forked from hjd1964/OnStep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Initialize.ino
608 lines (526 loc) · 23.4 KB
/
Initialize.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// -----------------------------------------------------------------------------------
// Functions for initializing pins, variables, and timers on startup
void initPre() {
// disable the main axes stepper drivers
if (Axis1_EN != OFF) { pinMode(Axis1_EN,OUTPUT); digitalWrite(Axis1_EN,AXIS1_DRIVER_DISABLE); }
if (Axis2_EN != OFF && Axis2_EN != SHARED) { pinMode(Axis2_EN,OUTPUT); digitalWrite(Axis2_EN,AXIS2_DRIVER_DISABLE); }
// disable DS3234 CS pin
#if TIME_LOCATION_SOURCE == DS3234
pinMode(DS3234_CS_PIN,OUTPUT); digitalWrite(DS3234_CS_PIN,HIGH);
#endif
// disable weather CS pin
#if WEATHER == BMP280_SPI || WEATHER == BME280_SPI
pinMode(BME280_CS_PIN,OUTPUT); digitalWrite(BME280_CS_PIN,HIGH);
#endif
// disable all stepper driver CS pins at startup
#if AXIS1_DRIVER_MODEL == TMC_SPI
pinMode(Axis1_M2,OUTPUT); digitalWrite(Axis1_M2,HIGH);
#endif
#if AXIS2_DRIVER_MODEL == TMC_SPI
pinMode(Axis2_M2,OUTPUT); digitalWrite(Axis2_M2,HIGH);
#endif
#if AXIS3_DRIVER_MODEL == TMC_SPI
pinMode(Axis3_M2,OUTPUT); digitalWrite(Axis3_M2,HIGH);
#endif
#if AXIS4_DRIVER_MODEL == TMC_SPI
pinMode(Axis4_M2,OUTPUT); digitalWrite(Axis4_M2,HIGH);
#endif
#if AXIS5_DRIVER_MODEL == TMC_SPI
pinMode(Axis5_M2,OUTPUT); digitalWrite(Axis5_M2,HIGH);
#endif
}
void initPins() {
// Allow a given pin to supply power to devices
#ifdef GeneralPurposePowerPin1
pinMode(GeneralPurposePowerPin1,OUTPUT);
digitalWrite(GeneralPurposePowerPin1,HIGH);
#endif
#ifdef GeneralPurposePowerPin2
pinMode(GeneralPurposePowerPin2,OUTPUT);
digitalWrite(GeneralPurposePowerPin2,HIGH);
#endif
// Pull the Axis1/2 RST Pin HIGH on the MaxESP2
#if PINMAP == MaxESP2
pinMode(Axis1_M3,INPUT_PULLUP);
#endif
// light status LED (provides GND)
#if LED_STATUS == ON
pinMode(LEDnegPin,OUTPUT); digitalWrite(LEDnegPin,LOW);
#ifdef LEDposPin
pinMode(LEDposPin,OUTPUT); digitalWrite(LEDposPin,HIGH); // sometimes +5v is provided on a pin
#endif
ledOn=true;
#endif
// light status LED (provides pwm'd GND for polar reticule)
#if LED_STATUS >= 0
pinMode(LEDnegPin,OUTPUT); digitalWrite(LEDnegPin,LOW);
#ifdef LEDposPin
pinMode(LEDposPin,OUTPUT); digitalWrite(LEDposPin,HIGH); // sometimes +5v is provided on a pin
#endif
analogWrite(LEDnegPin,LED_STATUS);
ledOn=true;
#endif
// light reticule LED
#if LED_RETICLE >= 0
pinMode(ReticlePin,OUTPUT); analogWrite(ReticlePin,reticuleBrightness);
#endif
// light second status LED
#if LED_STATUS2 == ON
// provides just GND
pinMode(LEDneg2Pin,OUTPUT); digitalWrite(LEDneg2Pin,HIGH);
led2On=false;
#elif LED_STATUS2 >= 0
// provides pwm'd GND for polar reticule
pinMode(LEDneg2Pin,OUTPUT); digitalWrite(LEDneg2Pin,LOW);
