-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathdeep.cpp
753 lines (698 loc) · 31.9 KB
/
deep.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/* Copyright (C) 2018, Project Pluto. See LICENSE. */
#include <math.h>
#include "norad.h"
#include "norad_in.h"
/* omega_E = number of (sidereal) rotations of the earth per UT day: */
const double omega_E = 1.00273790934;
#ifdef USE_ACCURATE_ANOMALISTICS
/* The anomalistic month is the mean time it takes the moon to go
from perigee to perigee. The anomalistic year is the mean time
it takes the earth to go from perihelion to perihelion.
The following lines compute the "correct" mean motions of
the earth and sun: zns_per_day is the rate of change of
the earth's mean anomaly, in radians per day, and the 'znl'
quantities give similar rates for the moon.
Problem is, the original SxPx sources give values that are
close to, but not exactly equal to, these values. The
"new" values are probably improvements from further observations,
but if you actually used them, you'd break compatibility with
older implementations, and wouldn't match up with the way
NORAD and others actually compute TLEs. So the following few
lines should be regarded as explanatory; we're stuck with using
the older, less accurate SxPx values. */
const double days_per_anomalistic_month = 27.554551;
const double days_per_anomalistic_year = 365.259635864;
const double zns_per_day = twopi / days_per_anomalistic_year;
const double zns_per_min = zns_per_day / minutes_per_day;
const double znl_per_day = twopi / days_per_anomalistic_month;
const double znl_per_min = znl_per_day / minutes_per_day;
/* thdt = angular velocity of the earth, in radians/minute. */
/* Again, we have to use a less accurate value from the original */
/* SxPx, to replicate everybody else's results. */
const double thdt = twopi * omega_E / minutes_per_day;
#else
const double zns_per_min = 1.19459E-5;
const double zns_per_day = 0.017201977;
const double znl_per_day = 0.228027132;
const double znl_per_min = 1.5835218E-4;
const double thdt = 4.37526908801129966e-3;
#endif
/* zes = mean eccentricity of earth's orbit */
/* zel = mean eccentricity of the moon's orbit */
#define zes 0.01675
#define zel 0.05490
/* thetag: computes Greenwich sidereal time, as an angle in radians
from 0 to 2*pi, for a given UT0 JD. */
static inline double ThetaG( const double jd)
{
/* Reference: The 1992 Astronomical Almanac, page B6. */
/* Earth rotations per sidereal day (non-constant) */
const double UT = fmod( jd + .5, 1.);
const double seconds_per_day = 86400.;
const double jd_2000 = 2451545.0; /* 1.5 Jan 2000 = JD 2451545. */
double t_cen, GMST, rval;
t_cen = (jd - UT - jd_2000) / 36525.;
GMST = 24110.54841 + t_cen * (8640184.812866 + t_cen *
(0.093104 - t_cen * 6.2E-6));
GMST = fmod( GMST / seconds_per_day + omega_E * UT, 1.);
if( GMST < 0.)
GMST += 1.;
rval = twopi * GMST;
return( rval);
} /*Function thetag*/
/* Previously, the integration step was given as two variables: */
/* 'stepp' (positive step = +720) and 'stepn' (negative step = -720). */
/* Exactly why this should be made a variable, much less _different_ */
/* variables for positive and negative, is entirely unclear... */
/* (8 Apr 2003) INTEGRATION_STEP is now a maximum integration step. */
/* The code in 'dpsec' splits the integration range into equally-sized */
/* pieces of 720 minutes (half a day) or smaller. */
/* (25 Aug 2006) INTEGRATION_STEP is now the variable */
