-
Notifications
You must be signed in to change notification settings - Fork 1
/
_pkgdown.yml
97 lines (74 loc) · 3.17 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
url: https://blasbenito.github.io/collinear/
template:
bootstrap: 5
fonts:
heading: Montserrat
body: Montserrat
includes:
in_header: |
<link rel="stylesheet" href="extra.css">
authors:
Blas M. Benito:
href: https://blasbenito.com
articles:
- title: "Tutorials"
navbar: "Tutorials"
contents:
- articles/how_it_works
- title: "Blog Posts"
navbar: "Blog Posts"
contents:
- multicollinearity_blog_post
- vif_blog_post
- target_encoding_blog_post
external-articles:
- name: multicollinearity_blog_post
title: "Multicollinearity Hinders Model Interpretability"
description: "This post delves into the intricacies of model interpretation under the influence of multicollinearity, and use R and a toy data set to demonstrate how this phenomenon impacts both linear and machine learning models."
href: https://www.blasbenito.com/post/multicollinearity-model-interpretability/
- name: vif_blog_post
title: "Everything About Variance Inflation Factors"
description: "This post dives deep Variance Inflation Factors (VIF) and their crucial role in identifying multicollinearity within linear models. It uses R code extensively to illustrate various concepts, making it a practical guide for those well-versed in R."
href: https://www.blasbenito.com/post/variance-inflation-factor/
- name: target_encoding_blog_post
title: "Mapping Categorical Predictors to Numeric"
description: "This post focuses on the complexities of dealing with categorical predictors using methods such as one-hot encoding (please don’t) or target encoding, and provides insights into its mechanisms and quirks."
href: https://www.blasbenito.com/post/target-encoding/
reference:
- title: Automated Multicollinearity Management
desc: Tools to automatically select sets of variables with a low multicollinearity.
- contents:
- has_concept("automated_multicollinearity_analysis")
- title: Variance Inflation Factors
desc: Functions implementing VIF-based methods for multicollinearity filtering.
- contents:
- has_concept("vif")
- title: Pairwise Correlation
desc: Functions implementing pairwise correlation-based methods for multicollinearity filtering.
- contents:
- has_concept("pairwise_correlation")
- title: Target Encoding
desc: Tools to transform categorical variables into numeric.
- contents:
- has_concept("target_encoding")
- has_concept("target_encoding_tools")
- title: Preference Order
desc: Rank predictors by their association to a response to preserve important ones during multicollinearity filtering.
- contents:
- has_concept("preference_order")
- has_concept("preference_order_tools")
- has_concept("preference_order_functions")
- title: Modelling Tools
desc: Tools to evaluate models, weight cases, and generate model formulas.
- contents:
- has_concept("modelling_tools")
- title: Example Data
desc: Real and synthetic datasets used throughout the package examples.
- contents:
- has_concept("example_data")
- title: Data Preparation
desc: Internal functions for data preparation and validation.
- contents:
- has_concept("data_validation")
- has_concept("data_types")
- has_concept("data_preparation")