analogWrite(LEDneg2Pin,LED_STATUS2);
#endif
// ready the sound/buzzer pin
#if BUZZER == ON || BUZZER >= 0
pinMode(TonePin,OUTPUT);
digitalWrite(TonePin,LOW);
#endif
// Home position sensing
#if HOME_SENSE == ON
pinMode(Axis1_HOME,INPUT);
pinMode(Axis2_HOME,INPUT);
#elif HOME_SENSE == ON_PULLUP
pinMode(Axis1_HOME,INPUT_PULLUP);
pinMode(Axis2_HOME,INPUT_PULLUP);
#elif HOME_SENSE == ON_PULLDOWN
pinMode(Axis1_HOME,INPUT_PULLDOWN);
pinMode(Axis2_HOME,INPUT_PULLDOWN);
#endif
// limit switch sense
#if LIMIT_SENSE == ON
pinMode(LimitPin,INPUT);
#elif LIMIT_SENSE == ON_PULLUP
pinMode(LimitPin,INPUT_PULLUP);
#elif LIMIT_SENSE == ON_PULLDOWN
pinMode(LimitPin,INPUT_PULLDOWN);
#endif
// PEC index sense
#if PEC_SENSE == ON
pinMode(PecPin,INPUT);
#elif PEC_SENSE == ON_PULLUP
pinMode(PecPin,INPUT_PULLUP);
#elif PEC_SENSE == ON_PULLDOWN
pinMode(PecPin,INPUT_PULLDOWN);
#endif
// Pulse per second
#if PPS_SENSE == ON
pinMode(PpsPin,INPUT);
attachInterrupt(digitalPinToInterrupt(PpsPin),clockSync,RISING);
#elif PPS_SENSE == ON_BOTH
pinMode(PpsPin,INPUT);
attachInterrupt(digitalPinToInterrupt(PpsPin),clockSync,CHANGE);
#elif PPS_SENSE == ON_PULLUP
pinMode(PpsPin,INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PpsPin),clockSync,RISING);
#elif PPS_SENSE == ON_PULLDOWN
pinMode(PpsPin,INPUT_PULLDOWN);
attachInterrupt(digitalPinToInterrupt(PpsPin),clockSync,RISING);
#endif
// Stepper driver control
pinMode(Axis1_STEP,OUTPUT);
pinMode(Axis1_DIR,OUTPUT);
pinMode(Axis2_STEP,OUTPUT);
pinMode(Axis2_DIR,OUTPUT);
#ifdef POWER_SUPPLY_PINS_ON
// provide 5V (or 3.3V) power to stepper drivers if requested (classic Pin-map)
pinMode(Axis15vPin,OUTPUT);
digitalWrite(Axis15vPin,HIGH);
pinMode(Axis25vPin,OUTPUT);
digitalWrite(Axis25vPin,HIGH);
#endif
#ifdef Axis2GndPin
// provide Gnd on next to the Dec stepper pins if requested (classic Pin-map)
pinMode(Axis2GndPin,OUTPUT);
digitalWrite(Axis2GndPin,LOW);
#endif
// inputs for stepper drivers fault signal
#if AXIS1_DRIVER_STATUS == LOW
pinMode(Axis1_FAULT,INPUT_PULLUP);
#elif AXIS1_DRIVER_STATUS == HIGH
#ifdef INPUT_PULLDOWN
pinMode(Axis1_FAULT,INPUT_PULLDOWN);
#else
pinMode(Axis1_FAULT,INPUT);
#endif
#endif
#if AXIS2_DRIVER_STATUS == LOW
pinMode(Axis2_FAULT,INPUT_PULLUP);
#elif AXIS1_DRIVER_STATUS == HIGH
#ifdef INPUT_PULLDOWN
pinMode(Axis2_FAULT,INPUT_PULLDOWN);
#else
pinMode(Axis2_FAULT,INPUT);
#endif
#endif
}
void initWriteNvValues() {
// EEPROM automatic initialization
if (NV_FACTORY_RESET == ON) nv.writeLong(EE_autoInitKey,0);
if (nv.readLong(EE_autoInitKey) != NV_INIT_KEY) {
// wipe the whole nv memory
VF("MSG: Wipe NV "); V(E2END+1); VLF(" Bytes (please wait)");
for (int i=0; i<E2END; i++) nv.write(i,0);
VLF("MSG: Init NV to defaults");
// default stepper driver setup is from Config.h
nv.write(EE_settingsRuntime,0);
// init the site information, lat/long/tz/name