/* 'dpsec_integration_step' so I can experiment with different */
/* integration techniques & evaluate their errors. */
static double dpsec_integration_step = 720.;
static int dpsec_integration_order = 2;
static int is_dundee_compliant = 0;
void DLL_FUNC sxpx_set_implementation_param( const int param_index,
const int new_param)
{
switch( param_index)
{
case SXPX_DPSEC_INTEGRATION_ORDER:
dpsec_integration_order = new_param;
break;
case SXPX_DUNDEE_COMPLIANCE:
is_dundee_compliant = new_param;
break;
}
}
void DLL_FUNC sxpx_set_dpsec_integration_step( const double new_step_size)
{
dpsec_integration_step = new_step_size;
}
static inline double eval_cubic_poly( const double x, const double constant,
const double linear, const double quadratic_term,
const double cubic_term)
{
return( constant + x * (linear + x * (quadratic_term + x * cubic_term)));
}
/* DEEP */
void Deep_dpinit( const tle_t *tle, deep_arg_t *deep_arg)
{
const double sinq = sin(tle->xnodeo);
const double cosq = cos(tle->xnodeo);
const double aqnv = 1/deep_arg->aodp;
const double c1ss = 2.9864797E-6;
/* 1900 Jan 0.5 = JD 2415020. */
const double days_since_1900 = tle->epoch - 2415020.;
/* zcosi, zsini start as cos & sin of obliquity of earth's */
/* orbit = 23.444100 degrees... matches obliquity in 1963; */
/* probably just a slightly inaccurate value: */
const double zcosi0 = 0.91744867;
const double zsini0 = 0.39785416;
double zcosi = zcosi0;
double zsini = zsini0;
/* zcosg, zsing start as cos & sin of -78.779197 degrees */
double zsing = -0.98088458;
double zcosg = 0.1945905;
double bfact, cc = c1ss, se;
double ze = zes, zn = zns_per_min;
double sgh, sh, si;
double zsinh = sinq, zcosh = cosq;
double zcosil, zsinil, zcoshl, zsinhl;
double zcosgl, zsingl;
double sl;
int iteration;
deep_arg->thgr = ThetaG( tle->epoch);
deep_arg->xnq = deep_arg->xnodp;
deep_arg->omegaq = tle->omegao;
/* if( days_since_1900 != deep_arg->preep) */
{
const double lunar_asc_node = 4.5236020 - 9.2422029E-4 * days_since_1900;
const double sin_asc_node = sin(lunar_asc_node);
const double cos_asc_node = cos(lunar_asc_node);
const double c_minus_gam = znl_per_day * days_since_1900 - 1.1151842;
/* gam = longitude of perigee for the moon, in radians: */
const double gam = 5.8351514 + 0.0019443680 * days_since_1900;
double zx, zy;
deep_arg->preep = days_since_1900;
zcosil = 0.91375164 - 0.03568096 * cos_asc_node;
zsinil = sqrt(1. - zcosil * zcosil);
zsinhl = 0.089683511 * sin_asc_node / zsinil;
zcoshl = sqrt(1. - zsinhl*zsinhl);
deep_arg->zmol = FMod2p( c_minus_gam);
zx = zsini0 * sin_asc_node / zsinil;
zy = zcoshl * cos_asc_node + zcosi0 * zsinhl * sin_asc_node;
zx = atan2( zx, zy) + gam - lunar_asc_node;
zcosgl = cos( zx);
zsingl = sin( zx);
deep_arg->zmos = FMod2p( 6.2565837
+ zns_per_day * days_since_1900);
} /* End if( days_since_1900 != deep_arg->preep) */
/* Do solar terms */
deep_arg->savtsn = 1E20;
/* There was previously some convoluted logic here, but it boils */
/* down to this: we compute the solar terms, then the lunar terms. */
/* On a second pass, we recompute the solar terms, taking advantage */
/* of the improved data that resulted from computing lunar terms. */
for( iteration = 0; iteration < 2; iteration++)
{
const double c1l = 4.7968065E-7;
const double a1 = zcosg * zcosh + zsing * zcosi * zsinh;
const double a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
const double a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
