forked from sunset1995/HorizonNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
82 lines (68 loc) · 3.05 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
'''
This script preprocess the given 360 panorama image under euqirectangular projection
and dump them to the given directory for further layout prediction and visualization.
The script will:
- extract and dump the vanishing points
- rotate the equirect image to align with the detected VP
- extract the VP aligned line segments (for further layout prediction model)
The dump files:
- `*_VP.txt` is the vanishg points
- `*_aligned_rgb.png` is the VP aligned RGB image
- `*_aligned_line.png` is the VP aligned line segments images
Author: Cheng Sun
Email : chengsun@gapp.nthu.edu.tw
'''
import os
import glob
import argparse
import numpy as np
from PIL import Image
from misc.pano_lsd_align import panoEdgeDetection, rotatePanorama
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter)
# I/O related arguments
parser.add_argument('--img_glob', required=True,
help='NOTE: Remeber to quote your glob path.')
parser.add_argument('--output_dir', required=True)
parser.add_argument('--rgbonly', action='store_true',
help='Add this if use are preparing customer dataset')
# Preprocessing related arguments
parser.add_argument('--q_error', default=0.7, type=float)
parser.add_argument('--refine_iter', default=3, type=int)
args = parser.parse_args()
paths = sorted(glob.glob(args.img_glob))
if len(paths) == 0:
print('no images found')
# Check given path exist
for path in paths:
assert os.path.isfile(path), '%s not found' % path
# Check target directory
if not os.path.isdir(args.output_dir):
print('Output directory %s not existed. Create one.')
os.makedirs(args.output_dir)
# Process each input
for i_path in paths:
print('Processing', i_path, flush=True)
# Load and cat input images
img_ori = np.array(Image.open(i_path).resize((1024, 512), Image.BICUBIC))[..., :3]
# VP detection and line segment extraction
_, vp, _, _, panoEdge, _, _ = panoEdgeDetection(img_ori,
qError=args.q_error,
refineIter=args.refine_iter)
panoEdge = (panoEdge > 0)
# Align images with VP
i_img = rotatePanorama(img_ori / 255.0, vp[2::-1])
l_img = rotatePanorama(panoEdge.astype(np.float32), vp[2::-1])
# Dump results
basename = os.path.splitext(os.path.basename(i_path))[0]
if args.rgbonly:
path = os.path.join(args.output_dir, '%s.png' % basename)
Image.fromarray((i_img * 255).astype(np.uint8)).save(path)
else:
path_VP = os.path.join(args.output_dir, '%s_VP.txt' % basename)
path_i_img = os.path.join(args.output_dir, '%s_aligned_rgb.png' % basename)
path_l_img = os.path.join(args.output_dir, '%s_aligned_line.png' % basename)
with open(path_VP, 'w') as f:
for i in range(3):
f.write('%.6f %.6f %.6f\n' % (vp[i, 0], vp[i, 1], vp[i, 2]))
Image.fromarray((i_img * 255).astype(np.uint8)).save(path_i_img)
Image.fromarray((l_img * 255).astype(np.uint8)).save(path_l_img)