nv.write(EE_currentSite,0);
latitude=0; longitude=0;
for (int l=0; l < 4; l++) {
nv.writeFloat(EE_sites+(l)*25+0,latitude);
nv.writeFloat(EE_sites+(l)*25+4,longitude);
nv.write(EE_sites+(l)*25+8,128);
nv.write(EE_sites+(l)*25+9,0);
}
// init the date and time January 1, 2013. 0 hours LMT
JD=CompilerDateToJulian();
LMT=0.0;
nv.writeFloat(EE_JD,JD);
nv.writeFloat(EE_LMT,LMT);
// init the degrees past meridian east/west
nv.write(EE_dpmE,round(AXIS1_LIMIT_MERIDIAN_E+128));
nv.write(EE_dpmW,round(AXIS1_LIMIT_MERIDIAN_W+128));
// init the min and max altitude
minAlt=-10;
maxAlt=80;
nv.write(EE_minAlt,minAlt+128);
nv.write(EE_maxAlt,maxAlt);
// init (clear) the backlash amounts
nv.writeInt(EE_backlashAxis2,0);
nv.writeInt(EE_backlashAxis1,0);
// init the PEC status, clear the index and buffer
nv.write(EE_pecStatus,IgnorePEC);
nv.write(EE_pecRecorded,false);
wormSensePos=0;
nv.writeLong(EE_wormSensePos,wormSensePos);
// init the Park status
nv.write(EE_parkSaved,false);
nv.write(EE_parkStatus,NotParked);
// init the pulse-guide rate
nv.write(EE_pulseGuideRate,GuideRate1x);
// init the default maxRate
maxRate=((1000000.0/(SLEW_RATE_BASE_DESIRED))/AXIS1_STEPS_PER_DEGREE)*16L;
if (maxRate < 2L*16L) maxRate=2L*16L;
if (maxRate > 10000L*16L) maxRate=10000L*16L;
if (maxRate < maxRateLowerLimit()) maxRate=maxRateLowerLimit();
nv.writeInt(EE_maxRate,-1); nv.writeLong(EE_maxRateL,maxRate);
// init autoMeridianFlip
nv.write(EE_autoMeridianFlip,autoMeridianFlip);
// init the sidereal tracking rate
// 1/16uS resolution timer, ticks per sidereal second
nv.writeLong(EE_siderealInterval,masterSiderealInterval);
// set default focuser positions at zero
// for DC focusers set the % power
// clear focuser TCF values
long base=EE_focBaseAxis4;
nv.writeLong(base+EE_focSpos,0L);
nv.writeLong(base+EE_focTarget,0L);
nv.writeInt(base+EE_focBacklashPos,0);
nv.writeInt(base+EE_focBacklash,0);
nv.write(base+EE_focDcPwr,50);
nv.writeFloat(base+EE_tcfCoef,0.0);
nv.write(base+EE_tcfEn,0);
nv.writeInt(base+EE_tcfDeadband,1);
nv.writeFloat(base+EE_tcfT0,10.0);
base=EE_focBaseAxis5;
nv.writeLong(base+EE_focSpos,0L);
nv.writeLong(base+EE_focTarget,0L);
nv.writeInt(base+EE_focBacklashPos,0);
nv.writeInt(base+EE_focBacklash,0);
nv.write(base+EE_focDcPwr,50);
nv.writeFloat(base+EE_tcfCoef,0.0);
nv.write(base+EE_tcfEn,0);
nv.writeInt(base+EE_tcfDeadband,1);
nv.writeFloat(base+EE_tcfT0,10.0);
// clear the library/catalogs
Lib.clearAll();
// clear the pointing model
saveAlignModel();
// sit here and wait until the entire nv contents are written before writing the key
VLF("MSG: Init NV waiting for cache");
#ifndef ESP32
while (!nv.committed()) nv.poll();
#endif
// finally, stop the init from happening again
nv.writeLong(EE_autoInitKey,NV_INIT_KEY);
VLF("MSG: Init NV key written");
