forked from nkdnnlr/EPLNetwork_ImamCleland2020
-
Notifications
You must be signed in to change notification settings - Fork 1
/
genData_extended.py
395 lines (337 loc) · 15.6 KB
/
genData_extended.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Original Authors:
# Imam, Nabil Cleland, Thomas [tac29 at cornell.edu]
# 2020
# https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=261864#tabs-1
#
# Modified by Nik Dennler, October 2022, n.dennler2@herts.ac.uk
#
# ATTENTION: Run with Python 3!
import os
import csv
import pickle
import numpy as np
import random
import copy
from pathlib import Path
import matplotlib.pyplot as plt
def loadFile(fileName, time_sample):
"""
Load data points of a given data file and point in time
:param str fileName: filename
:param int time_sample: sampling time
:return list, int: all sensor readings, exact sampling time in seconds
"""
lines = []
data = csv.reader(open(fileName, 'r'), delimiter='\t')
for i in data:
lines.append(i)
odor_raw = []
for i in range(0, len(lines)):
time = int(float(lines[i][0]))/1000.0
if time > time_sample: #load the data recorded at given time
#odor_raw.append(time)
for j in range(12, 92): #gas sensor data is stored at these locations
if lines[i][j]!='1':
odor_raw.append(int(float(lines[i][j])))
break
#odor_raw[k].append( round( float(lines[i][j]) *2, 6)/2 )
return odor_raw, time
def find_gas_file(data_dir, gas='CO_1000'):
"""
In data directory, find gas file that matches a given gas string
:param str data_dir: data directory
:param str gas: gas identifying string, defaults to 'CO_1000'
:return list: data files where string is matched
"""
data_files = []
for d in os.listdir(data_dir):
if d.find(gas) != -1:
data_files.append(data_dir+"/"+d)
return data_files
def get_gas_files(data_dir, gas, time_sample, n_samples=10):
"""
Get n gas files for a given gas and time, plus baseline
:param str data_dir: data directory
:param str gas: gas identifying string
:param int time_sample: sampling time
:param int n_samples: number of gas samples per gas, defaults to 10
:return list, list: gas data, baseline data
"""
time_baseline = 1 # t=1s
raw_all = []
baseline_all = []
filenames = find_gas_file(data_dir, gas=gas)
# randomly select n_samples
for i in range(n_samples):
filename = random.choice(filenames)
raw, time = loadFile(filename, time_sample=time_sample)
baseline, baselinetime = loadFile(filename, time_sample=time_baseline)
raw_all.append(raw)
baseline_all.append(baseline)
return raw_all, baseline_all
# def loadData(time_sample=int('090'), dir="testing", n_samples=10):
def loadData(data_dir, time_sample=int('090'), n_samples=10):
"""
Load training or testing data. Returns raw data, baseline data and labels
:param int time_sample: sampling time, defaults to int('090')
:param str dir: data directory name, defaults to "testing"
:param int n_samples: number of gas samples per gas, defaults to 10
:return list, list, list: odors_raw, odors_baseline, odors_labels
"""
# data_dir = "data/"+dir
Toluene_raw, Toluene_baseline = get_gas_files(data_dir, 'Toluene_200', time_sample, n_samples=n_samples)
Benzene_raw, Benzene_baseline = get_gas_files(data_dir, 'Benzene_200', time_sample, n_samples=n_samples)
Methane_raw, Methane_baseline = get_gas_files(data_dir, 'Methane_1000', time_sample, n_samples=n_samples)
CO_raw, CO_baseline = get_gas_files(data_dir, 'CO_1000', time_sample, n_samples=n_samples)
Ammonia_raw, Ammonia_baseline = get_gas_files(data_dir, 'Ammonia_10000', time_sample, n_samples=n_samples)