const double a8 = zsing * zsini;
const double a9 = zsing * zsinh + zcosg * zcosi * zcosh;
const double a10 = zcosg * zsini;
const double a2 = deep_arg->cosio * a7 + deep_arg->sinio * a8;
const double a4 = deep_arg->cosio * a9 + deep_arg->sinio * a10;
const double a5 = -deep_arg->sinio * a7 + deep_arg->cosio * a8;
const double a6 = -deep_arg->sinio * a9 + deep_arg->cosio * a10;
const double x1 = a1 * deep_arg->cosg + a2 * deep_arg->sing;
const double x2 = a3 * deep_arg->cosg + a4 * deep_arg->sing;
const double x3 = -a1 * deep_arg->sing + a2 * deep_arg->cosg;
const double x4 = -a3 * deep_arg->sing + a4 * deep_arg->cosg;
const double x5 = a5 * deep_arg->sing;
const double x6 = a6 * deep_arg->sing;
const double x7 = a5 * deep_arg->cosg;
const double x8 = a6 * deep_arg->cosg;
const double z31 = 12 * x1 * x1 - 3 * x3 * x3;
const double z32 = 24 * x1 * x2 - 6 * x3 * x4;
const double z33 = 12 * x2 * x2 - 3 * x4 * x4;
const double z11 = -6 * a1 * a5 + deep_arg->eosq * (-24 * x1 * x7 - 6 * x3 * x5);
const double z12 = -6 * (a1 * a6 + a3 * a5) + deep_arg->eosq *
(-24 * (x2 * x7 + x1 * x8) - 6 * (x3 * x6 + x4 * x5));
const double z13 = -6 * a3 * a6 + deep_arg->eosq * (-24 * x2 * x8 - 6 * x4 * x6);
const double z21 = 6 * a2 * a5 + deep_arg->eosq * (24 * x1 * x5 - 6 * x3 * x7);
const double z22 = 6 * (a4 * a5 + a2 * a6) + deep_arg->eosq *
(24 * (x2 * x5 + x1 * x6) - 6 * (x4 * x7 + x3 * x8));
const double z23 = 6 * a4 * a6 + deep_arg->eosq * (24 * x2 * x6 - 6 * x4 * x8);
const double s3 = cc / deep_arg->xnq;
const double s2 = -0.5 * s3 / deep_arg->betao;
const double s4 = s3 * deep_arg->betao;
const double s1 = -15 * tle->eo * s4;
const double s5 = x1 * x3 + x2 * x4;
const double s6 = x2 * x3 + x1 * x4;
const double s7 = x2 * x4 - x1 * x3;
double z1 = 3 * (a1 * a1 + a2 * a2) + z31 * deep_arg->eosq;
double z2 = 6 * (a1 * a3 + a2 * a4) + z32 * deep_arg->eosq;
double z3 = 3 * (a3 * a3 + a4 * a4) + z33 * deep_arg->eosq;
z1 = z1 + z1 + deep_arg->betao2 * z31;
z2 = z2 + z2 + deep_arg->betao2 * z32;
z3 = z3 + z3 + deep_arg->betao2 * z33;
se = s1*zn*s5;
si = s2*zn*(z11+z13);
sl = -zn*s3*(z1+z3-14-6*deep_arg->eosq);
sgh = s4*zn*(z31+z33-6);
if( tle->xincl < pi / 60.) /* pi / 60 radians = 3 degrees */
sh = 0;
else
sh = -zn*s2*(z21+z23);
deep_arg->ee2 = 2*s1*s6;
deep_arg->e3 = 2*s1*s7;
deep_arg->xi2 = 2*s2*z12;
deep_arg->xi3 = 2*s2*(z13-z11);
deep_arg->xl2 = -2*s3*z2;
deep_arg->xl3 = -2*s3*(z3-z1);
deep_arg->xl4 = -2*s3*(-21-9*deep_arg->eosq)*ze;
deep_arg->xgh2 = 2*s4*z32;
deep_arg->xgh3 = 2*s4*(z33-z31);
deep_arg->xgh4 = -18*s4*ze;
deep_arg->xh2 = -2*s2*z22;
deep_arg->xh3 = -2*s2*(z23-z21);
if( !iteration) /* we compute lunar terms only on the first pass: */
{
deep_arg->sse = se;
deep_arg->ssi = si;
deep_arg->ssl = sl;
deep_arg->ssh = (deep_arg->sinio ? sh / deep_arg->sinio : 0.);
deep_arg->ssg = sgh-deep_arg->cosio*deep_arg->ssh;
deep_arg->se2 = deep_arg->ee2;
deep_arg->si2 = deep_arg->xi2;
deep_arg->sl2 = deep_arg->xl2;
deep_arg->sgh2 = deep_arg->xgh2;
deep_arg->sh2 = deep_arg->xh2;
deep_arg->se3 = deep_arg->e3;
deep_arg->si3 = deep_arg->xi3;
deep_arg->sl3 = deep_arg->xl3;
deep_arg->sgh3 = deep_arg->xgh3;
deep_arg->sh3 = deep_arg->xh3;
deep_arg->sl4 = deep_arg->xl4;
deep_arg->sgh4 = deep_arg->xgh4;
zcosg = zcosgl;
zsing = zsingl;
zcosi = zcosil;
zsini = zsinil;
zcosh = zcoshl * cosq + zsinhl * sinq;
zsinh = sinq * zcoshl - cosq * zsinhl;
zn = znl_per_min;
cc = c1l;
ze = zel;
}
}
deep_arg->sse += se;