}
// bit 0 = settings at compile (0) or run time (1), bits 1 to 5 = (1) to reset axis n on next boot
int axisReset=nv.read(EE_settingsRuntime);
if (!(axisReset&0b0000001)) axisReset|=0b0111110; // force reset of all axis settings
if (axisReset&0b0000010) { nv.writeBytes(EE_settingsAxis1,(byte*)&axis1Settings,sizeof(axis1Settings)); nv.writeLong(EE_stepsPerWormRotAxis1,AXIS1_STEPS_PER_WORMROT); VLF("MSG: Init NV Axis1 defaults"); }
if (axisReset&0b0000100) { nv.writeBytes(EE_settingsAxis2,(byte*)&axis2Settings,sizeof(axis2Settings)); VLF("MSG: Init NV Axis2 defaults"); }
if (axisReset&0b0001000) { nv.writeBytes(EE_settingsAxis3,(byte*)&axis3Settings,sizeof(axis3Settings)); VLF("MSG: Init NV Axis3 defaults"); }
if (axisReset&0b0010000) { nv.writeBytes(EE_settingsAxis4,(byte*)&axis4Settings,sizeof(axis4Settings)); VLF("MSG: Init NV Axis4 defaults"); }
if (axisReset&0b0100000) { nv.writeBytes(EE_settingsAxis5,(byte*)&axis5Settings,sizeof(axis5Settings)); VLF("MSG: Init NV Axis5 defaults"); }
axisReset&=0b0000001; // clear reset bits of all individual axis settings
nv.write(EE_settingsRuntime,axisReset);
}
void initReadNvValues() {
if (E2END < 1023) { generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV size < 1024 bytes"); }
// get axis settings
nv.readBytes(EE_settingsAxis1,(byte*)&axis1Settings,sizeof(axis1Settings));
nv.readBytes(EE_settingsAxis2,(byte*)&axis2Settings,sizeof(axis2Settings));
nv.readBytes(EE_settingsAxis3,(byte*)&axis3Settings,sizeof(axis3Settings));
nv.readBytes(EE_settingsAxis4,(byte*)&axis4Settings,sizeof(axis4Settings));
nv.readBytes(EE_settingsAxis5,(byte*)&axis5Settings,sizeof(axis5Settings));
if (axis1Settings.IRUN != AXIS1_DRIVER_IRUN) { axis1SettingsEx.IGOTO=axis1Settings.IRUN; axis1SettingsEx.IHOLD=axis1Settings.IRUN/2; }
if (!validateAxisSettings(1,MOUNT_TYPE==ALTAZM,axis1Settings)) generalError=ERR_NV_INIT;
if (axis2Settings.IRUN != AXIS2_DRIVER_IRUN) { axis2SettingsEx.IGOTO=axis2Settings.IRUN; axis2SettingsEx.IHOLD=axis2Settings.IRUN/2; }
if (!validateAxisSettings(2,MOUNT_TYPE==ALTAZM,axis2Settings)) generalError=ERR_NV_INIT;
if (axis3Settings.IRUN != AXIS3_DRIVER_IRUN) axis3SettingsEx.IHOLD=axis3Settings.IRUN/2;
if (!validateAxisSettings(3,MOUNT_TYPE==ALTAZM,axis3Settings)) generalError=ERR_NV_INIT;
if (axis4Settings.IRUN != AXIS4_DRIVER_IRUN) axis4SettingsEx.IHOLD=axis4Settings.IRUN/2;
if (!validateAxisSettings(4,MOUNT_TYPE==ALTAZM,axis4Settings)) generalError=ERR_NV_INIT;
if (axis5Settings.IRUN != AXIS5_DRIVER_IRUN) axis5SettingsEx.IHOLD=axis5Settings.IRUN/2;
if (!validateAxisSettings(5,MOUNT_TYPE==ALTAZM,axis5Settings)) generalError=ERR_NV_INIT;
timerRateRatio = axis1Settings.stepsPerMeasure/axis2Settings.stepsPerMeasure;
useTimerRateRatio = axis1Settings.stepsPerMeasure != axis2Settings.stepsPerMeasure;