Acetone_raw, Acetone_baseline = get_gas_files(data_dir, 'Acetone_2500', time_sample, n_samples=n_samples)
Acetaldehyde_raw, Acetaldehyde_baseline = get_gas_files(data_dir, 'Acetaldehyde_500', time_sample, n_samples=n_samples)
Methanol_raw, Methanol_baseline = get_gas_files(data_dir, 'Methanol_200', time_sample, n_samples=n_samples)
Butanol_raw, Butanol_baseline = get_gas_files(data_dir, 'Butanol_100', time_sample, n_samples=n_samples)
Ethylene_raw, Ethylene_baseline = get_gas_files(data_dir, 'Ethylene_500', time_sample, n_samples=n_samples)
odors_labels = ["Toluene", "Benzene", "Methane", "CO", "Ammonia", "Acetone", "Acetaldehyde", "Methanol", "Butanol", "Ethylene"]
odors_raw = [Toluene_raw, Benzene_raw, Methane_raw, CO_raw, Ammonia_raw, Acetone_raw, Acetaldehyde_raw, Methanol_raw, Butanol_raw, Ethylene_raw]
odors_baseline = [Toluene_baseline, Benzene_baseline, Methane_baseline, CO_baseline, Ammonia_baseline, Acetone_baseline, Acetaldehyde_baseline, Methanol_baseline, Butanol_baseline, Ethylene_baseline]
odors_labels = [odors_labels[i] for i, sublist in enumerate(odors_raw) for item in sublist] # Flattening
odors_raw = [item for sublist in odors_raw for item in sublist] # Flattening
odors_baseline = [item for sublist in odors_baseline for item in sublist] # Flattening
return odors_raw, odors_baseline, odors_labels
def findDynamicRange(odors_raw):
"""
Finding dynamic range based on the min-max of each of the 72 sensor, across all gases
:param list odors_raw: List of raw data
:return nested list: list of tuples with dynamic range boundaries
"""
nSensors = len(odors_raw[0])
dRange = [[0,0]]*nSensors #(min, max) for each sensor
for i in range(0, len(odors_raw)):
for j in range(0, nSensors): #+1 because 0 is timestamp
if(i==0):
dRange[j] = [odors_raw[i][j], odors_raw[i][j]]
elif odors_raw[i][j] < dRange[j][0]: #new < min
dRange[j][0] = odors_raw[i][j]
elif odors_raw[i][j] > dRange[j][1]: #new > max
dRange[j][1] = odors_raw[i][j]
return dRange
def findBinSpacing(odors_raw, nBins):
"""
Finding bin spacing for discretisation of sensor data
:param list odors_raw: raw sensor data
:param int nBins: number of bins
:return nested list, list: dynamic range andbin spacing
"""
dRange = findDynamicRange(odors_raw)
binSpacing = []
for i in dRange:
interval = i[1]-i[0]
binSpacing.append(round(interval/float(nBins-1), 4))
return dRange, binSpacing
def binData(odorMainUnbinned, binSpacing, dRange, nBins):
"""
Binned data
:param list odorMainUnbinned: raw sensor data
:param list binSpacing: bin spacing
:param list dRange: dynamic range
:param int nBins: number of bins
:return list: binned sensor data
"""
odorMain = []
for i in range(0, len(odorMainUnbinned)):
odorMain.append([])
for j in range(0, len(dRange)):
temp = (odorMainUnbinned[i][j] - dRange[j][0])/binSpacing[j]
temp = np.clip(int(round(temp)), 0, nBins-1)
odorMain[i].append(temp)
return odorMain
def sparsifySingle(odorDense):
"""
Sparsify sensor array recordings by setting a least-dominant fraction to zero
:param list odorDense: non-sparsified sensor recordings
:return list: sparsified sensor recordings
"""
top = [0]*72 # list of most active sensors
odorTemp = copy.deepcopy(odorDense)
cutoff = 36 # number of sensors that make the top list
for i in range(0, cutoff):
m = max(odorTemp)
index1 = odorTemp.index(m)
odorTemp[index1] = 0
top[index1] = m
return top
def sparsifyOdors(odorsDense):
"""