deep_arg->ssi += si;
deep_arg->ssl += sl;
deep_arg->ssg += sgh;
if( deep_arg->sinio)
{
deep_arg->ssg -= sh * deep_arg->cosio / deep_arg->sinio;
deep_arg->ssh += sh / deep_arg->sinio;
}
/* "if mean motion is 1.893053 to 2.117652 revs/day, and ecc >= .5" */
if( deep_arg->xnq >= 0.00826 && deep_arg->xnq <= 0.00924 && tle->eo >= .5)
{ /* start of 12-hour orbit, e >.5 section */
/* 'root##' variables are somewhat inaccurate values for */
/* a few fully normalized sectorial/tesseral spherical */
/* harmonics of the Earth's gravitational potential: */
const double root22 = 1.7891679E-6;
const double root32 = 3.7393792E-7;
const double root44 = 7.3636953E-9;
const double root52 = 1.1428639E-7;
const double root54 = 2.1765803E-9;
const double g201 = -0.306 - (tle->eo - 0.64) * 0.440;
const double sini2 = deep_arg->sinio*deep_arg->sinio;
const double f220 = 0.75*(1+2*deep_arg->cosio+deep_arg->cosio2);
const double f221 = 1.5 * sini2;
const double f321 = 1.875 * deep_arg->sinio * (1 - 2 *\
deep_arg->cosio - 3 * deep_arg->cosio2);
const double f322 = -1.875*deep_arg->sinio*(1+2*
deep_arg->cosio-3*deep_arg->cosio2);
const double f441 = 35 * sini2 * f220;
const double f442 = 39.3750 * sini2 * sini2;
const double f522 = 9.84375*deep_arg->sinio*(sini2*(1-2*deep_arg->cosio-5*
deep_arg->cosio2)+0.33333333*(-2+4*deep_arg->cosio+
6*deep_arg->cosio2));
const double f523 = deep_arg->sinio*(4.92187512*sini2*(-2-4*
deep_arg->cosio+10*deep_arg->cosio2)+6.56250012
*(1+2*deep_arg->cosio-3*deep_arg->cosio2));
const double f542 = 29.53125*deep_arg->sinio*(2-8*
deep_arg->cosio+deep_arg->cosio2*
(-12+8*deep_arg->cosio+10*deep_arg->cosio2));
const double f543 = 29.53125*deep_arg->sinio*(-2-8*deep_arg->cosio+
deep_arg->cosio2*(12+8*deep_arg->cosio-10*
deep_arg->cosio2));
double g410, g422, g520, g521, g532, g533;
double g211, g310, g322;
double temp, temp1;
deep_arg->resonance_flag = 1; /* it _is_ resonant... */
deep_arg->synchronous_flag = 0; /* but it's not synchronous */
/* Geopotential resonance initialization for 12 hour orbits: */
if (tle->eo <= 0.65)
{
g211 = 3.616-13.247*tle->eo+16.290*deep_arg->eosq;
g310 = eval_cubic_poly( tle->eo, -19.302, 117.390, -228.419, 156.591);
g322 = eval_cubic_poly( tle->eo, -18.9068, 109.7927, -214.6334, 146.5816);
g410 = eval_cubic_poly( tle->eo, -41.122, 242.694, -471.094, 313.953);
g422 = eval_cubic_poly( tle->eo, -146.407, 841.880, -1629.014, 1083.435);
g520 = eval_cubic_poly( tle->eo, -532.114, 3017.977, -5740.032, 3708.276);
/* NOTE: quadratic coeff was 5740 */
}
else
{
g211 = eval_cubic_poly( tle->eo, -72.099, 331.819, -508.738, 266.724);
g310 = eval_cubic_poly( tle->eo, -346.844, 1582.851, -2415.925, 1246.113);
g322 = eval_cubic_poly( tle->eo, -342.585, 1554.908, -2366.899, 1215.972);
g410 = eval_cubic_poly( tle->eo, -1052.797, 4758.686, -7193.992, 3651.957);
g422 = eval_cubic_poly( tle->eo, -3581.69, 16178.11, -24462.77, 12422.52);
if (tle->eo <= 0.715)
g520 = eval_cubic_poly( tle->eo, 1464.74, -4664.75, 3763.64, 0.);
else
g520 = eval_cubic_poly( tle->eo, -5149.66, 29936.92, -54087.36, 31324.56);
} /* End if (tle->eo <= 0.65) */
if (tle->eo < 0.7)
{
g533 = eval_cubic_poly( tle->eo, -919.2277, 4988.61, -9064.77, 5542.21);
g521 = eval_cubic_poly( tle->eo, -822.71072, 4568.6173, -8491.4146, 5337.524);
g532 = eval_cubic_poly( tle->eo, -853.666, 4690.25, -8624.77, 5341.4);
}
else
{
g533 = eval_cubic_poly( tle->eo, -37995.78, 161616.52, -229838.2, 109377.94);