#if AXIS1_DRIVER_MODEL != SERVO && AXIS1_DRIVER_MODEL != SERVO1 && AXIS1_DRIVER_MODEL != SERVO2
if (AXIS1_DRIVER_MICROSTEPS_GOTO != OFF) axis1StepsGoto = axis1Settings.microsteps/AXIS1_DRIVER_MICROSTEPS_GOTO;
#else
if (AXIS1_DRIVER_MICROSTEPS_GOTO != OFF) axis1StepsGoto = AXIS1_DRIVER_MICROSTEPS_GOTO/axis1Settings.microsteps;
#endif
#if AXIS2_DRIVER_MODEL != SERVO && AXIS2_DRIVER_MODEL != SERVO1 && AXIS2_DRIVER_MODEL != SERVO2
if (AXIS2_DRIVER_MICROSTEPS_GOTO != OFF) axis2StepsGoto = axis2Settings.microsteps/AXIS2_DRIVER_MICROSTEPS_GOTO;
#else
if (AXIS2_DRIVER_MICROSTEPS_GOTO != OFF) axis2StepsGoto = AXIS2_DRIVER_MICROSTEPS_GOTO/axis2Settings.microsteps;
#endif
// Basic stepper driver mode setup
// if we made through validation and AXIS1_DRIVER_MODEL exists; AXIS2_DRIVER_MODEL, axis1Settings.microsteps,
// and axis2Settings.microsteps also exist and passed validation in the pre-processor
#if AXIS1_DRIVER_MODEL != OFF
// translate microsteps to microstep bit code
AXIS1_DRIVER_CODE = translateMicrosteps(AXIS1_DRIVER_MODEL, axis1Settings.microsteps);
AXIS2_DRIVER_CODE = translateMicrosteps(AXIS2_DRIVER_MODEL, axis2Settings.microsteps);
#if AXIS1_DRIVER_MICROSTEPS_GOTO != OFF
AXIS1_DRIVER_CODE_GOTO = translateMicrosteps(AXIS1_DRIVER_MODEL, AXIS1_DRIVER_MICROSTEPS_GOTO);
#endif
#if AXIS2_DRIVER_MICROSTEPS_GOTO != OFF
AXIS2_DRIVER_CODE_GOTO = translateMicrosteps(AXIS2_DRIVER_MODEL, AXIS2_DRIVER_MICROSTEPS_GOTO);
#endif
#endif
#if AXIS3_DRIVER_MODEL != OFF
AXIS3_DRIVER_CODE = translateMicrosteps(AXIS3_DRIVER_MODEL, axis3Settings.microsteps);
#endif
#if AXIS4_DRIVER_MODEL != OFF
AXIS4_DRIVER_CODE = translateMicrosteps(AXIS4_DRIVER_MODEL, axis4Settings.microsteps);
#endif
#if AXIS5_DRIVER_MODEL != OFF
AXIS5_DRIVER_CODE = translateMicrosteps(AXIS5_DRIVER_MODEL, axis5Settings.microsteps);
#endif
// get the site information, if a GPS were attached we would use that here instead
currentSite=nv.read(EE_currentSite);
if (currentSite > 3) { currentSite=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV currentSite"); }
double f=nv.readFloat(EE_sites+currentSite*25+0);
if (f < -90 || f > 90) { f=0.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV latitude"); }
setLatitude(f);
longitude=nv.readFloat(EE_sites+currentSite*25+4);
if (longitude < -360 || longitude > 360) { longitude=0.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV longitude"); }
// get date and time from EEPROM, start keeping time
timeZone=nv.read(EE_sites+currentSite*25+8)-128;
timeZone=decodeTimeZone(timeZone);
if (timeZone < -14 || timeZone > 12) { timeZone=0.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV timeZone"); }
nv.readString(EE_sites+currentSite*25+9,siteName);
JD=nv.readFloat(EE_JD);
LMT=nv.readFloat(EE_LMT);
if (tls.active) {
tls.get(JD,LMT); // read the date/time from TLS (if present)
