-
Notifications
You must be signed in to change notification settings - Fork 43
/
elem2tle.cpp
545 lines (493 loc) · 17.4 KB
/
elem2tle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* Copyright (C) 2018, Project Pluto. See LICENSE. */
/* MOSTLY OBSOLETE. See 'eph2tle.cpp' in the Find_Orb project
(https://github.com/Bill-Gray/find_orb) for a considerably better
approach to computing TLEs from orbital data.
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "watdefs.h"
#include "afuncs.h"
#include "comets.h"
#include "norad.h"
#include "norad_in.h" /* for xke definition */
#include "date.h"
const double earth_mass_over_sun_mass = 2.98994e-6;
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
#define PI 3.141592653589793238462643383279502884197169399375105
int write_tle_from_vector( char *buff, const double *state_vect,
const double epoch, const char *norad_desig, const char *intl_desig);
int verbose = 0;
static void set_tle_defaults( tle_t *tle)
{
memset( tle, 0, sizeof( tle_t));
strcpy( tle->intl_desig, "56999ZZ ");
tle->classification = 'U';
tle->ephemeris_type = '0';
}
#define centralize_angle(x) (fmod( (x) + PI * 10., PI + PI))
int vector_to_tle( tle_t *tle, const double *state_vect)
{
ELEMENTS elem;
int rval = 0, i;
double tvect[6];
const double max_ecc = .9999;
for( i = 0; i < 6; i++) /* cvt from km, km/min to AU, AU/day */
tvect[i] = state_vect[i];
elem.gm = xke * xke * earth_radius_in_km * earth_radius_in_km * earth_radius_in_km;
calc_classical_elements( &elem, tvect, tle->epoch, 1);
tle->xincl = centralize_angle( elem.incl);
tle->xnodeo = centralize_angle( elem.asc_node);
tle->omegao = centralize_angle( elem.arg_per);
tle->xmo = centralize_angle( elem.mean_anomaly);
if( elem.ecc > max_ecc || elem.major_axis <= 0.)
rval = -1;
else
{
tle->eo = elem.ecc;
tle->xno = 1. / elem.t0; /* xno is now in radians per minute */
rval = 0;
}
if( tle->xincl < 0.)
{
tle->xincl = -tle->xincl;
tle->xnodeo = centralize_angle( tle->xnodeo + PI);;
tle->omegao = centralize_angle( tle->omegao + PI);;
}
return( rval);
}
static void show_results( const char *title, const tle_t *tle, const double *state_vect)
{
if( title)
printf( "%s\n", title);
if( tle)
{
char buff[200];
write_elements_in_tle_format( buff, tle);
printf( "%s", buff);
}
printf(" %16.8f %16.8f %16.8f \n", state_vect[0], state_vect[1],
state_vect[2]);
printf(" %16.8f %16.8f %16.8f \n", state_vect[3] / 60.,
state_vect[4] / 60.,
state_vect[5] / 60.);
}
static int compute_new_state_vect( const tle_t *tle, double *state_vect,
const int ephem)
{
double sat_params[N_SAT_PARAMS];
int rval = 0;
switch( ephem)
{
case 0:
SGP_init( sat_params, tle);
rval = SGP( 0., tle, sat_params, state_vect, state_vect + 3);
break;
case 1:
SGP4_init( sat_params, tle);
rval = SGP4( 0., tle, sat_params, state_vect, state_vect + 3);
break;
case 2:
SGP8_init( sat_params, tle);
rval = SGP8( 0., tle, sat_params, state_vect, state_vect + 3);
break;
case 3:
SDP4_init( sat_params, tle);
rval = SDP4( 0., tle, sat_params, state_vect, state_vect + 3);
break;
case 4:
SDP8_init( sat_params, tle);
rval = SDP8( 0., tle, sat_params, state_vect, state_vect + 3);
break;
default:
printf( "??? ephem = %d\n", ephem);
rval = -99;
break;
}
// if( rval)
// printf( "??? rval = %d; ecc = %.6lf\n", rval, tle->eo);
return( rval);
}
#define SIMPLEX_POINT struct simplex_point
SIMPLEX_POINT
{
double state_vect[6];
double error;
};
static double total_vector_diff( const double *vect1, const double *vect2)
{
int i;