g521 = eval_cubic_poly( tle->eo, -51752.104, 218913.95, -309468.16, 146349.42);
g532 = eval_cubic_poly( tle->eo, -40023.88, 170470.89, -242699.48, 115605.82);
} /* End if (tle->eo <= 0.7) */
temp1 = 3 * deep_arg->xnq * deep_arg->xnq * aqnv * aqnv;
temp = temp1*root22;
deep_arg->d2201 = temp * f220 * g201;
deep_arg->d2211 = temp * f221 * g211;
temp1 *= aqnv;
temp = temp1*root32;
deep_arg->d3210 = temp * f321 * g310;
deep_arg->d3222 = temp * f322 * g322;
temp1 *= aqnv;
temp = 2*temp1*root44;
deep_arg->d4410 = temp * f441 * g410;
deep_arg->d4422 = temp * f442 * g422;
temp1 *= aqnv;
temp = temp1*root52;
deep_arg->d5220 = temp * f522 * g520;
deep_arg->d5232 = temp * f523 * g532;
temp = 2*temp1*root54;
deep_arg->d5421 = temp * f542 * g521;
deep_arg->d5433 = temp * f543 * g533;
deep_arg->xlamo = tle->xmo+tle->xnodeo+tle->xnodeo-deep_arg->thgr-deep_arg->thgr;
bfact = deep_arg->xmdot + deep_arg->xnodot+
deep_arg->xnodot - thdt - thdt;
bfact += deep_arg->ssl + deep_arg->ssh + deep_arg->ssh;
} /* end of 12-hour orbit, e >.5 section */
else if( deep_arg->xnq < 1.2 * twopi / minutes_per_day &&
deep_arg->xnq > 0.8 * twopi / minutes_per_day)
{ /* "if mean motion is .8 to 1.2 revs/day" */
const double q22 = 1.7891679E-6;
const double q31 = 2.1460748E-6;
const double q33 = 2.2123015E-7;
const double cosio_plus_1 = 1. + deep_arg->cosio;
const double g200 = 1+deep_arg->eosq*(-2.5+0.8125*deep_arg->eosq);
const double g300 = 1+deep_arg->eosq*(-6+6.60937*deep_arg->eosq);
const double f311 = 0.9375*deep_arg->sinio*deep_arg->sinio*
(1+3*deep_arg->cosio)-0.75*cosio_plus_1;
const double g310 = 1+2*deep_arg->eosq;
const double f220 = 0.75 * cosio_plus_1 * cosio_plus_1;
const double f330 = 2.5 * f220 * cosio_plus_1;
deep_arg->resonance_flag = deep_arg->synchronous_flag = 1;
/* Synchronous resonance terms initialization */
deep_arg->del1 = 3*deep_arg->xnq*deep_arg->xnq*aqnv*aqnv;
deep_arg->del2 = 2*deep_arg->del1*f220*g200*q22;
deep_arg->del3 = 3*deep_arg->del1*f330*g300*q33*aqnv;
deep_arg->del1 *= f311*g310*q31*aqnv;
deep_arg->xlamo = tle->xmo+tle->xnodeo+tle->omegao-deep_arg->thgr;
bfact = deep_arg->xmdot + deep_arg->omgdot + deep_arg->xnodot - thdt;
bfact = bfact+deep_arg->ssl+deep_arg->ssg+deep_arg->ssh;
} /* End of geosych case */
else /* it's neither a high-e 12-hr orbit nor a geosynch: */
deep_arg->resonance_flag = deep_arg->synchronous_flag = 0;
if( deep_arg->resonance_flag)
{
deep_arg->xfact = bfact-deep_arg->xnq;
/* Initialize integrator */
deep_arg->xli = deep_arg->xlamo;
deep_arg->xni = deep_arg->xnq;
deep_arg->atime = 0;
}
/* End case dpinit: */
}
/* 'dpsec' is unavoidably confusing. See https://projectpluto.com/dpsec.htm
for some commentary on what's going on here. */
static inline void compute_dpsec_derivs( const deep_arg_t *deep_arg,
double *derivs)
{
const double sin_li = sin( deep_arg->xli);
const double cos_li = cos( deep_arg->xli);
const double sin_2li = 2. * sin_li * cos_li;
const double cos_2li = 2. * cos_li * cos_li - 1.;
int i;
derivs[0] = 0.;
/* Dot terms calculated, using a lot of trig add/subtract */
/* identities to reduce the computational load... at the */
/* cost of making the code somewhat hard to follow: */
if( deep_arg->synchronous_flag )
{
/* const double fasx2 = 0.1313091 radians = 7.523456 degrees */
/* const double fasx4 = 2.8843198 radians = 165.259351 degrees */
/* const double fasx6 = 0.3744809 radians = 21.456173 degrees */
const double c_fasx2 = 0.99139134268488593;