dateWasSet=true; timeWasSet=true;
}
if (JD < 2451544.5 || JD > 2816787.5) JD=2451544.5; // valid date?
if (LMT < 0 || LMT > 24) { LMT=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV LMT"); }
UT1=LMT+timeZone;
updateLST(jd2last(JD,UT1,false));
// get the degrees past meridian east/west
#if MOUNT_TYPE == GEM
int i=round(nv.read(EE_dpmE)-128);
if (i > 60) i=((i-60)*2)+60; else if (i < -60) i=((i+60)*2)-60;
degreesPastMeridianE=i;
if (degreesPastMeridianE < -180 || degreesPastMeridianE > 180) { degreesPastMeridianE=0.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV degreesPastMeridianE"); }
i=round(nv.read(EE_dpmW)-128);
if (i > 60) i=((i-60)*2)+60; else if (i < -60) i=((i+60)*2)-60;
degreesPastMeridianW=i;
if (degreesPastMeridianW < -180 || degreesPastMeridianW > 180) { degreesPastMeridianW=0.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV degreesPastMeridianW"); }
#endif
// get the min. and max altitude
minAlt=nv.read(EE_minAlt)-128;
if (minAlt < -30 || minAlt > 30) { minAlt=-10.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV minAlt"); }
maxAlt=nv.read(EE_maxAlt);
#if MOUNT_TYPE == ALTAZM
if (maxAlt > 87) maxAlt=87;
#endif
if (maxAlt < 60 || maxAlt > 90) { maxAlt=80.0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV maxAlt"); }
// get the backlash amounts
backlashAxis1=nv.readInt(EE_backlashAxis1);
if (backlashAxis1 < 0 ) { backlashAxis1=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV backlashAxis1"); }
backlashAxis2=nv.readInt(EE_backlashAxis2);
if (backlashAxis2 < 0 ) { backlashAxis2=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV backlashAxis2"); }
// setup PEC and get data
if (AXIS1_PEC != ON) nv.writeLong(EE_stepsPerWormRotAxis1,0);
stepsPerWormRotationAxis1=nv.readLong(EE_stepsPerWormRotAxis1);
secondsPerWormRotationAxis1=stepsPerWormRotationAxis1/stepsPerSecondAxis1;
pecBufferSize=ceil(stepsPerWormRotationAxis1/(axis1Settings.stepsPerMeasure/240.0));
if (pecBufferSize != 0) {
if (pecBufferSize < 61) { pecBufferSize=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): invalid pecBufferSize, PEC disabled"); }
if (200+pecBufferSize >= E2END-200) { pecBufferSize=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): pecBufferSize exceeds available NV, PEC disabled"); }
}
if (secondsPerWormRotationAxis1 > pecBufferSize) secondsPerWormRotationAxis1=pecBufferSize;
#if AXIS1_PEC == ON
createPecBuffer();
bool pecBufferNeedsInit=true;
for (int i=0; i < pecBufferSize; i++) { pecBuffer[i]=nv.read(EE_pecTable+i); if (pecBuffer[i] != 0) pecBufferNeedsInit=false; }
if (pecBufferNeedsInit) for (int l=0; l < pecBufferSize; l++) nv.write(EE_pecTable+l,128);
wormSensePos=nv.readLong(EE_wormSensePos); // validation of this value is not useful
#if PEC_SENSE == OFF
wormSensePos=0;
pecStatus=IgnorePEC;
#endif