double rval = 0.;
for( i = 0; i < 6; i++)
{
double delta = vect1[i] - vect2[i];
if( i >= 3)
delta *= 1000.;
rval += delta * delta;
}
return( rval);
}
static double compute_simplex_point_error( const double *state_vect, tle_t *tle,
const double *start, const int ephem)
{
double rval = 0., state_out[6];
int compute_rval, vect_to_tle_rval;
vect_to_tle_rval = vector_to_tle( tle, state_vect);
if( vect_to_tle_rval == -1)
return( 1.e+37);
compute_rval = compute_new_state_vect( tle, state_out, ephem);
if( compute_rval == SXPX_ERR_NEARLY_PARABOLIC
|| compute_rval == SXPX_ERR_NEGATIVE_MAJOR_AXIS
|| compute_rval == SXPX_ERR_NEGATIVE_XN
|| vect_to_tle_rval == -1)
rval = 1.e+37; /* invalid vector */
else
rval = total_vector_diff( state_out, start);
return( rval);
}
static double try_simplex( SIMPLEX_POINT *simp, const double factor,
tle_t *tle, const double *start, const int ephem)
{
SIMPLEX_POINT new_point;
int i, j;
for( i = 0; i < 6; i++)
{
new_point.state_vect[i] = factor * simp->state_vect[i];
for( j = 1; j < 7; j++)
new_point.state_vect[i] += (1. - factor) * simp[j].state_vect[i] / 6.;
}
new_point.error = compute_simplex_point_error( new_point.state_vect, tle,
start, ephem);
if( new_point.error <= simp->error)
*simp = new_point;
return( new_point.error);
}
static void sort_simplexes( SIMPLEX_POINT *simp)
{
int i;
for( i = 0; i < 7; i++) /* sort simplex points by error */
if( simp[i].error < simp[i + 1].error) /* highest to lowest */
{
SIMPLEX_POINT temp_elem = simp[i];
simp[i] = simp[i + 1];
simp[i + 1] = temp_elem;
if( i)
i -= 2;
}
}
double dist_offset = 10000., vel_offset = 10.;
static void create_randomized_simplex( SIMPLEX_POINT *simp, const double *start_vect)
{
int i;
for( i = 0; i < 6; i++)
{
const double zval = (double)rand( ) / (double)RAND_MAX - .5;
simp->state_vect[i] = start_vect[i]
+ zval * (i < 3 ? dist_offset : vel_offset);
}
}
static int initialize_simplexes( SIMPLEX_POINT *simp, const double *state_vect,
const double *start_vect, const int ephem)
{
int i, rval = 0;
memcpy( simp[6].state_vect, start_vect, 6 * sizeof( double));
assert( start_vect[0] && start_vect[1] && start_vect[2]);
for( i = 0; i < 7 && !rval; i++)
{
tle_t tle;
int iter = 0;
set_tle_defaults( &tle);
if( i != 6)
create_randomized_simplex( simp + i, start_vect);
while ( (simp[i].error = compute_simplex_point_error( simp[i].state_vect,
&tle, state_vect, ephem)) > 1e+36 && iter++ < 1000)
create_randomized_simplex( simp, start_vect);
if( iter >= 1000)
rval = -1;
}
return( rval);
}
static int find_tle_via_simplex_method( tle_t *tle, const double *state_vect,
const double *start_vect, const int ephem)
{
SIMPLEX_POINT simp[7];
double best_rval_found = 1e+39, best_vect[6];
int i, j, soln_found = 0, n_iterations = 0;
int n_consecutive_contractions = 0;
const int max_iterations = 43000;
if( verbose)
show_results( "Setting up:", NULL, start_vect);
srand( 1);
if( initialize_simplexes( simp, state_vect, start_vect, ephem))
return( 0); /* no solution found */
while( !soln_found && n_iterations++ < max_iterations)
{
double ytry;
sort_simplexes( simp);
ytry = try_simplex( simp, -1., tle, state_vect, ephem);
if( ytry <= simp[6].error)
{
if( verbose)
{
char buff[200];
printf( "New record low: %f\n", ytry);
write_elements_in_tle_format( buff, tle);
printf( "%s", buff);
}
try_simplex( simp, 2., tle, state_vect, ephem);
if( ytry < 1e-13)
soln_found = true;
if( ytry < best_rval_found)
{
best_rval_found = ytry;
memcpy( best_vect, simp[0].state_vect, 6 * sizeof( double));