For list of sensor array recordings, sparsify recordings
:param list odorsDense: non-sparsified sensor recordings, for all odours
:return list: non-sparsified sensor recordings, for all odours
"""
odorsSparsified = []
for i in odorsDense:
s = sparsifySingle(i)
odorsSparsified.append(s)
return odorsSparsified
def AddOcclusion(
data = [[]],
n = 1, # number of samples per noise level
pList = [0.5], # mean of bernoulli process
):
"""
Add random noise to fraction of data
:param list data: non-occluded data, defaults to [[]]
:param int n: number of samples per noise level, defaults to 1
:param list pList: mean of bernoulli process
:return list: occluded data
"""
noisy_data = []
l=-1
for i in range(0, len(data)):
ndim = len(data[i]) # dimensionality of data
for j in range(0, n):
for p in pList:
noisy_data.append([])
l+=1
affected_ids = random.sample(range(ndim), int(p*ndim))
for k in range(0, ndim):
if k in affected_ids:
noise_act = random.randint(0, 15) # random destructive interference
noisy_data[l].append(noise_act)
else:
noisy_data[l].append(data[i][k])
return noisy_data
def offset_subtraction(raw, baseline):
"""
Subtract baseline from raw data, which allows a more truthful validation of classification accuracy
:param list raw: odour recordings
:param list baseline: baseline recordings
:return _type_: baseline subtracted odour recordings
"""
return (np.array(raw)-np.array(baseline)).tolist()
def plot_data(odors_raw_training, odors_raw_testing, trainingOdors, testingOdors, odor_labels_training, odor_labels_testing, name, OFFSET_SUBTRACTION, NOISE_LEVEL):
fig, ax = plt.subplots(ncols=2, nrows=1, sharex=True, sharey='col', figsize=(8,5))
match = np.sum(np.array(trainingOdors[0])==np.array(testingOdors[0]))
ax[0].scatter(range(len(odors_raw_training[0])), odors_raw_training[0], c='b', alpha=0.5, label=odor_labels_training[0])
ax[0].scatter(range(len(odors_raw_testing[0])), odors_raw_testing[0], c='r', alpha=0.5, label=odor_labels_testing[0])
ax[1].scatter(range(len(trainingOdors[0])), trainingOdors[0], c='b', alpha=0.5)
ax[1].scatter(range(len(testingOdors[0])), testingOdors[0], c='r', alpha=0.5, label="match: "+str(match) +"/72")
ax[0].set_title("Raw")
ax[1].set_title("Augmented")
ax[0].legend(loc='upper right')
ax[1].legend(loc='upper right')
ax[0].set_ylabel("Value")
ax[0].set_xlabel("Channel")
ax[1].set_xlabel("Channel")
plt.suptitle("Offset subtraction: " + str(OFFSET_SUBTRACTION) + "\n Occlusion: " + str(NOISE_LEVEL))
plt.savefig("visualise_data_" + name + ".svg")
plt.close()
def run(dir_data, dir_pickle_files):
dir_training = str(dir_data.joinpath("training"))
dir_testing = str(dir_data.joinpath("testing"))
# Define experiments
all_experiments = {
"experiment1" : {
"OFFSET_SUBTRACTION": False,
"SEPARATE_TRAIN_TEST": False,
"TIME_SAMPLE_TRAIN": "090",
"TIME_SAMPLE_TEST": "090",
"NOISE_LEVEL": 0.6,
},
"experiment2" : {
"OFFSET_SUBTRACTION": False,
"SEPARATE_TRAIN_TEST": False,
"TIME_SAMPLE_TRAIN": "015",
"TIME_SAMPLE_TEST": "015",
"NOISE_LEVEL": 0.6,
},
"experiment3" : {
"OFFSET_SUBTRACTION": False,
"SEPARATE_TRAIN_TEST": True,
"TIME_SAMPLE_TRAIN": "090",
"TIME_SAMPLE_TEST": "090",
"NOISE_LEVEL": 0.6,
},
"experiment4" : {
"OFFSET_SUBTRACTION": True,
"SEPARATE_TRAIN_TEST": True,
"TIME_SAMPLE_TRAIN": "090",
"TIME_SAMPLE_TEST": "090",
"NOISE_LEVEL": 0.6,
},
"experiment5" : {
"OFFSET_SUBTRACTION": True,
"SEPARATE_TRAIN_TEST": True,
"TIME_SAMPLE_TRAIN": "090",
"TIME_SAMPLE_TEST": "090",
"NOISE_LEVEL": 0,
},
}