pecStatus=nv.read(EE_pecStatus);
if (pecStatus < PEC_STATUS_FIRST || pecStatus > PEC_STATUS_LAST) { pecStatus=IgnorePEC; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV pecStatus"); }
pecRecorded=nv.read(EE_pecRecorded);
if (pecRecorded != true && pecRecorded != false) { pecRecorded=false; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV pecRecorded"); }
if (!pecRecorded) pecStatus=IgnorePEC;
#endif
// get the Park status
parkSaved=nv.read(EE_parkSaved);
if (parkSaved != true && parkSaved != false) { parkSaved=false; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV parkSaved"); }
parkStatus=nv.read(EE_parkStatus);
if (parkStatus < PARK_STATUS_FIRST || parkStatus > PARK_STATUS_LAST) { parkStatus=NotParked; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV parkStatus"); }
// tried to park but crashed?
if (parkStatus == Parking) { parkStatus=ParkFailed; nv.write(EE_parkStatus,parkStatus); }
// get the pulse-guide rate
currentPulseGuideRate=nv.read(EE_pulseGuideRate);
if (currentPulseGuideRate < 0) { currentPulseGuideRate=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV currentPulseGuideRate"); }
if (currentPulseGuideRate > GuideRate1x) { currentPulseGuideRate=GuideRate1x; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV currentPulseGuideRate"); }
// set the default MaxRate based on the desired goto speed
maxRateBaseActual=maxRateBaseDesired;
if (maxRateBaseActual < maxRateLowerLimit()/8.0) maxRateBaseActual=maxRateLowerLimit()/8.0;
if (maxRateBaseActual > 1000000.0) maxRateBaseActual=1000000.0;
// get the max goto rate
maxRate=(int16_t)nv.readInt(EE_maxRate)*16; // maxRate is in 16MHz clocks but stored in micro-seconds
// check for flag that maxRate is stored in EE_maxRateL, if not move it there
if (maxRate == -16) maxRate=nv.readLong(EE_maxRateL); else { nv.writeInt(EE_maxRate,-1); nv.writeLong(EE_maxRateL,maxRate); }
// constrain values to the limits (1/2 to 2X the maxRateBaseActual) and platform limits
if (maxRate < (long)(maxRateBaseActual*8.0)) { maxRate=maxRateBaseActual*8.0; DLF("WRN, initReadNvValues(): NV maxRate (too low)"); }
if (maxRate > (long)(maxRateBaseActual*32.0)) { maxRate=maxRateBaseActual*32.0; DLF("WRN, initReadNvValues(): NV maxRate (too high)"); }
if (maxRate < maxRateLowerLimit()) maxRate=maxRateLowerLimit();
#if SLEW_RATE_MEMORY == OFF
if (maxRate != (long)(maxRateBaseActual*16.0)) { maxRate=maxRateBaseActual*16.0; nv.writeLong(EE_maxRateL,maxRate); }
#endif
// set the new acceleration rate
setAccelerationRates(maxRate);
// get autoMeridianFlip
#if MOUNT_TYPE == GEM && MFLIP_AUTOMATIC_MEMORY == ON
autoMeridianFlip=nv.read(EE_autoMeridianFlip);
if (autoMeridianFlip != 1 && autoMeridianFlip != 0) { autoMeridianFlip=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV autoMeridianFlip"); }
#endif
