From c6c7fa8680710e39491d49e46cef77f6b60d8f22 Mon Sep 17 00:00:00 2001 From: tinatn29 Date: Tue, 1 Oct 2024 11:42:43 -0400 Subject: [PATCH 1/4] add tina's paper --- db/citations.yml | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/db/citations.yml b/db/citations.yml index 3484904e..777fbf95 100644 --- a/db/citations.yml +++ b/db/citations.yml @@ -8556,6 +8556,46 @@ nakam;jmchema17: wwwemail: '' wwwpub: http://slapper.apam.columbia.edu/bib-eu9iifae/papers/nakam_jmca17.pdf year: '2017' +nanarong;npj24: + ackno: This work was funded by Toyota Research Institute, grant number PO-002332. + author: + - Tanaporn Na Narong + - Zoe N. Zachko + - Steven B. Torrisi + - Simon J. L. Billinge + doi: + entrytype: article + facility: + grant: + journal: Npj Comput. Mater. + month: oct + nb: '' + note: to be submitted + notes: '' + number: '' + optannote: '' + optnote: '' + optwwwlanl: '' + pages: '' + summary_professional: Interpretable machine learning (ML) provides a + generalizable approach for combining information from multiple heterogeneous + spectra. Random forest models were trained on X-ray absorption near-edge + spectra (XANES), atomic pair distribution functions (PDFs), and both inputs + combined, to extract local atomic environments of transition metal cations + in oxides. Feature importance analysis revealed the most informative regions + in both spectra and how the information is balanced between them. Our approach + enables exploration of information content and can inform experimental design + when choosing between different methods. + synopsis: Random forest models trained on XANES, PDF, and both combined + and the feature importance analysis allow us to combine information + from heterogeneous experimental spectra and investigate the information + content and complementarity between the two inputs. + tags: ml, xanes, pdf, random-forest + title: 'Use of machine learning in experiment design for multi-modal analysis of materials: + x-ray absorption near-edge spectra (XANES) and pair distribution functions (PDF)' + url: https://doi.org/ + volume: '' + year: '2024' nguye;pnas19: author: - Andy I. Nguyen From 1446b5650fd539d95c67fa49c1c5acbe8e2bdf46 Mon Sep 17 00:00:00 2001 From: tinatn29 Date: Fri, 25 Oct 2024 15:04:08 -0400 Subject: [PATCH 2/4] add arxiv and corrected previous errors --- db/citations.yml | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/db/citations.yml b/db/citations.yml index 777fbf95..fef9cc47 100644 --- a/db/citations.yml +++ b/db/citations.yml @@ -8563,14 +8563,14 @@ nanarong;npj24: - Zoe N. Zachko - Steven B. Torrisi - Simon J. L. Billinge - doi: + doi: 10.48550/arXiv.2410.17467 entrytype: article - facility: - grant: - journal: Npj Comput. Mater. - month: oct + facility: '' + grant: TRI + journal: '' + month: '' nb: '' - note: to be submitted + note: submitted to npj Comput. Mater. notes: '' number: '' optannote: '' @@ -8593,7 +8593,7 @@ nanarong;npj24: tags: ml, xanes, pdf, random-forest title: 'Use of machine learning in experiment design for multi-modal analysis of materials: x-ray absorption near-edge spectra (XANES) and pair distribution functions (PDF)' - url: https://doi.org/ + url: https://doi.org/10.48550/arXiv.2410.17467 volume: '' year: '2024' nguye;pnas19: From 06ef2f4a27761d1cc9791d93bc43f2d4f49c73c5 Mon Sep 17 00:00:00 2001 From: tinatn29 Date: Mon, 28 Oct 2024 13:20:39 -0400 Subject: [PATCH 3/4] edit tina's paper details per SB comments --- db/citations.yml | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/db/citations.yml b/db/citations.yml index fef9cc47..63e4331a 100644 --- a/db/citations.yml +++ b/db/citations.yml @@ -8566,11 +8566,11 @@ nanarong;npj24: doi: 10.48550/arXiv.2410.17467 entrytype: article facility: '' - grant: TRI - journal: '' + grant: tri22 + journal: arXiv month: '' nb: '' - note: submitted to npj Comput. Mater. + note: https://doi.org/10.48550/arXiv.2410.17467 notes: '' number: '' optannote: '' @@ -8586,10 +8586,8 @@ nanarong;npj24: in both spectra and how the information is balanced between them. Our approach enables exploration of information content and can inform experimental design when choosing between different methods. - synopsis: Random forest models trained on XANES, PDF, and both combined - and the feature importance analysis allow us to combine information - from heterogeneous experimental spectra and investigate the information - content and complementarity between the two inputs. + synopsis: original paper demonstrating use of interpretable ML for combining + heterogeneous input spectra, XANES and PDF tags: ml, xanes, pdf, random-forest title: 'Use of machine learning in experiment design for multi-modal analysis of materials: x-ray absorption near-edge spectra (XANES) and pair distribution functions (PDF)' From 80fcacea78da125dad4725d97e4d8db953df137e Mon Sep 17 00:00:00 2001 From: tinatn29 Date: Tue, 29 Oct 2024 10:24:59 -0400 Subject: [PATCH 4/4] add arxiv no. to note --- db/citations.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/db/citations.yml b/db/citations.yml index 63e4331a..4f336276 100644 --- a/db/citations.yml +++ b/db/citations.yml @@ -8570,7 +8570,7 @@ nanarong;npj24: journal: arXiv month: '' nb: '' - note: https://doi.org/10.48550/arXiv.2410.17467 + note: arXiv:2410.17467 notes: '' number: '' optannote: ''