-
Notifications
You must be signed in to change notification settings - Fork 17
/
submit_multilabel_ensemble.py
197 lines (164 loc) · 7.51 KB
/
submit_multilabel_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gc
import os
from datetime import timedelta
from typing import Dict, Any
import cv2
import numpy as np
import torch
import torch.distributed as dist
from fire import Fire
from omegaconf import OmegaConf
from pytorch_toolbelt.utils.distributed import is_main_process
from pytorch_toolbelt.utils import fs
from tqdm import tqdm
from xview3 import *
from xview3.centernet.visualization import create_false_color_composite, vis_detections_opencv
from xview3.constants import PIX_TO_M
from xview3.inference import (
predict_multilabel_scenes,
)
def run_multilabel_predict(config: Dict[str, Any], data_dir: str):
data = XView3DataModule(data_dir)
model, checkpoints, box_coder = ensemble_from_config(config)
checkpoint = checkpoints[0]
normalization_op = build_normalization(checkpoint["checkpoint_data"]["config"]["normalization"])
channels = checkpoint["checkpoint_data"]["config"]["dataset"]["channels"]
# _, _, holdout_df, shore_root = data.train_val_split(
# splitter=checkpoint["checkpoint_data"]["config"]["dataset"]["splitter"],
# fold=checkpoint["checkpoint_data"]["config"]["dataset"]["fold"],
# num_folds=checkpoint["checkpoint_data"]["config"]["dataset"]["num_folds"],
# )
test_scenes = np.array(data.get_test_scenes())
channels_last = config["inference"]["channels_last"]
tile_size = config["inference"]["tile_size"]
tile_step = config["inference"]["tile_step"]
tta_mode = config["ensemble"]["tta"]
submission_dir = config["submission_dir"]
os.makedirs(submission_dir, exist_ok=True)
if config["inference"]["use_traced_model"]:
traced_model_path = os.path.join(submission_dir, "traced_ensemble.jit")
if os.path.exists(traced_model_path):
model = torch.jit.load(traced_model_path)
else:
with torch.no_grad():
if channels_last:
model = model.to(memory_format=torch.channels_last)
print("Using channels last format")
model = torch.jit.trace(
model,
example_inputs=torch.randn(1, len(channels), tile_size, tile_size).cuda(),
strict=False,
)
if is_main_process():
torch.jit.save(model, traced_model_path)
del checkpoints
gc.collect()
prefix = "test_"
suffix = f"_step_{tile_step}_tta_{tta_mode}"
test_predictions_dir = os.path.join(submission_dir, f"{prefix}{suffix}")
os.makedirs(test_predictions_dir, exist_ok=True)
multi_score_test_predictions = predict_multilabel_scenes(
model=model,
box_coder=box_coder,
scenes=test_scenes,
channels=channels,
normalization=normalization_op,
output_predictions_dir=test_predictions_dir,
save_raw_predictions=False,
apply_activation=False,
# Inference options
accumulate_on_gpu=config["inference"]["accumulate_on_gpu"],
tile_size=tile_size,
tile_step=tile_step,
batch_size=config["inference"]["batch_size"],
fp16=config["inference"]["fp16"],
channels_last=channels_last,
# Thresholds
objectness_thresholds_lower_bound=0.3,
max_objects=2048,
)
if is_main_process():
submission_id = fs.id_from_fname(submission_dir)
multi_score_test_predictions.to_csv(
os.path.join(test_predictions_dir, f"{submission_id}{suffix}_unfiltered_predictions.csv"), index=False
)
for thresholds in config["thresholds"]:
objectness_threshold = float(thresholds["objectness"])
vessel_threshold = float(thresholds["is_vessel"])
fishing_threshold = float(thresholds["is_fishing"])
test_predictions = apply_thresholds(multi_score_test_predictions, objectness_threshold, vessel_threshold, fishing_threshold)
test_predictions = test_predictions.drop(
columns=[
"objectness_threshold",
"objectness_p",
"is_vessel_p",
"is_fishing_p",
]
)
test_predictions_fname = os.path.join(
submission_dir,
f"{submission_id}_{prefix}predictions_obj_{objectness_threshold:.3f}_vsl_{vessel_threshold:.3f}_fsh_{fishing_threshold:.3f}{suffix}.csv",
)
test_predictions.to_csv(test_predictions_fname, index=False)
docker_submission_config = {
"ensemble": os.path.join(submission_dir, "traced_ensemble.jit").replace("\\", "/"),
"inference": OmegaConf.to_container(config["inference"], resolve=True),
"thresholds": {
"objectness_threshold": objectness_threshold,
"vessel_threshold": vessel_threshold,
"fishing_threshold": fishing_threshold,
},
}
OmegaConf.save(
docker_submission_config,
os.path.join(
submission_dir,
f"{submission_id}_{prefix}_config_{objectness_threshold:.3f}_vsl_{vessel_threshold:.3f}_fsh_{fishing_threshold:.3f}{suffix}.yaml",
),
)
if False:
for scene_path in tqdm(test_scenes, desc="Making visualizations"):
scene_id = fs.id_from_fname(scene_path)
scene_df = test_predictions[test_predictions.scene_id == scene_id]
image = read_multichannel_image(scene_path, ["vv", "vh"])
normalize = SigmoidNormalization()
size_down_4 = image["vv"].shape[1] // 4, image["vv"].shape[0] // 4
image_rgb = create_false_color_composite(
normalize(image=cv2.resize(image["vv"], dsize=size_down_4, interpolation=cv2.INTER_AREA))["image"],
normalize(image=cv2.resize(image["vh"], dsize=size_down_4, interpolation=cv2.INTER_AREA))["image"],
)
image_rgb[~np.isfinite(image_rgb)] = 0
targets = XView3DataModule.get_multilabel_targets_from_df(scene_df)
centers = (targets.centers * 0.25).astype(int)
image_rgb = vis_detections_opencv(
image_rgb,
centers=centers,
lengths=XView3DataModule.decode_lengths(targets.lengths) / PIX_TO_M,
is_vessel_vec=targets.is_vessel,
is_fishing_vec=targets.is_fishing,
scores=np.ones(len(centers)),
show_title=True,
alpha=0.1,
)
cv2.imwrite(os.path.join(test_predictions_dir, scene_id + ".jpg"), image_rgb)
def main(
*configs,
data_dir=os.environ.get("XVIEW3_DIR", "g:/xview3" if os.name == "nt" else "/home/bloodaxe/data/xview3"),
local_rank=int(os.environ.get("LOCAL_RANK", 0)),
world_size=int(os.environ.get("WORLD_SIZE", 1))
):
if world_size > 1:
torch.distributed.init_process_group(backend="nccl", timeout=timedelta(hours=4))
torch.cuda.set_device(local_rank)
print("Initialized distributed inference", local_rank, world_size)
for config in configs:
run_multilabel_predict(OmegaConf.load(config), data_dir=data_dir)
if world_size > 1:
torch.distributed.barrier()
if __name__ == "__main__":
# Give no chance to randomness
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
Fire(main)