From 3c5774ab5c5c38de1861be283774ed655eb55d63 Mon Sep 17 00:00:00 2001 From: Joshua Nielsen Date: Wed, 4 Dec 2024 23:36:29 -0700 Subject: [PATCH] add method to find the optimal fitting window (#115) * add method to find the optimal fitting window based on Demos & Sornette 2017 - Lagrange regularisation approach to compare nested data sets and determine objectively financial bubbles inceptions * add sklearn to project deps --- lppls/lppls.py | 107 +++++++++++++ notebooks/lagrange_regularization.ipynb | 193 ++++++++++++++++++++++++ requirements.txt | 3 +- setup.py | 2 +- 4 files changed, 303 insertions(+), 2 deletions(-) create mode 100644 notebooks/lagrange_regularization.ipynb diff --git a/lppls/lppls.py b/lppls/lppls.py index 50545b5..0e35cf7 100644 --- a/lppls/lppls.py +++ b/lppls/lppls.py @@ -7,8 +7,11 @@ from datetime import datetime as date from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime from scipy.optimize import minimize +from sklearn.linear_model import LinearRegression from tqdm import tqdm import xarray as xr +from typing import Any, Dict, Optional +import warnings class LPPLS(object): @@ -634,3 +637,107 @@ def ordinal_to_date(self, ordinal): return date.fromordinal(int(ordinal)).strftime("%Y-%m-%d") except (ValueError, OutOfBoundsDatetime): return str(pd.NaT) + + def detect_bubble_start_time_via_lagrange( + self, + max_window_size: int, + min_window_size: int, + step_size: int = 1, + max_searches: int = 25, + ) -> Optional[Dict[str, Any]]: + + window_sizes = [] + sse_list = [] + ssen_list = [] + lagrange_sse_list = [] + start_times = [] + n_params = 7 # The number of degrees of freedom used for this exercise as well as for the real-world time series is p = 8, which includes the 7 parameters of the LPPLS model augmented by the extra parameter t1 + + total_obs = len(self.observations[0]) + + lppls_params_list = [] + + for window_size in range(max_window_size, min_window_size - 1, -step_size): + start_idx = total_obs - window_size + end_idx = total_obs + obs_window = self.observations[:, start_idx:end_idx] + + start_time = self.observations[0][start_idx] + start_times.append(start_time) + t2 = self.observations[0][end_idx - 1] + + try: + tc, m, w, a, b, _, c1, c2, _, _ = self.fit(max_searches, obs=obs_window) + if tc == 0.0: + continue + + # compute predictions and residuals + Yhat = self.lppls(obs_window[0], tc, m, w, a, b, c1, c2) + residuals = obs_window[1] - Yhat + + # compute SSE and normalized SSE + sse = np.sum(residuals ** 2) + n = len(obs_window[0]) + if n - n_params <= 0: + continue # avoid division by zero or negative degrees of freedom + ssen = sse / (n - n_params) + + window_sizes.append(window_size) + sse_list.append(sse) + ssen_list.append(ssen) + lppls_params_list.append({ + 'tc': tc, + 'm': m, + 'w': w, + 'a': a, + 'b': b, + 'c1': c1, + 'c2': c2, + 'obs_window': obs_window # may be useful later + }) + except Exception as e: + print(e) + continue + + if len(ssen_list) < 2: + warnings.warn("Not enough data points to compute Lagrange regularization.") + return None + + window_sizes_np = np.array(window_sizes).reshape(-1, 1) + ssen_list_np = np.array(ssen_list) + + # fit linear regression to normalized SSE vs. window sizes + reg = LinearRegression().fit(window_sizes_np, ssen_list_np) + slope = reg.coef_[0] + intercept = reg.intercept_ + + # compute Lagrange-regularized SSE + for i in range(len(sse_list)): + lagrange_sse = ssen_list[i] - slope * window_sizes[i] + lagrange_sse_list.append(lagrange_sse) + + # find the optimal window size + min_index = np.argmin(lagrange_sse_list) + optimal_window_size = window_sizes[min_index] + optimal_params = lppls_params_list[min_index] # get LPPLS parameters for optimal window + + # get tau (start time of the bubble) + tau_idx = total_obs - optimal_window_size + tau = self.observations[0][tau_idx] + + return { + "tau": tau, + "optimal_window_size": optimal_window_size, + "tc": optimal_params['tc'], + "m": optimal_params['m'], + "w": optimal_params['w'], + "a": optimal_params['a'], + "b": optimal_params['b'], + "c1": optimal_params['c1'], + "c2": optimal_params['c2'], + "window_sizes": window_sizes, + "sse_list": sse_list, + "ssen_list": ssen_list, + "lagrange_sse_list": lagrange_sse_list, + "start_times": start_times + } diff --git a/notebooks/lagrange_regularization.ipynb b/notebooks/lagrange_regularization.ipynb new file mode 100644 index 0000000..0dcbbff --- /dev/null +++ b/notebooks/lagrange_regularization.ipynb @@ -0,0 +1,193 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../') # Go up one level from 'notebooks' to 'lppls'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated bubble start time (tau): 0.3031674208144796\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/josheejames/projects/lppls/notebooks/../lppls/lppls.py:620: RuntimeWarning: invalid value