const double s_fasx2 = 0.13093206501640101;
const double c_2fasx4 = 0.87051638752972937;
const double s_2fasx4 = -0.49213943048915526;
const double c_3fasx6 = 0.43258117585763334;
const double s_3fasx6 = 0.90159499016666422;
const double sin_3li = sin_2li * cos_li + cos_2li * sin_li;
const double cos_3li = cos_2li * cos_li - sin_2li * sin_li;
double term1a = deep_arg->del1 * (sin_li * c_fasx2 - cos_li * s_fasx2);
double term2a = deep_arg->del2 * (sin_2li * c_2fasx4 - cos_2li * s_2fasx4);
double term3a = deep_arg->del3 * (sin_3li * c_3fasx6 - cos_3li * s_3fasx6);
double term1b = deep_arg->del1 * (cos_li * c_fasx2 + sin_li * s_fasx2);
double term2b = 2. * deep_arg->del2 * (cos_2li * c_2fasx4 + sin_2li * s_2fasx4);
double term3b = 3. * deep_arg->del3 * (cos_3li * c_3fasx6 + sin_3li * s_3fasx6);
for( i = 0; i < dpsec_integration_order; i += 2)
{
*derivs++ = term1a + term2a + term3a;
*derivs++ = term1b + term2b + term3b;
if( i + 2 < dpsec_integration_order)
{
term1a = -term1a;
term2a *= -4.;
term3a *= -9.;
term1b = -term1b;
term2b *= -4.;
term3b *= -9.;
}
}
} /* end of geosynch case */
else
{ /* orbit is a 12-hour resonant one: */
/* const double g22 = 5.7686396; */
/* const double g32 = 0.95240898; */
/* const double g44 = 1.8014998; */
/* const double g52 = 1.0508330; */
/* const double g54 = 4.4108898; */
const double c_g22 = 0.87051638752972937;
const double s_g22 = -0.49213943048915526;
const double c_g32 = 0.57972190187001149;
const double s_g32 = 0.81481440616389245;
const double c_g44 = -0.22866241528815548;
const double s_g44 = 0.97350577801807991;
const double c_g52 = 0.49684831179884198;
const double s_g52 = 0.86783740128127729;
const double c_g54 = -0.29695209575316894;
const double s_g54 = -0.95489237761529999;
const double xomi =
deep_arg->omegaq + deep_arg->omgdot * deep_arg->atime;
const double sin_omi = sin( xomi), cos_omi = cos( xomi);
const double sin_li_m_omi = sin_li * cos_omi - sin_omi * cos_li;
const double sin_li_p_omi = sin_li * cos_omi + sin_omi * cos_li;
const double cos_li_m_omi = cos_li * cos_omi + sin_omi * sin_li;
const double cos_li_p_omi = cos_li * cos_omi - sin_omi * sin_li;
const double sin_2omi = 2. * sin_omi * cos_omi;
const double cos_2omi = 2. * cos_omi * cos_omi - 1.;
const double sin_2li_m_omi = sin_2li * cos_omi - sin_omi * cos_2li;
const double sin_2li_p_omi = sin_2li * cos_omi + sin_omi * cos_2li;
const double cos_2li_m_omi = cos_2li * cos_omi + sin_omi * sin_2li;
const double cos_2li_p_omi = cos_2li * cos_omi - sin_omi * sin_2li;
const double sin_2li_p_2omi = sin_2li * cos_2omi + sin_2omi * cos_2li;
const double cos_2li_p_2omi = cos_2li * cos_2omi - sin_2omi * sin_2li;
const double sin_2omi_p_li = sin_li * cos_2omi + sin_2omi * cos_li;
const double cos_2omi_p_li = cos_li * cos_2omi - sin_2omi * sin_li;
double term1a =
deep_arg->d2201 * (sin_2omi_p_li*c_g22 - cos_2omi_p_li*s_g22)
+ deep_arg->d2211 * (sin_li * c_g22 - cos_li * s_g22)
+ deep_arg->d3210 * (sin_li_p_omi*c_g32 - cos_li_p_omi*s_g32)
+ deep_arg->d3222 * (sin_li_m_omi*c_g32 - cos_li_m_omi*s_g32)
+ deep_arg->d5220 * (sin_li_p_omi*c_g52 - cos_li_p_omi*s_g52)
+ deep_arg->d5232 * (sin_li_m_omi*c_g52 - cos_li_m_omi*s_g52);
double term2a =
deep_arg->d4410 * (sin_2li_p_2omi*c_g44 - cos_2li_p_2omi*s_g44)
+ deep_arg->d4422 * (sin_2li * c_g44 - cos_2li * s_g44)
+ deep_arg->d5421 * (sin_2li_p_omi*c_g54 - cos_2li_p_omi*s_g54)
+ deep_arg->d5433 * (sin_2li_m_omi*c_g54 - cos_2li_m_omi*s_g54);
double term1b =