}
n_consecutive_contractions = 0;
}
else if( ytry > simp[1].error)
{
double ysave = simp[0].error;
ytry = try_simplex( simp, .5, tle, state_vect, ephem);
if( ytry > ysave) /* still no success; try contracting */
{ /* around lowest point: */
// printf( "Contracting around best point\n");
for( i = 0; i < 6; i++)
{
for( j = 0; j < 6; j++)
simp[i].state_vect[j] =
(simp[i].state_vect[j] + simp[6].state_vect[j]) / 2.;
simp[i].error = compute_simplex_point_error( simp[i].state_vect, tle,
state_vect, ephem);
}
n_consecutive_contractions++;
if( n_consecutive_contractions == 30)
initialize_simplexes( simp, state_vect, best_vect, ephem);
}
else
n_consecutive_contractions = 0;
}
if( n_iterations % 200 == 199)
initialize_simplexes( simp, state_vect, best_vect, ephem);
}
sort_simplexes( simp);
if( verbose)
printf( "End err: %f\n", simp[6].error);
vector_to_tle( tle, best_vect);
// vector_to_tle( tle, simp[6].state_vect);
return( soln_found);
}
int compute_tle_from_state_vector( tle_t *tle, const double *state_vect, const int ephem,
double *trial_state)
{
int n_failed_steps = 0, i;
double state_out[6], best_vect[6], curr_err;
const double thresh = 1e-12;
memcpy( trial_state, state_vect, 6 * sizeof( double));
if( vector_to_tle( tle, state_vect))
{
printf( "Immediate failure\n");
return( -1);
}
memcpy( best_vect, state_vect, 6 * sizeof( double));
compute_new_state_vect( tle, state_out, ephem);
for( i = 0; i < 6; i++)
trial_state[i] += state_vect[i] - state_out[i];
curr_err = total_vector_diff( state_out, state_vect);
if( verbose)
show_results( "Initial guess", tle, state_out);
if( curr_err < thresh)
printf( "Got it right away\n");
while( curr_err > thresh && n_failed_steps < 20)
{
double new_err = 0.;
tle_t new_tle = *tle;
if( vector_to_tle( &new_tle, trial_state))
{
memcpy( trial_state, best_vect, 6 * sizeof( double));
show_results( "Simple failure:", tle, trial_state);
return( -1);
}
compute_new_state_vect( &new_tle, state_out, ephem);
new_err = total_vector_diff( state_out, state_vect);
if( new_err > curr_err * .9)
n_failed_steps++; /* slow or no convergence */
if( new_err < curr_err)
{
curr_err = new_err;
*tle = new_tle;
memcpy( best_vect, trial_state, 6 * sizeof( double));
if( verbose)
{
printf( "New record %f\n", curr_err);
show_results( NULL, tle, state_out);
}
}
for( i = 0; i < 6; i++)
trial_state[i] += state_vect[i] - state_out[i];
}
memcpy( trial_state, best_vect, 6 * sizeof( double));
return( curr_err > thresh);
}
/* Main program */
int main( const int argc, const char **argv)
{
const char *tle_filename = ((argc == 1) ? "test.tle" : argv[1]);
FILE *ifile = fopen( tle_filename, "rb");
tle_t tle; /* Pointer to two-line elements set for satellite */
char line1[100], line2[100];
int ephem = 1; /* default to SGP4 */
int i; /* Index for loops etc */
int n_failures = 0, n_simple = 0, n_simplex = 0;
bool failures_only = false;
for( i = 2; i < argc; i++)
if( argv[i][0] == '-')
switch( argv[i][1])
{
case 'f':
failures_only = true;
break;
case 'v':
verbose = 1;
break;
case 'd':
dist_offset = atof( argv[i] + 2);
break;
case 's':
vel_offset = atof( argv[i] + 2);
break;
default:
printf( "Option '%s' unrecognized\n", argv[i]);
break;
}
if( !ifile)
{
printf( "Couldn't open input TLE file %s\n", tle_filename);
exit( -1);
}
*line1 = '\0';
while( fgets( line2, sizeof( line2), ifile))
{
int got_data = 0;
double state_vect[6];
set_tle_defaults( &tle);
if( strlen( line2) > 110 && line2[7] == '.' && line2[18] == '.'
