
while (*Azm1 < -360.0) *Azm1+=360.0;
if (*Alt1 > 90.0) *Alt1=90.0;
if (*Alt1 < -90.0) *Alt1=-90.0;
}
#endif