(deep_arg->d2201 * (cos_2omi_p_li*c_g22 + sin_2omi_p_li*s_g22)
+ deep_arg->d2211 * (cos_li * c_g22 + sin_li * s_g22)
+ deep_arg->d3210 * (cos_li_p_omi*c_g32 + sin_li_p_omi*s_g32)
+ deep_arg->d3222 * (cos_li_m_omi*c_g32 + sin_li_m_omi*s_g32)
+ deep_arg->d5220 * (cos_li_p_omi*c_g52 + sin_li_p_omi*s_g52)
+ deep_arg->d5232 * (cos_li_m_omi*c_g52 + sin_li_m_omi*s_g52));
double term2b = 2. *
(deep_arg->d4410 * (cos_2li_p_2omi*c_g44 + sin_2li_p_2omi*s_g44)
+ deep_arg->d4422 * (cos_2li * c_g44 + sin_2li * s_g44)
+ deep_arg->d5421 * (cos_2li_p_omi*c_g54 + sin_2li_p_omi*s_g54)
+ deep_arg->d5433 * (cos_2li_m_omi*c_g54 + sin_2li_m_omi*s_g54));
for( i = 0; i < dpsec_integration_order; i += 2)
{
*derivs++ = term1a + term2a;
*derivs++ = term1b + term2b;
if( i + 2 < dpsec_integration_order)
{
term1a = -term1a;
term2a *= -4.;
term1b = -term1b;
term2b *= -4.;
}
}
} /* End of 12-hr resonant case */
}
void Deep_dpsec( const tle_t *tle, deep_arg_t *deep_arg)
{
double temp, xni, xli;
int final_integration_step = 0;
deep_arg->xll += deep_arg->ssl*deep_arg->t;
deep_arg->omgadf += deep_arg->ssg*deep_arg->t;
deep_arg->xnode += deep_arg->ssh*deep_arg->t;
deep_arg->em = tle->eo+deep_arg->sse*deep_arg->t;
deep_arg->xinc = tle->xincl+deep_arg->ssi*deep_arg->t;
if( !deep_arg->resonance_flag ) return;
/* If we're closer to t=0 than to the currently-stored data
from the previous call to this function, then we're
better off "restarting", going back to the initial data.
The Dundee code rigs things up to _always_ take 720-minute
steps from epoch to end time, except for the final step.
So if we'd have to integrate "backwards" (toward the epoch),
we gotta do a restart if we're to be Dundee-compliant. */
if( fabs( deep_arg->t) < fabs( deep_arg->t - deep_arg->atime)
|| (is_dundee_compliant && fabs( deep_arg->t) < fabs( deep_arg->atime)))
{ /* Epoch restart */
deep_arg->atime = 0.;
xni = deep_arg->xnq;
xli = deep_arg->xlamo;
}
else /* use xni, xli from previous runs: */
{
xni = deep_arg->xni;
xli = deep_arg->xli;
}
while( !final_integration_step)
{
double xldot, derivs[20], xlpow = 1., delt_factor;
double delt = deep_arg->t - deep_arg->atime;
int i;
deep_arg->xni = xni;
deep_arg->xli = xli;
compute_dpsec_derivs( deep_arg, derivs);
if( delt > dpsec_integration_step)
delt = dpsec_integration_step;
else if( delt < -dpsec_integration_step)
delt = -dpsec_integration_step;
else
final_integration_step = 1;
xldot = xni+deep_arg->xfact;
xli += delt * xldot;
xni += delt * derivs[0];
delt_factor = delt;
for( i = 2; i <= dpsec_integration_order; i++)
{
xlpow *= xldot;
derivs[i - 1] *= xlpow;
delt_factor *= delt / (double)i;
xli += delt_factor * derivs[i - 2];
xni += delt_factor * derivs[i - 1];
}
if( !is_dundee_compliant || !final_integration_step)
{
deep_arg->xni = xni;
deep_arg->xli = xli;
deep_arg->atime += delt;
}
}
deep_arg->xn = xni;
temp = -deep_arg->xnode + deep_arg->thgr + deep_arg->t * thdt;
deep_arg->xll = xli + temp
+ (deep_arg->synchronous_flag ? -deep_arg->omgadf : temp);
/*End case dpsec: */
}
void Deep_dpper( const tle_t *tle, deep_arg_t *deep_arg)
{
double sinis, cosis;
/* If the time didn't change by more than 30 minutes, */
/* there's no good reason to recompute the perturbations; */
/* they don't change enough over so short a time span. */
/* However, the Dundee code _always_ recomputes, so if */
/* we're attempting to replicate its results, we've gotta */
/* recompute everything, too. */
if( fabs(deep_arg->savtsn-deep_arg->t) >= 30. || is_dundee_compliant)