# Iterate over experiments
for i, (experiment, params) in enumerate(all_experiments.items()):
OFFSET_SUBTRACTION = params["OFFSET_SUBTRACTION"]
SEPARATE_TRAIN_TEST = params["SEPARATE_TRAIN_TEST"]
TIME_SAMPLE_TRAIN = params["TIME_SAMPLE_TRAIN"]
TIME_SAMPLE_TEST = params["TIME_SAMPLE_TEST"]
NOISE_LEVEL = params["NOISE_LEVEL"]
SAME_BINS = True
VISUALISE_DATA = False
experiment_name = "_noise" + str(NOISE_LEVEL) + "_" + TIME_SAMPLE_TRAIN + "s_" + TIME_SAMPLE_TEST + "s_SO_" + str(OFFSET_SUBTRACTION) + "_controltest" + str(SEPARATE_TRAIN_TEST) + "_samebins" + str(SAME_BINS)
print(i, "multiOdorTest" + experiment_name)
random.seed(1)
# Extract data used in paper
# odors_raw_training, odors_raw_training_baseline, odor_labels_training = loadData(dir="training", time_sample=int(TIME_SAMPLE_TRAIN), n_samples=1)
odors_raw_training, odors_raw_training_baseline, odor_labels_training = loadData(data_dir=dir_training, time_sample=int(TIME_SAMPLE_TRAIN), n_samples=1)
# Subtract Offset
if OFFSET_SUBTRACTION:
odors_raw_training = offset_subtraction(odors_raw_training, odors_raw_training_baseline)
#Binning and sparsification
nBins = 16
dRange_train, binSpacing_train = findBinSpacing(odors_raw_training, nBins)
odorsDense = binData(odors_raw_training, binSpacing_train, dRange_train, nBins)
odors_training = sparsifyOdors(odorsDense)
trainingOdors = []
for odor in odors_training:
trainingOdors.append(copy.deepcopy(odor))
# Testing
nTest = 10
noiseLevels = [NOISE_LEVEL]
# Training and Testing on same datapoints
if not SEPARATE_TRAIN_TEST:
odors_raw_testing, odors_raw_testing_baseline, odor_labels_testing = loadData(data_dir=dir_training, time_sample=int(TIME_SAMPLE_TEST), n_samples=1)
n_occlude = nTest
# Training and Testing on separate datapoints
else:
# print("train & test on separate data")
odors_raw_testing, odors_raw_testing_baseline, odor_labels_testing = loadData(data_dir=dir_testing, time_sample=int(TIME_SAMPLE_TEST), n_samples=nTest)
n_occlude = 1
if OFFSET_SUBTRACTION:
odors_raw_testing = offset_subtraction(odors_raw_testing, odors_raw_testing_baseline)
# Binning and sparsification. IMPORTANT: We use same binning for training & testing as in the original paper when plumes are considered. Tried also to re-do binning, but performance drops.
if SAME_BINS:
binSpacing = binSpacing_train
dRange = dRange_train
else:
dRange_test, binSpacing_test = findBinSpacing(odors_raw_testing, nBins)
binSpacing = binSpacing_test
dRange = dRange_test
odorsDense = binData(odors_raw_testing, binSpacing, dRange, nBins)
odors_testing = sparsifyOdors(odorsDense)
nsensors = len(odors_testing[0])
testingOdors = []
for odor in odors_testing:
testingOdors.append(copy.deepcopy(odor))
# Set occlusion level
if NOISE_LEVEL != 0:
testingOdors = AddOcclusion(testingOdors, n=n_occlude, pList=noiseLevels)
# Cover case of zero occlusion
else:
testingOdors = testingOdors
# wf = open("./pickle_files/multiOdorTest" + experiment_name + ".pi", 'wb')
wf = open(dir_pickle_files.joinpath("multiOdorTest" + experiment_name + ".pi"), 'wb')
pickle.dump(trainingOdors, wf, protocol=2)
pickle.dump(testingOdors, wf, protocol=2)
wf.close()
if VISUALISE_DATA:
plot_data(odors_raw_training, odors_raw_testing, trainingOdors, testingOdors, odor_labels_training, odor_labels_testing, experiment_name, OFFSET_SUBTRACTION, NOISE_LEVEL)
# print("Done")
if __name__ == '__main__':
dir_pickle_files = Path('pickle_files_current')
dir_pickle_files.mkdir(exist_ok=True, parents=True)
run(dir_pickle_files)