diff --git a/db/citations.yml b/db/citations.yml index 3484904e..4f336276 100644 --- a/db/citations.yml +++ b/db/citations.yml @@ -8556,6 +8556,44 @@ nakam;jmchema17: wwwemail: '' wwwpub: http://slapper.apam.columbia.edu/bib-eu9iifae/papers/nakam_jmca17.pdf year: '2017' +nanarong;npj24: + ackno: This work was funded by Toyota Research Institute, grant number PO-002332. + author: + - Tanaporn Na Narong + - Zoe N. Zachko + - Steven B. Torrisi + - Simon J. L. Billinge + doi: 10.48550/arXiv.2410.17467 + entrytype: article + facility: '' + grant: tri22 + journal: arXiv + month: '' + nb: '' + note: arXiv:2410.17467 + notes: '' + number: '' + optannote: '' + optnote: '' + optwwwlanl: '' + pages: '' + summary_professional: Interpretable machine learning (ML) provides a + generalizable approach for combining information from multiple heterogeneous + spectra. Random forest models were trained on X-ray absorption near-edge + spectra (XANES), atomic pair distribution functions (PDFs), and both inputs + combined, to extract local atomic environments of transition metal cations + in oxides. Feature importance analysis revealed the most informative regions + in both spectra and how the information is balanced between them. Our approach + enables exploration of information content and can inform experimental design + when choosing between different methods. + synopsis: original paper demonstrating use of interpretable ML for combining + heterogeneous input spectra, XANES and PDF + tags: ml, xanes, pdf, random-forest + title: 'Use of machine learning in experiment design for multi-modal analysis of materials: + x-ray absorption near-edge spectra (XANES) and pair distribution functions (PDF)' + url: https://doi.org/10.48550/arXiv.2410.17467 + volume: '' + year: '2024' nguye;pnas19: author: - Andy I. Nguyen