{
double zf, zm, sinzf, ses, sis, sil, sel, sll, sls;
double f2, f3, sghl, sghs, shs, sh1;
deep_arg->savtsn = deep_arg->t;
/* Update solar perturbations for time T: */
zm = deep_arg->zmos+zns_per_min*deep_arg->t;
zf = zm+2*zes*sin(zm);
sinzf = sin(zf);
f2 = 0.5*sinzf*sinzf-0.25;
f3 = -0.5*sinzf*cos(zf);
ses = deep_arg->se2*f2+deep_arg->se3*f3;
sis = deep_arg->si2*f2+deep_arg->si3*f3;
sls = deep_arg->sl2*f2+deep_arg->sl3*f3+deep_arg->sl4*sinzf;
sghs = deep_arg->sgh2*f2+deep_arg->sgh3*f3+deep_arg->sgh4*sinzf;
shs = deep_arg->sh2*f2+deep_arg->sh3*f3;
/* Update lunar perturbations for time T: */
zm = deep_arg->zmol+znl_per_min*deep_arg->t;
zf = zm+2*zel*sin(zm);
sinzf = sin(zf);
f2 = 0.5*sinzf*sinzf-0.25;
f3 = -0.5*sinzf*cos(zf);
sel = deep_arg->ee2*f2+deep_arg->e3*f3;
sil = deep_arg->xi2*f2+deep_arg->xi3*f3;
sll = deep_arg->xl2*f2+deep_arg->xl3*f3+deep_arg->xl4*sinzf;
sghl = deep_arg->xgh2*f2+deep_arg->xgh3*f3+deep_arg->xgh4*sinzf;
sh1 = deep_arg->xh2*f2+deep_arg->xh3*f3;
/* Sum the solar and lunar contributions: */
deep_arg->pe = ses+sel;
deep_arg->pinc = sis+sil;
deep_arg->pl = sls+sll;
deep_arg->pgh = sghs+sghl;
deep_arg->ph = shs+sh1;
#ifdef RETAIN_PERTURBATION_VALUES_AT_EPOCH
if( deep_arg->solar_lunar_init_flag)
{
deep_arg->pe0 = deep_arg->pe;
deep_arg->pinc0 = deep_arg->pinc;
deep_arg->pl0 = deep_arg->pl;
deep_arg->pgh0 = deep_arg->pgh;
deep_arg->ph0 = deep_arg->ph;
}
deep_arg->pe -= deep_arg->pe0;
deep_arg->pinc -= deep_arg->pinc0;
deep_arg->pl -= deep_arg->pl0;
deep_arg->pgh -= deep_arg->pgh0;
deep_arg->ph -= deep_arg->ph0;
if( deep_arg->solar_lunar_init_flag)
return; /* done all we really need to do here... */
#endif
}
/* In Spacetrack 3, sinis & cosis were initialized */
/* _before_ perturbations were added to xinc. In */
/* Spacetrack 6, it's the other way around (see below). */
#ifndef SPACETRACK_3
deep_arg->xinc += deep_arg->pinc;
#endif
sinis = sin( deep_arg->xinc);
cosis = cos( deep_arg->xinc);
#ifdef SPACETRACK_3
deep_arg->xinc += deep_arg->pinc;
#endif
/* Add solar/lunar perturbation correction to eccentricity: */
deep_arg->em += deep_arg->pe;
deep_arg->xll += deep_arg->pl;
deep_arg->omgadf += deep_arg->pgh;
if( tle->xincl >= 0.2)
{ /* Apply periodics directly */
double temp_val;
#ifdef SPACETRACK_3
sinis = sin(deep_arg->xinc);
cosis = cos(deep_arg->xinc);
#endif
temp_val = deep_arg->ph / sinis;
deep_arg->omgadf -= cosis * temp_val;
deep_arg->xnode += temp_val;
}
else
{
/* Apply periodics with Lyddane modification */
const double sinok = sin(deep_arg->xnode);
const double cosok = cos(deep_arg->xnode);
const double alfdp = deep_arg->ph * cosok
+ (deep_arg->pinc * cosis + sinis) * sinok;
const double betdp = - deep_arg->ph * sinok
+ (deep_arg->pinc * cosis + sinis) * cosok;
double dls, delta_xnode;
// deep_arg->xnode = FMod2p(deep_arg->xnode);
delta_xnode = atan2(alfdp,betdp) - deep_arg->xnode;
/* This is a patch to Lyddane modification suggested */
/* by Rob Matson, streamlined very slightly by BJG, to */
/* keep 'delta_xnode' between +/- 180 degrees: */
if( delta_xnode < - pi)
delta_xnode += twopi;
else if( delta_xnode > pi)
delta_xnode -= twopi;
dls = -deep_arg->xnode * sinis * deep_arg->pinc;
#ifdef SPACETRACK_3
deep_arg->omgadf += dls
+ cosis * deep_arg->xnode -
- cos( deep_arg->xinc) * (deep_arg->xnode + delta_xnode);
#else
deep_arg->omgadf += dls - cosis * delta_xnode;
#endif
deep_arg->xnode += delta_xnode;
} /* End case dpper: */
}