// get meridian flip pause at home
#if MOUNT_TYPE == GEM && MFLIP_PAUSE_HOME_MEMORY == ON
pauseHome=nv.read(EE_pauseHome);
if (pauseHome != 1 && pauseHome != 0) { pauseHome=0; generalError=ERR_NV_INIT; DLF("ERR, initReadNvValues(): bad NV pauseHome"); }
#endif
// set the default guide rate
setGuideRate(GuideRateDefault);
enableGuideRate(GuideRateDefault);
}
void initGeneralError() {
switch (generalError) {
case ERR_ALT_MIN:
case ERR_LIMIT_SENSE:
case ERR_DEC:
case ERR_AZM:
case ERR_UNDER_POLE:
case ERR_MERIDIAN:
case ERR_SYNC:
case ERR_ALT_MAX:
case ERR_PARK: generalError=ERR_NONE; break;
default: break;
}
}
void initStartupValues() {
// initialize some fixed-point values
amountGuideAxis1.fixed= 0;
amountGuideAxis2.fixed= 0;
guideAxis1.fixed = 0;
guideAxis2.fixed = 0;
accPecGuideHA.fixed = 0;
fstepAxis1.fixed = 0;
fstepAxis2.fixed = 0;
origTargetAxis1.fixed = 0;
// default values for state variables
pierSideControl = PierSideNone;
dirAxis1 = 1;
if (latitude >= 0) {
if (axis1Settings.reverse == ON) defaultDirAxis1 = DefaultDirAxis1SCPInit; else defaultDirAxis1 = DefaultDirAxis1NCPInit;
} else {
if (axis1Settings.reverse == ON) defaultDirAxis1 = DefaultDirAxis1NCPInit; else defaultDirAxis1 = DefaultDirAxis1SCPInit;
}
dirAxis2 = 1;
if (axis2Settings.reverse == ON) defaultDirAxis2 = DefaultDirAxis2WInit; else defaultDirAxis2 = DefaultDirAxis2EInit;
newTargetRA = 0;
newTargetDec = 0;
newTargetAlt = 0;
newTargetAzm = 0;
origTargetAxis1.fixed = 0;
origTargetAxis2.fixed = 0;
// initialize alignment
alignNumStars = 0;
alignThisStar = 0;
indexAxis1 = 0;
indexAxis1Steps = 0;
indexAxis2 = 0;
indexAxis2Steps = 0;
Align.init();
// reset meridian flip control
#if MOUNT_TYPE == GEM
meridianFlip = MeridianFlipAlways;
#endif
#if MOUNT_TYPE == FORK
meridianFlip = MeridianFlipNever;
#endif
#if MOUNT_TYPE == ALTAZM
meridianFlip = MeridianFlipNever;
#endif
// clear errors that are no-longer relevant after init
initGeneralError();
// where we are
homeMount = false;
atHome = true;
waitingHome = false;
waitingHomeContinue = false;
// reset tracking and rates
cli();
trackingState = TrackingNone;
lastTrackingState = TrackingNone;
timerRateAxis1 = siderealRate;
timerRateAxis2 = siderealRate;
sei();
}
// the start position
void initStartPosition() {
startAxis1 = 0;
startAxis2 = 0;
cli();
targetAxis1.part.m = 0; targetAxis1.part.f = 0;
posAxis1 = 0;
blAxis1 = 0;
targetAxis2.part.m = 0; targetAxis2.part.f = 0;
posAxis2 = 0;
blAxis2 = 0;
sei();
setIndexAxis1(homePositionAxis1,PierSideEast);
setIndexAxis2(homePositionAxis2,PierSideEast);
}
void initStartTimers() {
// Initialize the timers that handle the sidereal clock, RA, and Dec
HAL_Init_Timer_Sidereal();
// wait for the sidereal clock to tick
delay(15);
// Initialize Axis1 and Axis2 motor timers and set their priorities
HAL_Init_Timers_Motor();
}