&& line2[0] == '2' && line2[1] == '4')
{
got_data = 3; /* Find_Orb state vector ephemeris */
tle.epoch = atof( line2);
sscanf( line2 + 13, "%lf %lf %lf %lf %lf %lf",
state_vect + 0, state_vect + 1, state_vect + 2,
state_vect + 3, state_vect + 4, state_vect + 5);
}
else if( strlen( line1) > 55 && !memcmp( line1 + 50, " (TDB)", 6))
{ /* JPL Horizons vector */
const double obliq_2000 = 23.4392911 * PI / 180.;
tle.epoch = atof( line1); /* get JD epoch from header... */
strcpy( line1, line2);
if( fgets( line2, sizeof( line2), ifile))
got_data = 1;
sscanf( line1, "%lf %lf %lf",
state_vect + 0, state_vect + 1, state_vect + 2);
sscanf( line2, "%lf %lf %lf",
state_vect + 3, state_vect + 4, state_vect + 5);
/* Cvt ecliptic to equatorial 2000: */
rotate_vector( state_vect , obliq_2000, 0);
rotate_vector( state_vect + 3, obliq_2000, 0);
}
else if( parse_elements( line1, line2, &tle) >= 0)
got_data = 2;
if( got_data == 1 || got_data == 3)
tle.epoch -= 68.00 / 86400.; /* rough convert TDT to UTC */
if( got_data) /* hey! we got a TLE! */
{
double sat_params[N_SAT_PARAMS], trial_state[6];
int simple_rval;
bool failed = false;
tle_t new_tle;
if( got_data == 1 || got_data == 3)
{
ephem = 3; /* Use SDP4 for JPL Horizons vectors */
for( i = 0; i < 6 && fabs( state_vect[i]) < 1.; i++)
;
if( i == 6) /* all small quantities, must be in AU & AU/day : */
{
for( i = 0; i < 6; i++)
state_vect[i] *= AU_IN_KM;
for( i = 3; i < 6; i++)
state_vect[i] /= seconds_per_day;
}
for( i = 3; i < 6; i++) /* cvt km/sec to km/min */
state_vect[i] *= seconds_per_minute;
if( !failures_only)
show_results( "Before:", NULL, state_vect);
}
else
{
int is_deep = select_ephemeris( &tle);
if( is_deep && (ephem == 1 || ephem == 2))
ephem += 2; /* switch to an SDx */
if( !is_deep && (ephem == 3 || ephem == 4))
ephem -= 2; /* switch to an SGx */
/* Calling of NORAD routines */
/* Each NORAD routine (SGP, SGP4, SGP8, SDP4, SDP8) */
/* will be called in turn with the appropriate TLE set */
switch( ephem)
{
case 0:
SGP_init( sat_params, &tle);
SGP( 0., &tle, sat_params, state_vect, state_vect + 3);
break;
case 1:
SGP4_init( sat_params, &tle);
SGP4( 0., &tle, sat_params, state_vect, state_vect + 3);
break;
case 2:
SGP8_init( sat_params, &tle);
SGP8( 0., &tle, sat_params, state_vect, state_vect + 3);
break;
case 3:
SDP4_init( sat_params, &tle);
SDP4( 0., &tle, sat_params, state_vect, state_vect + 3);
break;
case 4:
SDP8_init( sat_params, &tle);
SDP8( 0., &tle, sat_params, state_vect, state_vect + 3);
break;
}
if( !failures_only)
show_results( "Before:", &tle, state_vect);
}
new_tle = tle;
simple_rval = compute_tle_from_state_vector( &new_tle, state_vect, ephem, trial_state);
if( simple_rval)
{
n_simplex++;
find_tle_via_simplex_method( &new_tle, state_vect, trial_state, ephem);
}
else
n_simple++;
compute_new_state_vect( &new_tle, trial_state, ephem);
for( i = 0; i < 6; i++)
{
trial_state[i] -= state_vect[i];
if( fabs( trial_state[i]) > 1e-6)
failed = true;
}
if( failed && failures_only)
show_results( "Before:", &tle, state_vect);
if( failed || !failures_only)
show_results( (simple_rval ? "Simplex result:" : "Simplest method:"),
&new_tle, trial_state);
if( failed)
n_failures++;
}
strcpy( line1, line2);
}
fclose( ifile);
printf( "%d solved with simple method; %d with simplex\n", n_simple, n_simplex);
if( n_failures)
printf( "%d failures\n", n_failures);
return(0);
} /* End of main() */