encountered in log\n", + " return (w / (2.0 * np.pi)) * np.log((tc - t1) / (tc - t2))\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAPdCAYAAABba9tpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5dfG8e+mVwghQOgJPfTelN6LiKKAoBQBRRBBBAUbAj9AxYIgKK9SRAEpAiK9dxBBepNeE3pLLzvvH+uuCUkggZBNwv25rr3YzDwzc3azA+TkPOcxGYZhICIiIiIiIiIiko4c7B2AiIiIiIiIiIg8eZSUEhERERERERGRdKeklIiIiIiIiIiIpDslpUREREREREREJN0pKSUiIiIiIiIiIulOSSkREREREREREUl3SkqJiIiIiIiIiEi6U1JKRERERERERETSnZJSIiIiIiIiIiKS7pSUEhGRLG369OmYTCZ27dqV7JgzZ85gMplsDwcHB3LmzEnLli3Zvn17grHxx5lMJrJnz079+vVZunRpgnEBAQG0bt36vrEZhsGvv/5KnTp1yJ07N25ubhQoUIBmzZrx448/PvC11a9fP1E81sfBgwf55JNPMJlMCY6ZNGkS06dPf+C5rUaPHs2iRYtSPP5Rz5uS71daOXLkCK+88gpFihTBzc0NPz8/KleuzJtvvsmdO3cSjDWbzXzxxRcUL14cd3d3ChcuTNeuXRONs7r3e+Pu7k6FChUYN24cZrP5vnFt2LAh2e/rjh07Eo3/+++/ady4MV5eXvj4+PD8889z6tSpJM89YcIESpUqhaurK4GBgQwfPpyYmJgHvlf3xuTi4kKuXLl46qmn+OCDDzh79uwDz5GcS5cu8cknn7B3796HPkdaOnz4MJ988glnzpxJ1XEjRoygdOnSCb6/169fZ+jQoZQuXRpPT0+yZ89OqVKleOWVV9i/f38aR/4fk8nEJ598kmbns/4d+aC/OzL652Tt2rV4eXlx8eLFhz6HiIikLSWlRERE/tWvXz+2b9/O5s2bGTNmDPv27aNBgwbs2bMnwbgXXniB7du3s3XrViZOnEhISAjPPPNMosTUgwwdOpSXXnqJoKAgfvzxR5YvX87//vc/8uTJw++//56icxQpUoTt27cnehQtWpSePXsmSqpl9KRUetmzZw9VqlTh8OHDfPzxx6xYsYLvv/+eVq1asXLlSm7cuJFg/Lhx4xg8eDDPP/88S5cu5ZNPPuHs2bPcvHkz2WvE/97MmTOH/Pnz8/bbbzN06NAUxTh69OhE39eyZcsmGHP06FHq169PdHQ0c+fOZerUqfzzzz/UqVOHq1evJhg7atQo+vfvz/PPP8/KlSvp06cPo0ePpm/fvil81/6Laf369UyZMoX69eszdepUgoKCmDlzZorPE9+lS5cYPnx4hkpKDR8+PFVJqUuXLvH5558zYsQIHBws/70ODQ2lZs2aTJ8+nZ49e7J48WJmzpzJa6+9xunTpzPM630cMurnpFGjRlSvXp3333//oc8hIiJpzBAREcnCpk2bZgDGX3/9leyY06dPG4AxduzYBNvXrl1rAEbPnj1t2wCjb9++CcadOHHCAIzGjRvbthUuXNho1apVstcMDw83XF1djS5duiS5Py4u7r6vyzAMo169ekaZMmUeOC6+MmXKGPXq1UvxeE9PT6Nr166pusajnDcl36+00KVLF8PT09O4c+dOkvvNZnOCr6tXr27UqFEjxedP6nsTHR1tFClSxPDw8DCio6OTPXb9+vUGYMybN++B13nxxRcNPz8/4/bt27ZtZ86cMZydnY13333Xtu3atWuGm5ub8dprryU4ftSoUYbJZDIOHTp03+vcL6br168blSpVMpycnIz9+/c/MOZ7/fXXXwZgTJs2LdXHPg7z5s0zAGP9+vUpPubdd9818ufPn+C+nTp1qgEY69atS/KYlNzjDwswhg0blmbns/4d+aDvUWb4nMyfP99wdHQ0zp0790jnERGRtKFKKRERkWTUrFkT4IFTTooWLUquXLlSNTUlLCyMqKgo8ubNm+R+a7XFo7h3+l5AQACHDh1i48aNtuk1AQEByR5vMpkICwvjp59+so2vX7++bf/Bgwd59tlnyZEjB25ublSsWJGffvrpgXE96LwAd+/e5Y033sDPz4+cOXPy/PPPc+nSpUTnmjNnDrVq1cLT0xMvLy+aNWuWqLItKdevXydbtmx4eXklG2N8jo6OnD17lsjIyAeeOznOzs5UqVKF8PDwRFVMDyM2NpYlS5bQrl07smXLZtteuHBhGjRowMKFC23bVqxYQWRkJN27d09wju7du2MYxiNVrfn6+jJ58mRiY2P5+uuvbdtPnDhB9+7dKV68OB4eHuTPn59nnnmGAwcO2MZs2LCBatWq2WKxfh6sU8927dpFx44dCQgIwN3dnYCAAF566aVE91p4eDiDBg0iMDAQNzc3fH19qVq1KrNnz04wbteuXbRp0wZfX1/c3NyoVKkSc+fOte2fPn06L774IgANGjSwxXO/6sLo6GimTJlCp06dEty3169fB0jxPX706FFeeukl8uTJg6urK4UKFaJLly5ERUUBcPXqVfr06UPp0qXx8vIid+7cNGzYkM2bNycbW3whISG8/vrrFChQABcXF9v0zdjY2ATjLl26RPv27fH29iZ79ux06NCBkJCQFF3jfjLC5wTgmWeewcvLix9++OGRX5OIiDw6JaVERESSceLECQBy5cp133E3b97k+vXrDxwXn5+fH8WKFWPSpEl89dVXHD16FMMwHirO2NjYBI/kehYtXLiQIkWKUKlSJdt0sPiJi3tt374dd3d3W2+t7du3M2nSJACOHTtG7dq1OXToEOPHj2fBggWULl2abt268fnnn9833vud16pnz544Ozsza9YsPv/8czZs2MDLL7+cYMzo0aN56aWXKF26NHPnzuXnn3/m7t271KlTh8OHD983hlq1ahEcHEznzp3ZuHEjERER9x3/2muvERISQteuXR/YE+p+Tp48iZOTEzly5Hjg2L59++Lk5ES2bNlo1qwZW7ZsSXSuiIgIypcvn+jY8uXLc+LECVsS7eDBgwCUK1cuwbi8efPi5+dn2/+wqlWrRt68edm0aZNt26VLl8iZMyeffvopK1asYOLEiTg5OVGjRg2OHTsGQOXKlZk2bRoAH374oe3z0LNnT8DSy6hkyZKMGzeOlStX8tlnnxEcHEy1atW4du2a7VoDBw7ku+++46233mLFihX8/PPPvPjii7bEEMD69et56qmnuHXrFt9//z2///47FStWpEOHDrakU6tWrRg9ejQAEydOtMXTqlWrZF/7n3/+yfXr12nQoEGC7bVq1QKgS5cuLFq0KEEs99q3bx/VqlVjx44djBgxguXLlzNmzBiioqKIjo4GsE0pHTZsGEuXLmXatGkUKVKE+vXrs2HDhuS/OVgSUtWrV2flypV8/PHHLF++nB49ejBmzBh69eplGxcREUHjxo1ZtWoVY8aMYd68efj7+9OhQ4f7nj+l7P05AXBxcaF27dqpnm4tIiKPib1LtURERB6n1Ezf++yzz4yYmBgjMjLS2L17t1GtWjUDMJYuXWobCxh9+vQxYmJijOjoaOPIkSNGixYtDMCYOHGibdyDpu8ZhmHs3LnTKFSokAEYgOHt7W20bt3amDFjRqLpY0mpV6+e7dj4j86dOxuGYRjDhg0z7v2nPq2m73Xs2NFwdXVNNAWmRYsWhoeHh3Hr1q2HOq/1+9WnT58E2z///HMDMIKDgw3DMIxz584ZTk5ORr9+/RKMu3v3ruHv72+0b9/+vtePjIw02rZta3vPHB0djUqVKhkffPCBceXKlQRjo6Ojjddee80oVqyY4eDgYLzyyisPnHplnb4XExNjxMTEGJcuXTKGDBliAMaLL75432P//vtvo3///sbChQuNTZs2GVOnTjWCgoIMR0dHY8WKFbZxW7duNQBj9uzZic4xevRoAzAuXbpkGIZh9OrVy3B1dU3yeiVKlDCaNm1635hSMqWwRo0ahru7e7L7Y2NjjejoaKN48eLG22+/bduemmlZsbGxRmhoqOHp6Wl88803tu1ly5Y12rZte99jS5UqZVSqVMmIiYlJsL1169ZG3rx5bd/T1E7f++yzzwzACAkJSbRvxIgRhouLi+1zFhgYaPTu3dvYt29fgnENGzY0fHx8En327ic2NtaIiYkxGjVqZDz33HMJ9nHP9L3XX3/d8PLyMs6ePZtg3BdffGEAtumb3333nQEYv//+e4JxvXr1euTpe1b2/JxYffDBB4aDg4MRGhr6wHOJiMjjpUopERGRf7333ns4Ozvj5uZGlSpVOHfuHJMnT6Zly5YJxk2aNAlnZ2dcXFwICgpi27ZtjBgxgj59+qTqetWqVePEiROsWLGC999/n1q1arF27Vq6dOlCmzZtUlQ5VbRoUf76668Ej5EjR6Yqjoexbt06GjVqRMGCBRNs79atG+Hh4YkarKdWmzZtEnxtrQayTsdZuXIlsbGxdOnSJUGVmJubG/Xq1Xtg5YirqysLFy7k8OHDfP3113Ts2JGrV68yatQogoKCbBUaAAMGDGDFihXs3LmT6dOnM3PmTF599VVbxZTZbMbFxYVhw4YluMahQ4dwdnbG2dmZfPny8eWXX9K5c+cHThuqVKkS48aNo23bttSpU4fu3buzbds28ubNy7vvvpto/L1TDZPbl9JxD+vez2tsbCyjR4+mdOnSuLi44OTkhIuLC8ePH+fIkSMpOmdoaCjvvfcexYoVw8nJCScnJ7y8vAgLC0twjurVq7N8+XKGDBnChg0bElW+nThxgqNHj9K5c2dbbNZHy5YtCQ4OTvA9T41Lly5hMpnw8/NLtO+jjz7i3LlzTJ06lddffx0vLy++//57qlSpYptaGB4ezsaNG2nfvv0Dqy2///57KleujJubG05OTjg7O7N27doHvp9LliyhQYMG5MuXL8Frb9GiBQAbN24ELNVk3t7eie6/Tp06pfj9eBB7fk6scufOjdlsTpNpiSIi8mic7B2AiIhIRtG/f39efvllHBwc8PHxITAwMMkf1tu3b8/gwYMxmUx4e3tTtGhRHB0dH+qazs7ONGvWjGbNmgGWPjQvvPACS5YsYfny5YkSYvdyc3OjatWqD3XtR3H9+vUke+Xky5fPtv9R5MyZM8HXrq6uALZkw+XLlwFsfWbuldKeXEFBQQQFBQGWH5bHjRvHwIED+eijj5g7dy4hISFMnjyZzz77jBw5cvDKK6/g4OBA165dcXR05Mcff2Tbtm3ExMQkmuJVtGhRfv31V0wmE25ubgQGBuLh4ZHyNyEeHx8fWrduzffff09ERATu7u629yip9/rGjRuYTCZ8fHwAy/sZGRlJeHh4ohhu3LhBlSpVHiqu+M6dO2f7/oNlSt3EiRN57733qFevHjly5MDBwYGePXs+cLqkVadOnVi7di0fffQR1apVI1u2bJhMJlq2bJngHOPHj6dAgQLMmTOHzz77DDc3N5o1a8bYsWMpXry47fMyaNAgBg0alOS17p3mlVIRERE4Ozsn+3dAnjx56N69u62f16ZNm2jRogX9+/fnpZde4ubNm8TFxVGgQIH7Xuerr77inXfeoXfv3owcORI/Pz8cHR356KOPHpi8uXz5Mn/88QfOzs5J7re+9uvXr5MnT55E+/39/e97/tSw5+fEys3NDSDF5xcRkcdHSSkREZF/FShQIEUJnly5cj22RFDOnDkZMGAAGzZs4ODBgw9MStlLzpw5CQ4OTrTd2ow8qaqRtGQ9//z58ylcuHCanNNkMvH2228zYsQIW4+lM2fOEBcXl6CReOfOnTGZTHTp0gUHBwf++ecfmjRpQvXq1ROcL60ThtYKE2uitGjRori7uydoCG114MABihUrZvvh29pL6sCBA9SoUcM2LiQkhGvXrlG2bNlHim3nzp2EhITQo0cP27ZffvmFLl262Ho0WV27ds2WLLuf27dvs2TJEoYNG8aQIUNs26Oiomz9law8PT0ZPnw4w4cP5/Lly7aqqWeeeYajR4/aPi9Dhw7l+eefT/J6JUuWTOnLTcDPz4/o6GjCwsLw9PR84Pi6devStGlTFi1axJUrV/D19cXR0ZELFy7c97hffvmF+vXr89133yXYfvfu3RTFWL58eUaNGpXkfmuSKGfOnOzcuTPR/rSqKLL358TKuv1x/z0lIiIPpqSUiIiIHcTExHDnzp1EFUGAreohfjVBWnF1dU1VdUBy4xs1asTChQu5dOlSgjhnzJiBh4eHbeXCtIrjXs2aNcPJyYmTJ0/Srl27VB8fHBycZKXXpUuXuHPnjq1yqESJEri4uNim7FmrYTp16oRhGLbKun/++eehX0tK3Lx5kyVLllCxYkVbosnJyYlnnnmGBQsW8Pnnn+Pt7Q1YKlHWr1/P22+/bTu+efPmuLm5MX369ARJqenTp2MymWjbtu1Dx3bjxg169+6Ns7NzgmuaTCZbhZvV0qVLuXjxIsWKFbNtu7cKLv7xhmEkOsePP/5IXFxcsvHkyZOHbt26sW/fPsaNG0d4eDglS5akePHi7Nu3L1Hy417JxZOcUqVKAZbG8/Gbzl++fJlcuXIlqtqLi4vj+PHjeHh44OPjg4uLC/Xq1WPevHmMGjUq2URJUu/n/v372b59e6JptPdq3bo1y5Yto2jRovdtst+gQQPmzp3L4sWLE0zhmzVr1n3PnxIZ6XNy6tQpcubMmWRVmIiIpC8lpURE5Imwbt06zpw5k2j746xECgkJYf78+Ym2BwQE2B4vvvgijRs3pmDBgoSGhrJhwwa++eYbgoKCkq3oeBTlypXj119/Zc6cORQpUgQ3N7dEK7LdO37Dhg388ccf5M2bF29vb0qWLMmwYcNsfWo+/vhjfH19mTlzJkuXLuXzzz8ne/bsD4wjqfOmVEBAACNGjOCDDz7g1KlTNG/enBw5cnD58mV27txpq5xJzmuvvcatW7do164dZcuWxdHRkaNHj/L111/j4ODAe++9B1iWsR85ciTvvfce9evXp0+fPuTJk4fjx48zadIkcufOze3btxk8eDBz587FyenR/2vVqVMnChUqRNWqVfHz8+P48eN8+eWXXL582bZKnNXw4cOpVq0arVu3ZsiQIURGRvLxxx/j5+fHO++8Yxvn6+vLhx9+yEcffYSvry9Nmzblr7/+4pNPPqFnz56ULl06RbEdP36cHTt2YDabuX79On/++SdTpkzhzp07zJgxgzJlytjGtm7dmunTp1OqVCnKly/P7t27GTt2bKJpataKr5kzZxIUFISXlxf58uUjX7581K1bl7Fjx+Ln50dAQAAbN25kypQpiSpoatSoQevWrSlfvjw5cuTgyJEj/Pzzz9SqVcs2XXHy5Mm0aNGCZs2a0a1bN/Lnz8+NGzc4cuQIf//9N/PmzQOwVY393//9H97e3rapl0klkAHq168PwI4dOxIkpX7++WcmT55Mp06dqFatGtmzZ+fChQv8+OOPHDp0iI8//hgXFxfAMjXv6aefpkaNGgwZMoRixYpx+fJlFi9ezOTJk/H29qZ169aMHDmSYcOGUa9ePY4dO8aIESMIDAwkNjb2vt+3ESNGsHr1amrXrs1bb71FyZIliYyM5MyZMyxbtozvv/+eAgUK0KVLF77++mu6dOnCqFGjKF68OMuWLWPlypUP+GQklFE/J1Y7duygXr16adJLTUREHpH9eqyLiIg8ftbV3JJ7nD592rb63tixYx94PsDo27fvA8cVLlw42Wt27drViIqKMr744gujRYsWRqFChQxXV1fDzc3NCAoKMt59913j+vXrD7yGdYW35CS1+t6ZM2eMpk2bGt7e3gZgFC5c+L7X2Lt3r/HUU08ZHh4eBpBg5b4DBw4YzzzzjJE9e3bDxcXFqFChQopWxrrfeZNbLdG6qte9K6ItWrTIaNCggZEtWzbD1dXVKFy4sPHCCy8Ya9asue/1V65cabz66qtG6dKljezZsxtOTk5G3rx5jeeff97Yvn17ovELFy406tWrZ3h5eRkuLi5GqVKljPfff9+4du2aMXfuXMPBwcF48cUXjdjYWMMwHvy9uZ8xY8YYFStWNLJnz244OjoauXLlMp577jlj586dSY7ftWuX0ahRI8PDw8PIli2b0bZtW+PEiRNJjv3mm2+MEiVKGC4uLkahQoWMYcOGGdHR0Q+Myfr+Wx9OTk5Gzpw5jVq1ahnvv/++cebMmUTH3Lx50+jRo4eRO3duw8PDw3j66aeNzZs3G/Xq1Uu0AuTs2bONUqVKGc7OzglWjrtw4YLRrl07I0eOHIa3t7fRvHlz4+DBg0bhwoUTrN44ZMgQo2rVqkaOHDkMV1dXo0iRIsbbb79tXLt2LcF19u3bZ7Rv397InTu34ezsbPj7+xsNGzY0vv/++wTjxo0bZwQGBhqOjo4pWvGtTp06RsuWLRNsO3z4sPHOO+8YVatWNXLlymU4OTkZOXLkMOrVq2f8/PPPic5x+PBh48UXXzRy5sxp+/5069bNiIyMNAzDMKKiooxBgwYZ+fPnN9zc3IzKlSsbixYtMrp27ZroPo7/HlpdvXrVeOutt4zAwEDD2dnZ8PX1NapUqWJ88MEHCVahs77nXl5ehre3t9GuXTtj27ZtqVp9L6N+TgzDME6cOGEAxm+//Xbf1yIiIunDZBgpWNpHRERERESS9Ntvv9GhQwfOnj1L/vz57R2O3MdHH33EjBkzOHnyZJpUNoqIyKNRUkpERERE5BEYhkHt2rWpUqUK3377rb3DkWTcunWLIkWKMGHCBDp37mzvcEREBEjZeskiIiIiIpIkk8nEDz/8QL58+TCbzfYOR5Jx+vRphg4dSqdOnewdioiI/EuVUiIiIiIiIiIiku5UKSUiIiIiIiIiIulOSSkREREREREREUl3WnLCjsxmM5cuXcLb2xuTyWTvcEREREREREREHplhGNy9e5d8+fLh4JB8PZSSUnZ06dIlChYsaO8wRERERERERETS3Pnz5ylQoECy+5WUsiNvb2/A8k3Kli2bnaN5ODExMaxatYqmTZvi7Oxs73BE7E73RMYTFhZGvnz5AMsvAzw9Pe0c0ZNF94RIQronRBLTfSGSUFa4J+7cuUPBggVteY/kKCllR9Ype9myZcvUSSkPDw+yZcuWaW8WkbSkeyLj8fDwYO7cuQDkypULJyf905eedE+IJKR7QiQx3RciCWWle+JBrYr0P3MREcnSnJycePHFF+0dhoiIiIiI3EOr74mIiIiIiIiISLpTpZSIiGRpsbGxLFy4EIDnnntO0/dERERERDII/c88gzObzURHR9s7jGTFxMTg5OREZGQkcXFx9g5HMjBnZ2ccHR3tHYY8gaKiomjfvj0AoaGhSkqJiIiIiGQQ+p95BhYdHc3p06cxm832DiVZhmHg7+/P+fPnH9jATMTHxwd/f399VkRERERERERJqYzKMAyCg4NxdHSkYMGCODhkzPZfZrOZ0NBQvLy8MmyMYn+GYRAeHs6VK1cAyJs3r50jEhEREREREXtTUiqDio2NJTw8nHz58uHh4WHvcJJlnV7o5uampJTcl7u7OwBXrlwhd+7cmsonIiIiIiLyhFMWIYOy9mdycXGxcyQiaceaYI2JibFzJCIiIiIiImJvSkplcOq9I1mJPs8iIiIiIiJipaSUiIiIiIiIiIikO/WUEhGRLM3FxYVp06bZnouIiIiISMagSil5ophMJhYtWpTm561fvz4DBgxI8/OKyKNzdnamW7dudOvWDWdnZ3uHIyIiIiIi/1JSSh6Lbdu24ejoSPPmzVN9bEBAAOPGjUv7oFKgW7dumEwmTCYTzs7OFClShEGDBhEWFnbf4xYsWMDIkSPTKUoRERERERGRzE9JKXkspk6dSr9+/diyZQvnzp2zdzip0rx5c4KDgzl16hT/+9//mDRpEoMGDUpyrHUVOV9fX7y9vdMzTBFJodjYWJYuXcrSpUuJjY21dzgiIiIiIvIvJaUyCcMwCAsLs8vDMIxUxRoWFsbcuXN54403aN26NdOnT080ZvHixVStWhU3Nzf8/Px4/vnnAcs0uLNnz/L222/bKpYAPvnkEypWrJjgHOPGjSMgIMD29V9//UWTJk3w8/Mje/bs1KtXj7///jtVsQO4urri7+9PwYIF6dSpE507d7ZN+bPGMXXqVIoUKYKrqyuGYSSavhcVFcW7775LwYIFcXV1pXjx4kyZMsW2//Dhw7Rs2RIvLy/y5MnDK6+8wrVr11Idq4g8WFRUFK1bt6Z169ZERUXZOxwREREREfmXklKZRHh4OF5eXnZ5hIeHpyrWOXPmULJkSUqWLMnLL7/MtGnTEiS2li5dyvPPP0+rVq3Ys2cPa9eupWrVqoBlGlyBAgUYMWIEwcHBBAcHp/i6d+/epWvXrmzevJkdO3ZQvHhxWrZsyd27d1MV/73c3d1tFVEAJ06cYO7cufz222/s3bs3yWO6dOnCr7/+yvjx4zly5Ajff/89Xl5eAAQHB1OvXj0qVqzIrl27WLFiBZcvX6Z9+/aPFKeIiIiIiIhIZqLV9yTNTZkyhZdffhmwTIULDQ1l7dq1NG7cGIBRo0bRsWNHhg8fbjumQoUKgGUanKOjI97e3vj7+6fqug0bNkzw9eTJk8mRIwcbN26kdevWD/Vadu7cyaxZs2jUqJFtW3R0ND///DO5cuVK8ph//vmHuXPnsnr1attrLlKkiG3/d999R+XKlRk9erRt29SpUylYsCD//PMPJUqUeKhYRUREREREJHMLC4P27R2pXTsnLVvaO5rHT0mpTMLDw4PQ0FC7XTuljh07xs6dO1mwYAEATk5OdOjQgalTp9oSNHv37qVXr15pHueVK1f4+OOPWbduHZcvXyYuLo7w8PBU97RasmQJXl5exMbGEhMTw7PPPsuECRNs+wsXLpxsQgosr8/R0ZF69eoluX/37t2sX7/eVjkV38mTJ5WUEhEREREReQJFRMCzz8LatQ5s316Vfv0gqy8eraRUJmEymfD09LR3GA80ZcoUYmNjyZ8/v22bYRg4Oztz8+ZNcuTIgbu7e6rP6+DgkKi3VfwpdWBZOe/q1auMGzeOwoUL4+rqSq1atYiOjk7VtRo0aMB3332Hs7Mz+fLlS7SE/IO+Dw96fWazmWeeeYbPPvss0b68efOmKlYRERERERHJ/GJjoX17WLsWvLwM3ntvJ+7utewd1mOnnlKSZmJjY5kxYwZffvkle/futT327dtH4cKFmTlzJgDly5dn7dq1yZ7HxcWFuLi4BNty5cpFSEhIgsTUvf2cNm/ezFtvvUXLli0pU6YMrq6uD9U83NPTk2LFilG4cOFECamUKFeuHGazmY0bNya5v3Llyhw6dIiAgACKFSuW4JEZEo8iIiIiIiKSdgwD3noLliwBNzf4/fc4SpW6ae+w0oWSUpJmlixZws2bN+nRowdly5ZN8HjhhRdsq88NGzaM2bNnM2zYMI4cOcKBAwf4/PPPbecJCAhg06ZNXLx40ZZUql+/PlevXuXzzz/n5MmTTJw4keXLlye4frFixfj55585cuQIf/75J507d36oqqxHFRAQQNeuXXn11VdZtGgRp0+fZsOGDcydOxeAvn37cuPGDV566SV27tzJqVOnWLVqFa+++mqiZJyIiIiIiIhkbV9+Cd99ByYTzJoFdeoYDz4oi1BSStLMlClTaNy4MdmzZ0+0r127duzdu5e///6b+vXrM2/ePBYvXkzFihVp2LAhf/75p23siBEjOHPmDEWLFrX1bgoKCmLSpElMnDiRChUqsHPnTgYNGpTgGlOnTuXmzZtUqlSJV155hbfeeovcuXM/3hedjO+++44XXniBPn36UKpUKXr16kVYWBgA+fLlY+vWrcTFxdGsWTPKli1L//79yZ49Ow4OuiVF0pqLiwvffvst3377LS4uLvYOR0RERETEZv58GDzY8vyrr+C55+wbT3ozGfc26pF0c+fOHbJnz87t27fJli1bgn2RkZGcPn2awMBA3Nzc7BThg5nNZu7cuUO2bNmUUJEHyiyf60cRExPDsmXLaNmy5UNN/xTJanRPiCSke0IkMd0X8qQ6dAiqV4fwcOjXD775xlItlRXuifvlO+JTFkFEREREREREJB3duQPPP29JSDVpAl9/bUlIPWm0+p6IiGRpcXFxbN68GYA6derg6Oho54hERERE5ElmGNC9O/zzDxQsaOkj9aT+F1VJKRERydIiIyNp0KABAKGhoVrlUkRERETs6uuvYcECcHaGefPAz8/eEdmPpu+JiIiIiIiIiKSD/fthyBDL83HjoEYNu4Zjd0pKiYiIiIiIiIg8ZlFR8MorEBMDzz4Lb7xh74jsT0kpYNOmTTzzzDPky5cPk8nEokWLHnjMxo0bqVKlCm5ubhQpUoTvv//+8QcqIiIiIiIiIpnS8OGWSik/P/i//3syG5vfS0kpICwsjAoVKvDtt9+maPzp06dp2bIlderUYc+ePbz//vu89dZb/Pbbb485UhERERERERHJbLZtg88+szz/v/+D3LntG09GoUbnQIsWLWjRokWKx3///fcUKlSIcePGARAUFMSuXbv44osvaNeu3WOKUkREREREREQym9BQ6NIFzGbLn889l/zYkJAQRo8ejbe3Ny1btky/IO1ESamHsH37dpo2bZpgW7NmzZgyZQoxMTE4OzsneVxUVBRRUVG2r+/cuQNATEwMMTExCcbGxMRgGAZmsxmz2ZzGryDtGIZh+zMjxykZg9lsxjAMYmJicMyia55a7+V772mxn/jfi6T+vpXHS/eESEK6J0QS030hWd2gQQ6cPOlIgQIGX3wRy/0+6qtXr2bChAkUKVKEDz74IP2CTGMpvZ+VlHoIISEh5MmTJ8G2PHnyEBsby7Vr18ibN2+Sx40ZM4bhw4cn2r5q1So8PDwSbHNycsLf35/Q0FCio6PTLvjH5O7du/YO4bE4d+4cFSpUYNOmTZQrV87e4WR60dHRREREsGnTJmJjY+0dzmO1evVqe4cg/4qJiaFr164ArFmzJtlfHMjjpXtCJCHdEyKJ6b6QzOTWrVvs3LmTevXq4erqmuy4PXtyMXlybQB69drOtm1X73ven3/+GYCyZctm6nsiPDw8ReOUlHpIpns6klkrhu7dHt/QoUMZOHCg7es7d+5QsGBBmjZtSrZs2RKMjYyM5Pz583h5eeHm5paGkactwzC4e/cu3t7emEwmunfvzq1bt1i4cGGS44sUKcLZs2cBcHd3p0iRIvTt25fXX38dgOnTp9OjRw/beH9/f55++mk+/fRTAgMDbefo378//fv3T/Iav/32G1988QVHjx7FbDZTqFAhmjVrxhdffJHs60iqauepp55i/fr1XLx4ET8/P5ycnNiwYQONGjXi+vXr+Pj4pOg9kv9ERkbi7u5O3bp1M/Tn+lHExMSwevVqmjRpouRHBvLss8/aO4Qnlu4JkYR0T4gkpvtCMqNXXnmFOXPmEBERweTJkwFLsYaLi4stSXXzJvTpY0m79O0bx9Ch1R543kGDBgFQrly5TH1PWGeGPYiSUg/B39+fkJCQBNuuXLmCk5MTOXPmTPY4V1fXJDOozs7OiT5ocXFxmEwmHBwccHDIuP3orVP2rLGaTCbb8+SMGDGCXr16ERoayvTp0+nTpw++vr506NABBwcHsmXLxrFjxzAMg6NHj/L666/Ttm1b9u7da0seJXeNNWvW0KlTJ0aPHk2bNm0wmUwcPnyYtWvXPvB9nDZtGs2bN7d97eLigrOzM/ny5bNts54jo39fMirrZySpz3xW8yS8RpHU0D0hkpDuCZHEdF9IZhEbG8uKFSsAy8+RXbt2pVixYpQrV46goCC2bNmCyWTi7bfh0iUoUQI+/9wRZ+fkW5gYhsHFixc5ceIEDg4OlC5dOlPfEymNW0mph1CrVi3++OOPBNtWrVpF1apVH9sHxjAghdVvac7DI22XqvT29sbf3x+A//3vf8ydO5dFixbRoUMHwJJwsu7Pmzcvw4YN4+WXX+bEiROULFnyvudesmQJTz/9NIMHD7ZtK1GiBG3btn1gXD4+PrbrWp05c4bAwED27NmDj48PDRo0ACBHjhwAdO3alenTp6fodYuIfcTFxfH3338DULly5Szbz0xERERE0sf27du5ffu27es33niDTp06cfPmTbZt28batWsJCanLrFkuODjAjBmWn6vjO336NK+99hp169alfv36dOzYkUuXLgGW/7N6enqm50uyGyWlgNDQUE6cOGH7+vTp0+zduxdfX18KFSrE0KFDuXjxIjNmzACgd+/efPvttwwcOJBevXqxfft2pkyZwuzZsx9bjOHh4OX12E5/X6Gh8DjvBzc3t/s2QXN3dwdS1ijN39+fWbNmcfDgQcqWLZtmMQIULFiQ3377jXbt2nHs2DGyZctmi01EMq7IyEiqV68OWP6+f1L+gRcRERGRx2PZsmUAtGrViu3bt3PkyBFGjRpl29+//6ccOVIZ8OX996FGjYTH37x5k5YtW3L06FHWrFmDk5NTgp67devWTY+XkSFo/hGwa9cuKlWqRKVKlQAYOHAglSpV4uOPPwYgODiYc+fO2cYHBgaybNkyNmzYQMWKFRk5ciTjx4+nXbt2dok/s4qNjWX69OkcOHCARo0aJTnmwoULjB07lgIFClCiRIkHnrNfv35Uq1aNcuXKERAQQMeOHZk6dWqCVQ+T89JLL+Hl5WV7LFq0KMF+R0dHfH19AcidOzf+/v5kz579wS9UREREREREsozly5cDlp8hBwwYAFh+Eeri4gLA4cNvYxi+wN8MHhyZ6Pg333yTo0eP2n6+jI2NpUKFCrb9jRs3frwvIANRpRRQv359W6PypCQ1PatevXq26SDpwcPDUrFkD/eWGT6q9957jw8//JCoqChcXFwYPHiwrdE5wO3bt/Hy8sIwDMLDw6lcuTILFiyw3eD34+npydKlSzl58iTr169nx44dvPPOO3zzzTds37490SqH8X399dcJbv68efNy9er9V0YQERERERGRJ8eBAwfYt28fJpOJZs2a4eTkxBdffMGdO3d4/vnnOXSoJgcOtAIigVc4dmw61ar91+A8LCyMBQsWAPDHH38QHBzMpk2bGDZsGBcvXmTPnj00atTIlvjK6pSUyiRMpsc7hS49DR48mG7duuHh4UHevHkTrVjo7e3N33//jYODA3ny5HmoqTZFixalaNGi9OzZkw8++IASJUowZ84cunfvnuwx/v7+FCtWLME2JaVEREREREQELM3I33zzTQCef/55/Pz8APj888/53//+x0svfUCnTqUBKFZsOidOHGb37t0JklKrV68mMjKSgIAAatWqhclkss268vX1pVy5cilqXZNVKCkl6c7Pzy9R8ic+BweH++5PrYCAADw8PAgLC3vkc1mrteLi4h75XCIiIiIiIpJ5zJgxg02bNuHu7s5XX31l2/7666/Ts+frNGgAYWFQpw7Urn2ezz7DNsNq7dq1zJkzh+DgYACeffbZRAUaTyIlpSTN3b59m7179ybYZm0an1YuXryY6BqFChVi/PjxhIeH07JlSwoXLsytW7cYP348MTExNGnS5JGvW7hwYUwmE0uWLKFly5a4u7vjZa8O9CIiIiIiIvLYxcbGsnXrVlvbmQ8//DDRz7dffw2bN1sWKJs+Hf7+29Kz2pqU6t+/P4cOHbKNb9OmTfoEn8Gp0bmkuQ0bNtgax1sf1qbxaeWLL75IdI3FixdTr149Tp06RZcuXShVqhQtWrQgJCSEVatWUbJkyUe+bv78+Rk+fDhDhgwhT548ttJNERERERERyXpmzJiBh4cH9evXJyoqimeeeYb33nsvwZiDB+GDDyzPv/4aihSBypUrA5YeVKdOnUqQkPLx8aFOnTrp9hoyMlVKSZqaPn16ko3hrc6cOXPf47t160a3bt3uO+ZB52jQoMF99ycluUb3AQEBifZ99NFHfPTRR6m+hojYh7OzM8OGDbM9FxERERFJicjISIYMGWLr8dSsWTNmz56No6OjbUx0NHTpYvmzVSvo0cOyPTAwkOzZs3P79m3bVL9y5cpRvnx5mjZtqv+X/ktJKRERydJcXFz45JNP7B2GiIiIiGQy06dPJzg4mAIFCvDPP//g7u6eaMzIkbBnD/j6wg8/WBYpAzCZTFStWpW1a9fyf//3fwC8+OKLKnC4h6bviYiIiIiIiIjEExMTw2effQbAu+++m2RCavt2GD3a8vz77yFv3oT7hw4dajsXQPPmzR9fwJmUklIiIpKlmc1mDh06xKFDhzCbzfYOR0REREQygdmzZ3PmzBly585Nz549E+2/cwc6dwazGTp1ghdfTHyORo0a8c477wCWVeirVKnyuMPOdDR9T0REsrSIiAjKli0LQGhoKJ6ennaOSERERCRjiImJYfbs2TRr1ow8efLYO5wMIy4ujtH/lkANHDgwySqpt96C06ehcGGYODH5c40aNQpvb29q1KiBg4Pqgu6ld0REREREREQkE7t58yZ9+/alWbNmXL58OcXH9ejRg65duzJkyJDHGF3ms3DhQo4dO4aPjw9vvPFGov1z58JPP4GDA/z8M/j4JH8uV1dXhg0bpql7yVBSSkRERERERCSTCgkJoWzZskyaNIlVq1bx7rvvsnfvXubNm3ff465fv87PP/8McN8V1J9Ec+bMAeCNN94gW7ZsCfadPw+vv255PnQo1KmT3tFlLUpKiYiIiIiIiGRSv/76K5cuXSJfvnwAzJgxg0qVKtG+fXv++uuvZI8bP3687bnP/Up9njBms5n169cD0Lp16wT74uKgSxe4dQuqVYNhw+wQYBajpJSIiIiIiIhIJrVhwwYA+vfvT48ePRLs27t3b7LH/fDDD7bnt27d4saNG48jvExn//79XL9+HS8vL6pVq5Zg39ixsGEDeHrCzJng7GyfGLMSJaVEREREREREMiGz2cymTZsAqF+/Pl988QVvvvkmuXLlAuDYsWNJHhcREUFwcDCArYn3iRMn0iHijG/dunUA1K1bF+d4WaeNG+HDDy3Px4+H4sXtEV3Wo6SUZDqffPIJFStWzDLXsYes/NpERERERJ4UBw4c4ObNm3h5eVG5cmV8fHyYMGECw4cPB+Do0aNJHnfx4kUAPDw8bNVAx48fT5+gMzhrUqphw4a2bSEh0LGjZfreK69A9+72ii7rUVJK0tz58+fp0aMH+fLlw8XFhcKFC9O/f3+uX7+e6nOZTCYWLVqUYNugQYNYu3ZtGkX7aH777Tdq1KhB9uzZ8fb2pkyZMrzzzju2/Wmd/OnWrRtt27a97xiTyXTfR7du3TLUeyjyuDk7OzNo0CAGDRqU4LddIiIiIpmddepenTp1cHJysm0vVaoUkHxS6sKFCwAUKFCA4v+W/KhSCu7evcvGjRuB/5JScXHQqZMlMVWmDHz3HZhM9owya3F68BCRlDt16hS1atWiRIkSzJ49m8DAQA4dOsTgwYNZvnw5O3bswNfX95Gu4eXlhZeXVxpF/PDWrFlDx44dGT16NG3atMFkMnH48OHHkuyJi4vDlMK/+axluGBZNeLjjz9OULbr7u6eYd5DkfTg4uLC2LFj7R2GiIiISJqzJqXq16+fYLs1KXX69GmioqJwdXVNsD9+UqpYsWKAklIAI0eOJDQ0lGLFilGhQgXAMmVv/XpLH6l58yx/StpRpVQmExYWluwjMjIyxWMjIiJSNDa1+vbti4uLC6tWraJevXoUKlSIFi1asGbNGi5evMgHH3xgGxsQEMDIkSPp1KkTXl5e5MuXjwkTJiTYD/Dcc89hMplsX99bfWStHho9ejR58uTBx8eH4cOHExsby+DBg/H19aVAgQJMnTo1QazvvfceJUqUwMPDgyJFivDRRx8RExOT4te6ZMkSnn76aQYPHkzJkiUpUaIEbdu2tb2G6dOnM3z4cPbt22erUrIutfrVV19Rrlw5PD09KViwIH369CE0NNR27unTp+Pj48OSJUsoXbo0rq6udO/enZ9++onff//ddj7rP0Lx+fv72x7Zs2fHZDIl2pZW7+HFixfp0KEDOXLkIGfOnDz77LOcOXMmxe+hiIiIiIg8POvqek899VSC7f7+/nh7e2M2m5NMNiVVKXX8+HFu3rz5mCPOmG7cuMGMGTMYN24cAOPGjcPBwYGZM+HTTy1jfvgBgoLsF2NWpaRUJmOtcEnq0a5duwRjc+fOnezYFi1aJBgbEBCQ5LjUuHHjBitXrqRPnz62ZnlW/v7+dO7cmTlz5mAYhm372LFjKV++PH///TdDhw7l7bffZvXq1cB/f8FOmzaN4ODg+y5num7dOi5dusSmTZv46quv+OSTT2jdujU5cuTgzz//pHfv3vTu3Zvz58/bjvH29mb69OkcPnyYb775hh9++IGvv/46xa/X39+fQ4cOcfDgwST3d+jQgXfeeYcyZcoQHBxMcHAwHTp0AMDBwYHx48dz8OBBfvrpJ9atW8e7776b4Pjw8HDGjBnDjz/+yKFDhxg/fjzt27enefPmtvPVrl07xfE+SGrfw/DwcBo0aICXlxebNm1iy5YteHl50bx5c6Kjo9MsLpFHZTabOXPmDGfOnMFsNts7HBEREZE0cf36dVtvqPLlyyfYZzKZbNVSSTU7T6pS6s8//8TX1/eJqzD//fffKVq0KF27diUmJoZWrVrRqlUrdu4E62KGQ4bASy/ZN86sSkkpSTPHjx/HMAyCkkkfBwUFcfPmTa5evWrb9tRTTzFkyBBKlChBv379eOGFF2yJIeuKET4+Pvj7+9u+Toqvry/jx4+nZMmSvPrqq5QsWZLw8HDef/99ihcvztChQ3FxcWHr1q22Yz788ENq165NQEAAzzzzDO+88w5z585N8evt168f1apVo1y5cgQEBNCxY0emTp1KVFQU8N80OScnJ1uVkjVZN2DAABo0aEBgYCANGzZk5MiRia4dExPDpEmTqF27NiVLliR79uy4u7vj6upqO5+Li0uK432Q1L6Hv/76Kw4ODvz444+UK1eOoKAgpk2bxrlz55Ks4BKxl4iICAIDAwkMDExUJSoiIiKSWR04cACAIkWK4O3tnWj//fpKxU9KFS1aNMG+xYsXp3WoGdbixYtp27Ytt27dokSJEgwePJhffvmFixehbVuIioJnnoFRo+wdadalnlKZTPwpXvdydHRM8PWVK1eSHevgkDAfmR5TrqwVUvF7I9WqVSvBmFq1atlKJlOjTJkyCV5Tnjx5KFu2rO1rR0dHcubMmeA9mT9/PuPGjePEiROEhoYSGxtLtmzZUnxNT09Pli5dysmTJ1m/fj07duzgnXfe4ZtvvmH79u14eHgke+z69esZPXo0hw8f5s6dO8TGxhIZGUlYWBie/05SdnFxSfQbj8cpte/h7t27OXHiRKJ/ACMjIzl58mT6BC0iIiIi8oTat28fkLhKyiqlSSkvLy8aNWpk6437JPWW+vXXXwHo2LEjP/30Ey4uLty6BS1aQHCwpbH5zJngoHKex0ZJqUzGMxVd1R7X2OQUK1bM1uw7qRXijh49So4cOfDz87vveVLa0Du+e1fUMplMSW6zTt3ZsWMHHTt2ZPjw4TRr1ozs2bPz66+/8uWXX6b62kWLFqVo0aL07NmTDz74gBIlSjBnzhy6J7NO6NmzZ2nZsiW9e/dm5MiR+Pr6smXLFnr06JGgp5W7u/tDvRcPK7XvodlspkqVKsycOTPRue5X1SYiIiIiIo9u//79QPJJKeu0vFOnTiXaFz8pBbB69Wpu375Njhw5CAkJ4caNG4+8QNX9REREsGTJEg4fPszTTz9No0aNHtu17mfbtm0A9OzZExcXFyIioE0bOHAA/P3hjz8giSI0SUNKSkmayZkzJ02aNGHSpEm8/fbbCfpKhYSEMHPmTLp06ZIg0bJjx44E59ixY4ctow+WRElcXFyax7p161YKFy6coPH62bNnH/m8AQEBeHh42JrEu7i4JIp/165dxMbG8uWXX9oqk1I6bTCp89lL5cqVmTNnDrlz505VhZmIiIiIiDy6ByWl8ufPD2DrO2UVHR3N5cuXgf+SUiaTCR8fHwoVKsS5c+c4dOgQderUeVyh069fP6ZMmQKAk5MT8+fP59lnn31s14vv+PHjDBo0iC5dunD27FkcHByoXr06sbGWvlGbN0O2bLBiBQQGpktITzQVoUma+vbbb4mKiqJZs2Zs2rSJ8+fPs2LFCpo0aUL+/PkZdc9k3K1bt/L555/zzz//MHHiRObNm0f//v1t+wMCAli7di0hISFpuhJEsWLFOHfuHL/++isnT55k/PjxLFy4MFXn+OSTT3j33XfZsGEDp0+fZs+ePbz66qvExMTQpEkTW/ynT59m7969XLt2jaioKIoWLUpsbCwTJkzg1KlT/Pzzz3z//fcpumZAQAD79+/n2LFjXLt2LVWrBaa1zp074+fnx7PPPsvmzZs5ffo0GzdupH///rbfvIiIiIiISNqLjY21Lbj0oKTUpUuXEiw2denSJcDyC+97Z7GUKVMGgMOHD6d5zPHt2bMHsPxcFhsby4svvsiuXbuSHBs/9rQwaNAgFi9eTKdOnQAoV64c7u7edOsGv/8Orq6weDFUqJCml5VkKCklaap48eLs2rWLokWL0qFDB4oWLcprr71GgwYN2L59e6IS0HfeeYfdu3dTqVIlRo4cyZdffkmzZs1s+7/88ktWr15NwYIFqVSpUprF+eyzz/L222/z5ptvUrFiRbZt28ZHH32UqnPUq1ePU6dO0aVLF0qVKkWLFi0ICQlh1apVlCxZEoB27drRvHlzGjRoQK5cuZg9ezYVK1bkq6++4rPPPqNs2bLMnDmTMWPGpOiavXr1omTJklStWpVcuXIlaNye3jw8PNi0aROFChXi+eefJygoiFdffZWIiAhVTomIiIiIPEYnTpwgMjISDw+PRI3KrfLlywdYKqOuXbtm2x5/6t697UKsSalDhw49jrBtrLNU5s6dS5s2bYiJiWHgwIEJElA7d+6kbdu2eHl5MWTIkDS57rFjx2yN3K0rhteo8TSdO1t6Rzk5wa+/Qr16aXI5SQlD7Ob27dsGYNy+fTvRvoiICOPw4cNGRESEHSJLubi4OOPmzZtGXFxcqo8tXLiw8fXXX6d9UJJhZZbP9aOIjo42Fi1aZERHR9s7FPlXaGioARiAERoaau9wnji6J0QS0j0hkpjui9R75513DMCoU6fOfcflypXLAIy9e/fats2aNcsAjLp16yYaP3XqVAMwGjZsmOYxW929e9f2f7Pbt28b58+fN9zc3AzAWLRokWEYhvH7778brq6utnHFihVLk2u/9tprBmA4Ojr+e25no2rVswYYhrOzYfx7ebvLCvfE/fId8alSSkREsjQnJyf69OlDnz59cHJSK0URERHJ3KztRwDef//9+469t6+UYRj83//9HwClS5dOND41lVLHjh2jd+/eqV7J3Vol5ePjQ7Zs2ShQoABvv/02AB999BH79+/n+eefJyoqiqCgICDxFMSHYTabbYs0Wd4DX2AFu3YVwtUVFi2CdGprJfEoKSUiIlmaq6srEydOZOLEibi6uto7HBEREZGHYhgGkyZNokmTJsTExNCsWTOaN29+32PuTUrNnz+fDRs24ObmluSUOGui6vLly7Rv357g4OBkzz1hwgQmT56c4v64VtakVEBAgG3bu+++i7u7OwcOHKBbt27ExcXRokULdu7cCUB4eDi3bt1K1XXudeHCBcLCwnB2dqZWrS7kzXsaaIiXl2WVvZYtH+n08pD0K2Oxm9Rm1EVERERERJ5UW7ZsoW/fvgDkypWLcePGPfAYf/9CQABbtzpx+fJpPv10FzCEqlVb8v33hTGZwNERvL3Bxwd8fLx44YUvmT9/LPPmzcff399WlXWvc+fOAXDq1KlUvQ5rUqpw4cK2bT4+Prz00ktMnTrV1gT9o48+wsvLC19fX27cuMHFixfJkSNHqq4V3/HjxwHIk6cLTz/txI0b2ShUCJYsgXLlHvq08oiUlBIRkSzNMAxbc08/P79EDT1FREREMgNrsqZevXosWbIELy+vBPtjYmDXLti8Gfbsgf374ejRbwEHfvrJOuozALZssTySNvDfRxRTp17j5EnLSnQVKkDFilCsmCWRZa2+siaZUspanBA/KQXQu3dvpk6dCkDlypWpWbMmYKn2sialypYtm6prxXf48CngKy5csEwVrF7dstqev/9Dn1LSgJJSGdyjzpsVyUjMZrO9Q5AnUHh4OLlz5wYgNDQUT09PO0ckIiIikjSz2czVq1fJkycPX3/9NdOmTWPu3LmUKlWKgwcPAvD000/bElIXL1oSK4sXW5JR4eH3ntEBiATOAefJkQNataqDr68LDg5gGBAbC3fvwq1bcP06nD8PFy4YmM2uhIXlZ9kyWLbsvzN6eECNGnDsWGcgJ6dOnUzVa0yqUgqgatWqVKtWjb/++ou33nrL9ovE/Pnzc+DAAVsS7GHs2gUjR7YELNMZ33wTPv8c3N0f+pSSRpSUyqCcnZ0xmUxcvXqVXLlyZdjf7JvNZqKjo4mMjMTBQS3KJGmGYRAdHc3Vq1dxcHDAxcXF3iGJiIiIiNjd3LlzWbFiBTdv3mTixImMHTuWcePG0aZNGxYvXgzA22+/zfLly23Nx4sUqcTkyTB9OuzYkfB8OXNC3bqWKqDy5eH69fV06dLQtn/ixFm89NKD/y++a9d+qlV7luzZKzJmzCL27oV9+yzVV+HhsH49WCuqrl2Lo2JFM3XrOlC3ruX6//4+MEnJJaVMJhO//fYbf/75J+3atbNtL1CgAGDpCZVSPXr0YOfOnUyaNJ8ZM0oyZQoYRn7gCm+88RcTJrRK8bnk8VJSKoNydHSkQIECXLhwIUP3XjIMg4iICNzd3TNs4kwyDg8PDwoVKqQEpoiIiIg88Xbv3k2HDh1sXxcrVozZs2cD2BJSACtWrGDt2rXs2+cI/ESfPs8RFfXfeWrVgueeg+bNoUwZiP9f7QMH/GzPHRwcaNasWYpiCwjID5zl9u2zvPpqlG2xmLg4OHoUli69yXvvLQbqAEXYt8+StJowwXJ8UJAlOVWvnuWRL99/506q0blVwYIFKViwYIJt9zZrf5CTJ08ydeoSoB/16vljnXyULdvv3LnzOs8//0uKziPpQ0mpDMzLy4vixYsTExNj71CSFRMTw6ZNm6hbty7Ozs72DkcyMEdHR5ycnJS8FBEREREBW/+k3Llzc+XKFSZPnszdu3dxd3fH19eXKlWqkC9ffr7//gytW3sQGbkJgKgoKF0aevSAjh0TJnzuZU3oAFSqVAlfX98UxZYzZ05cXV2Jiori0qVLBAYGApZeUmXKQGjoP0C3f0fn5f33l3HnTkU2bbJUUx05YnlMnmwZUbSoJTlVu3Y0wcGWnxvvrZR60Gt4UFLKbLZUjvXvfws4C7j9m5DaTa5c/+Pq1UUAFC9ePEXXlfShpFQG5+joiKOjo73DSJajoyOxsbG4ubkpKSUiIiIiIpICkZGRzJo1C4CJEyfSqVMn7t69C0CTJk1YuHARa9bAkCGxgDORkQAxZM++gpUrn6F6dUjJ73rjr1ZXsWLFFMdnMpnInz8/p06d4uLFi7aklNWlS5fifRVMoUJ/8vrrlvPfuGHpb7VxI2zaZGm6fvKk5TF1qgtwFpPpHAMG5KRiRcvKd+XLWxqOJ/Wa7peUunoVtm+HDRvgl18iuXrVDagCQEDAZWrW3MT69QO4fNkSr6ura6JKLLEvJaVERERERERE0tHvv//OrVu3KFiwIM899xz169dn9erVAJQu/TING5rYuBHAGSenKGJjJwDf0KxZbWrUeCbF1zGZTNSoUYM///yTvn37pirG+Empe927Lf4KfL6+8OyzlgfA7duwdaslSTV16gmuXSuMYRRi5kyYOfO/c+TMaVnZr0ABy8PXF7y84ObN8kAf/vnHjxEjLM3dT5+2JLlOnYofhRtwB1iMi8t09u5dQPbsL7JyZTaaN28OWJJSaiWSsSgpJSIiIiIiIpKOfv/9dwBeeeUVHB0dadOmDatX7wVG8dlnL2AY4OoKb7wBbdqcpGHDwQCULVs21ddasmQJ169fp2TJkqk67n4Nxq2VUo6OjsTFxd23D7KjYyjvv/800dHRXL9+FPDg22//5saNEhw4AAcOwD//WFb+u34d/vwzUSTARMLDYdiwxOcvXRpq1DAzbVo7YAUQycsvv0r27NkAaNq0KSaTCcMw8Pf3T9V7II+fklIiIpKlOTk50bVrV9tzEREREXuzrqRXq1YtzGaIjHwZk+kVDCM7hgGdOsGnn4JlpllpmjdvzooVK6hbt26qr+Xn54efn9+DB97jftPmrNsqVqzI7t27E1RK3Wvbtm3s27fP9nWHDq3p27dEgjEREZYG6mfOwIULlsft2xAWBqGhBosXL8BsDqdjx2cpUSIbgYEQEAAVKkCOHHDpUgjTpi3CZDKxe/ffBAUF2c5tMpk4ePAgb731FkOHDk31+yCPl/53LiIiWZqrqyvTp0+3dxgiIiIiAMTFxXHs2DEA3NzK0bAhbNzoA0ClSmYmTHDgqacSHjNv3jyOHTtGlSpV0i3O5CqlDMOwVUrVrl2b3bt3c+LECcLCwvD09Ex0nj179tiev/LKK3z22WeJxri7Q6VKlkdiJooWfZdTp07x7LOz6dixY6IR1njy5ctHpSROUrp0adasWZPsaxX70WRKERERERERkXRy9uxZoqKicHJ6k2eeKcTGjeDhAV99BX/9lTghBZaV2dMzIQVJV0otXLiQHDly2BI8derUwWQyceXKFYoVK8bevXsTnce6bcyYMcyYMYO8efOmOpbWrVsD0KNHD3bu3Jlof/yklGQuSkqJiEiWZhgGYWFhhIWFYVjWBRYRERGxmx07TgK/Exs7gchIE40bw8GD8PbbkJEWXk8qKfXdd99x+/Zt29flypVjzpw5FCpUiJCQEGbPnp3oPNakVGpW/7vX2LFjadq0KeHh4XzwwQeJ9ltjtMYsmYeSUiIikqWFh4fj5eWFl5cX4eHh9g5HREREsgDDMIiKisJsNnP8+HH27dvHnTt3HnjcqlXQu3ctoA0ODjGMGwcrV0Jg4GMPOdWs0/cuXryI2WwmNDSUjZYlAW3y5cvHiy++yMCBAwE4lXA5PMLCwmxTFR8lKeXi4sLHH3+c5DVAlVKZmXpKiYiIiIiIiKSQYRg0aNCAjRs34urqSlRUFGBZie6XX35JsudRXBx8+KGleTl4AYfo1Wsj/fv3SdfYU8Pf3x+TyURsbCxXr17lzz//JDo6msDAQNq1a0f27NnJls2ywl2RIkWAxAmjAwcOYBgGefLkeeSV76wJp+DgYAzDwGQy2fYpKZV5qVJKREREREREJIVu3bplqxiKiorCzc0NHx8f4uLimDVrVqLx169Dy5bWhBT4+/8GVKVevRzpGHXqOTs72xJJFy5cYNmyZQC0bNmSsWPH8uGHH9rGJpeUsk7dS6r5eGpZe1FFREQkmEII/03fU1Iq81FSSkRERERERCSFzp49C4Cfnx8nTpzgzp07LF++HIBt27Yl6GG5bx9Uq2aZtufubmbWLIOoqF5AJEFBQfYIP1Xi95WyvsaWLVsmGhf47/zDW7ducePGDdv23bt3A482dc/Kzc2NHDksiTxrZZSVKqUyLyWlRERERERERFLozJkzAAQEBFC0aFGcnZ2pXLkyrq6uXL9+nePHjxMREUHZsv+jcuVITp8GOInJ9BT+/hu4efMmJpOJEiVK2PNlpIg1KbVnzx7OnTuHyWSiXr16icZ5eHjYqqqs1VJxcXH88ccfgGWVvrQQfwpffNaklBqdZz5KSomIiIiIiIikkLVSqnDhwrZtLi4uVKtWDYAtW7bSrNlWDh36ELPZDUfHNUA1wsN30KxZMwCaNm2Kh4dHuseeWtZm55s2bQIsSR9PT88kxxYtWhT4Lym1ceNGLl++jK+vL40bN06TeKxT+OJXSkVGRnL9+nVAlVKZkZJSIiIiIiIiIilkTUoFBAQk2F67dm3AmcGDfdm82ZqE+Zy4uGY4O4diMpmIiYnBzc2Nb7/9Nl1jfljWyqMdO3YA//WOSsq9faV+/fVXANq1a4eLi0uaxGNNOsVPSlmrplxdXW3T+yTz0Op7IiKSpTk6OvLCCy/YnouIiIg8iqQqpQAqVKgHNOHGjcZALBUq/EDp0nuZPdvMoEHvcefOHSZOnMjIkSMpVqxY+gf+EKxJqfDwcOC/aqikWJNSJ0+e5NatW/z2228ASa5G+LCSSkrF7ycVf0U+yRyUlBIRkSzNzc2NefPm2TsMERERySKSSkqdPw8jRzbF8iP2XapU+ZyVKweQLVtPXn/9dVtPpTfffJNSpUrZIeqHY52+Z5WSSqktW7bQqFEjbty4QaFChZLsQfWwrNP34veUOn/+PKCpe5mVklIiIiIiIiIiKXRvUurYMWjSBM6fd8LXN4J33tnM0KEjbFU78ZMymSkhBYkbh98vKWWtojp69CgAuXLl4o8//kjTSvWkKqWsqwJWqFAhza4j6Uc9pUREREREROSJt2/fPooVK8bEiROTHRMWFsa1a9cAS1Lq77+hTh1LpVSpUrBnjzvvv98yy0wjS01SKigoCC8vL8DSX2vjxo2UL18+TeO5NykVERHBggULAHjppZfS9FqSPpSUEhGRLC0sLAyTyYTJZCIsLMze4YiIiEgG9eGHH3Ly5EkGDhxoq/a5l7VKKnv27Bw44EODBnD1KlSuDJs2QaFC6Rnx4+fl5UX27NltX98vKeXr68vOnTvZu3cvW7duJSgoKM3jib/6nmEYLFmyhNDQUAoXLvxvo3nJbJSUEhERERERkSfa4cOHWbJkCQDR0dH07t0bwzASjbMmpXLk6ETTpnDnDtStC+vXQ65c6RpyurFWS3l6epLrAS8yKCjosU6jsyaloqKiuHXrFjNnzgQsVVIODkpvZEb6romIiIiIiMgT7YsvvgCgTp06eHh4sHHjRjZs2JBonCUp1YazZ78hMhJatYIVKyBbtvSNNz1Zm50XKVLE7tMS3dzc8PX1BeDQoUMsW7YMgM6dO9szLHkESkqJiIiIiIjIE8swDFtfolGjRtkSHD/99FOiscuXuwDzMAxn2reHhQvB3T09o01/1kqp+03dS0+BgYEADBgwgJiYGMqVK0fZsmXtHJU8LCWlRERERERE5Il1+vRpbt++jYuLCzVr1qRLly4AzJ8/n9DQUNu4RYvgjz+6AC5Uq3aCmTPB2dk+MaenMmXKAFCxYkX7BvKv119/HYDdu3cDqpLK7JSUEhERERERkSfW3r17AShbtizOzs489dRTFC1alLCwMBYuXAhYKqJefBEMwwmYxRdfXMHJyX4xp6e+ffuydOlS3n33XXuHAkDXrl0pFK+jvFbdy9yUlBIREREREZEn1p49e4D/KoFMJhOvvPIKAL/99hsLFkD79gaxsQAzgS5UqFDGLrHag5ubGy1btsTDw8PeoQDg4uLCBx98AEDDhg0TJKgk83lCcrsiIvKkcnR0pGXLlrbnIiIiIvFZk1KVKlWybWvcuDGffPIJ69fnYMkSM3FxDuTJs5rLl7tQoEA+smfPbq9wBejVqxf58+enSpUq9g5FHpGSUiIikqW5ubmxdOlSe4chIiIiGZR1+l78pFSVKlVwdGzDnTv/h2WC0c9cvtwNMKupdgZgMplo1aqVvcOQNKDpeyIiIiIiIvLEGTFiBCVLluTixYuYTCbKly9v27d9uxtm81zAGZgFdAPMwH+Nv0Xk0alSSkRERERERJ4o4eHhjB49mqioKAAKFCiAt7c3AH/+CW3agGG4Ar8DXbEmpABVSomkIVVKiYhIlhYWFoanpyeenp6EhYXZOxwRERGxg6ioKIYPH86OHTsAWLduHVFRUbi4uADQpk0bAPbvh+bNITQUypa9DHQAYhNUUalSSiTtKCklIiJZXnh4OOHh4fYOQ0REROxk0qRJfPLJJ7Rp04Zbt26xbNkyAHr06MHFixcZP348//wDTZrArVtQuzbMnx8DWCqpBg0aRIcOHahXrx4VKlSw3wsRyWI0fU9ERERERESyLLPZzHfffQfA1atXGTZsmC0p1bJlS/Lly8fZs9C4MVy5AhUrwtKl4ONTgJo1a3Lq1ClatGjBK6+8YsdXIZI1KSklIiIiIiIiWca6desoWbIk+fPnB2Dt2rUcP34cFxcXoqOjGT9+PACurq40bNiQ4GBo1AjOn4dSpWDVKvDxsZxr/fr1xMTE2PpNiUja0vS9eCZNmkRgYCBubm5UqVKFzZs333f8zJkzqVChAh4eHuTNm5fu3btz/fr1dIpWRERERERE4tu1axeNGjWiU6dOtm2TJ08G4PXXX+ett96ybW/VqhWRkR40bQonT0JgIKxZA7ly/Xc+Nzc3JaREHiMlpf41Z84cBgwYwAcffMCePXuoU6cOLVq04Ny5c0mO37JlC126dKFHjx4cOnSIefPm8ddff9GzZ890jlxEREREREQADh06BMDOnTuJjY0FYOvWrQC89NJLfPPNN1y+fJm1a9fy7bdTadUKDh6EvHktCal/i6tEJJ1o+t6/vvrqK3r06GFLKo0bN46VK1fy3XffMWbMmETjd+zYQUBAgC3THhgYyOuvv87nn3+e7DWioqJsS44C3LlzB4CYmBhiYmLS8uWkG2vcmTV+kbSmeyLjif+9yMx/32ZWuidEEtI9IZJYWt4XZ86cASAyMpIjR46QO3duQkJCAChZsiQxMTHkyJGDmjXr8OKLjuzYAT4+BsuWxVKwIOjWlIwgK/xbkdLYlZQCoqOj2b17N0OGDEmwvWnTpmzbti3JY2rXrs0HH3zAsmXLaNGiBVeuXGH+/Pm0atUq2euMGTOG4cOHJ9q+atUqPDw8Hu1F2Nnq1avtHYJIhqJ7IuOIioqyLd28atUqXF1d7RzRk0n3hEhCuidEEkuL+2L79u225zNmzCBnzpwA5MqVy9aexTBgwoRKrFtXCBeXON57bxtnz97g7NlHvrxImsrM/1akdOVrJaWAa9euERcXR548eRJsz5Mnjy2rfq/atWszc+ZMOnToQGRkJLGxsbRp04YJEyYke52hQ4cycOBA29d37tyhYMGCNG3alGzZsqXNi0lnMTExrF69miZNmuDs7GzvcETsTvdExvTcc8/ZO4Qnlu4JkYR0T4gklpb3hbV/FICzszM+/3Ysr1y5Mi1btgTggw8cWLfOEUdHg19/NWjduuYjXVMkrWWFfyusM8MeREmpeEwmU4KvDcNItM3q8OHDvPXWW3z88cc0a9aM4OBgBg8eTO/evZkyZUqSx7i6uib5G3pnZ+dM+0GzygqvQSQt6Z4QSUj3hEhCuidEEkuL++LixYu254cOHSIiIgKAMmXK4OzszDffwNixlv2TJ5t47jn9SCwZV2b+tyKlcesOBPz8/HB0dExUFXXlypVE1VNWY8aM4amnnmLw4MEAlC9fHk9PT+rUqcP//vc/8ubN+9jjFhERERERkf+cP3/e9vzAgQNERkYCULp0aX79FQYMsOwbNQp69LBDgCKSgFbfA1xcXKhSpUqi+ZqrV6+mdu3aSR4THh6Og0PCt8/R0RGwVFiJiEjGEBYWRq5cuciVKxdhYWH2DkdEREQek7CwMG7evGn7+vTp0+zYsQOA0NBadOli2d6vHwwdao8IReReqpT618CBA3nllVeoWrUqtWrV4v/+7/84d+4cvXv3Biz9oC5evMiMGTMAeOaZZ+jVqxffffedbfregAEDqF69Ovny5bPnSxERkXtcu3bN3iGIiIjIY3bhwgUAvLy8yJYtG5cuXfq3r01lPvwwiJgYaN8exo2DZLq0iEg6U1LqXx06dOD69euMGDGC4OBgypYty7JlyyhcuDAAwcHBnDt3zja+W7du3L17l2+//ZZ33nkHHx8fGjZsyGeffWavlyAiIiIiIvJEuXXrFvv376dmzZq2pFTBggVp1qwZ48aNA4oBywkNNdGoEcyYAQ6aLySSYSgpFU+fPn3o06dPkvumT5+eaFu/fv3o16/fY45KREREREREktK7d2/mzJlDnjx5qFKlCgAFChTgiy++wN09kDFjWgO5qVQJFiyAJNadEhE7UlJKREREREREMh2z2cyKFSsAuHz5MsuWLQMslVJhYY4sX/4WAEWLGixfbiJbNruFKiLJUOGiiIiIiIiIZDrHjx/n9u3bODg4ULNmTdv2vHkDaNsW9u6F3Llh5UoTySyqLiJ2pqSUiIiIiIiIZDrWlfVq1arF+PHj/93qwNKlHVm/Hry8YPlyKFrUfjGKyP1p+p6IiGRpDg4OVK1a1fZcREREsgZrUqpmzZpUq1aNAQPeZtKkIPbuLY6zMyxaBJUr2zdGEbk/JaVERCRLc3d356+//rJ3GCIiIpLG/vzzTwDb1D0/v6+IjgaTCX75BRo1smd0IpIS+pWxiIiIiIiIZCphYWHs378fsCSlfvwRPvzQsu+bb6B9ezsGJyIppqSUiIiIiIiIZCrDhw8nLi6OggULsnt3AV5/3bL9/fehXz/7xiYiKaeklIiIZGnh4eEEBAQQEBBAeHi4vcMRERGRRzRr1izGjh0LQPfuU+jYEcxmePVV+N//7ByciKSKekqJiEiWZhgGZ8+etT0XERGRzG3cuHEAvPrqV4wf34TISHjmGZg82dJPSkQyD1VKiYiIiIiISKYQGhrK33//DRRi6dJ+3LoFTz0Fv/4KTiq5EMl0lJQSERERERGRTOHPP/8kLs4HJ6e1XL7sROnSsHgxeHjYOzIReRhKSomIiIiIiEimsHbtDmAJsbHFKFgQVq4EX197RyUiD0tJKREREREREcnwYmLg//6vMVATT89IVq6EAgXsHZWIPAolpURERERERCRDM5uhe3cz16/XAML5/vuLBAXZOyoReVRqBSciIlmayWSidOnStuciIiKS+QwZAjNnOgCxeHl1p1On2fYOSUTSgJJSIiKSpXl4eHDo0CF7hyEiIiIP6auvYOxY61c9qV8/HAcHTfoRyQp0J4uIiIiIiEiGNH06vPOO5XmZMj8DP1GnTh17hiQiaUhJKREREREREclwFiyAHj0szwcMMLh82ZKdevrpp+0YlYikJSWlREQkSwsPD6dMmTKUKVOG8PBwe4cjIiIiKbBqFXTsaGlw/uqr8Nprx7h27Spubm5UqVLF3uGJSBpRTykREcnSDMPg8OHDtuciIiKSsW3dCs89BzEx0LZtNHv2PEXp0rsAqF69Oq6urnaOUETSiiqlREREREREJEPYuxdatYLwcGjeHGrU+JY9e3bZ9quflEjWokopERERERERsbt//oGmTeH2bXj6aZg7N47y5ScA0LBhQ2JiYujVq5edoxSRtKSklIiIiIiIiNjV1avu9OvnxNWrUKkSLFkC69Yt4cyZM/j6+rJkyRLc3d3tHaaIpDElpURERERERMRuLl+GYcNqc+mSiVKlYOVKyJ4dJkywVEn16tVLCSmRLEpJKREREREREbGLq1eheXMnLl1ypnBhg9WrTeTKBYcOHWLt2rU4ODjwxhtv2DtMEXlMlJQSEZEszWQyUbhwYdtzERERyRiuX4fGjeHQIRM5ckSyfLkjBQo4A/Dtt98C0LZtW9u/4yKS9SgpJSIiWZqHhwdnzpyxdxgiIiISz82b0KQJ7N8PefIYfPzxVooVqwvA7du3mTFjBgD9+vWzZ5gi8pg52DsAEREREREReXLcumVZZW/PHsiVC1aujCV//lDb/j/++IPw8HBKlSpFvXr17BeoiDx2SkqJiIiIiIhIurhzB5o3h127wM8P1q2D0qUTjpk/fz4A7du319R7kSxOSSkREcnSIiIiqFatGtWqVSMiIsLe4YiIiDyx7t6FFi3gzz/B1xfWrIGyZe8dc5cVK1YA8MILL9ghShFJT+opJSIiWZrZbGbXrl225yIiIpL+bt+2JKS2bwcfH1i9GipUSDxu6dKlREVFUaJECcrem7ESkSxHSSkRERERERF5bK5fh2bNYPduS0Jq1SqoXDnpsYsXLwagXbt2mron8gRQUkpEREREREQeiytXoHFjOHDA0kNq9WqoWDHpsYZhsGHDBgCaNm2abjGKiP0oKSUiIiIiIvIEW7NmDc7OzlSvXh13d/c0O++lS9CoERw9Cv7+lh5SZcokP/748eMEBwfj6upKzZo10ywOEcm41OhcREREREQyjO3bt1OwYEH++OMPe4fyRNi8eTNNmjShfv36FCpUiL1796bJec+dg7p1LQmpAgVg48b7J6QANm3aBEDNmjVxc3NLkzhEJGNTUkpERERERNJNVFQUw4YNo1evXly5ciXR/hkzZnDhwgWmTJlih+iePHv27LE9v3btGs8//zw3b958pHOeOGFJSJ08CQEBsGkTlCjx4OOsSal69eo90vVFJPNQUkpERLI8Pz8//Pz87B2GiMgDXblyhaNHj9o7jMfm9u3b1K5dmxEjRvDjjz9Srlw5KleuTPv27YmLiwPg0KFDAGlWsSP3d+bMGQBeffVVAgMDOX36NAMGDHjo8/39Nzz1FJw9C8WLw+bNEBj44OMMw7AlperXr//Q1xeRzEVJKRERydI8PT25evUqV69exdPT097hiIgka+/evZQsWZIyZcqwfv16e4fzWMyYMYO///4bX19fSpUqxZUrV9izZw/z5s3jwIEDGIZhS0qdPXv2kSt25MFOnz4NQOXKlfn5558BmDdvHqGhoak+15o1UK+epbl5xYqWCqkCBR58nNls5ocffuDSpUu4ubmpn5TIE0RJKREREREROzt16hRNmjTh1q1bmM1munbtyu3bt+0dVpo7ceIEAD179mT37t3MnTuXUqVK2fZdvnyZGzdu2Mbv27fPLnE+SayVUgEBAdSuXZtixYoRERHB0qVLU3WeX3+Fli0hNBQaNLD0kPL3T9mxkyZNYtmyZQB88803adpsXUQyNiWlRERERETs7P333+fatWtUrlyZokWLcv78eUaPHm3vsNLc2bNnAUsCxMPDgxdffJGqVasClqTU4cOHE4zXFL7Hz1opFRAQgMlkon379gDMnTs3xecYPx5eegliYuDFF2H5csiWLeUxbNmyBbDcB6+99lrKDxSRTE9JKRERydIiIiKoX78+9evXJyIiwt7hiIgksn//fubMmQPAtGnTGDx4MAAHDx60Z1iPhbUqp3DhwrZtxYsXByxJKevUPSslpR6vW7du2SryAgICAGxJqaVLl/Lcc8+xYcMGAC5evEhMTEyC4w0Dhg6F/v0tX7/5JsyeDa6uqYvj4sWLAFSsWPGhXoeIZF5KSomISJZmNpvZuHEjGzduxGw22zscEZFEhg0bBliSAeXLl8f/3zlP165ds2dYj0X8qWJWxYoVA+D48eO2pFSZMmUAJaUeN2uVVK5cuWx9F8uXL0/ZsmWJiopi0aJFvPnmm6xYsYKCBQvy3nvv2Y6NjISXX4ZPP7V8PWqUpWLK0TH1cViTUvnz53+0FyQimY6SUiIiIiIidrJ7924WLVqEg4MDn3zyCWBJEABcvXrVjpGlndjYWJYuXcrJkydtVTnxK6WsSan4lVKdO3cGLCvxRUVFpXPET46kkoQmk4lly5YxdepUnJ2dOXToEAMHDsQwDBYuXAhYGpk3bAizZoGTE0yZAu+/DyZT6mOIi4sjODgYUFJK5EmkpJSIiIiIiJ18/PHHAHTq1ImgoCAA/Pz8gMxdKWUYBsuXL2flypU0a9aM1q1b88wzzwAJq3Lgv+l7ly5dYufOnQC0aNGC3LlzExsby44dO9L/BTwhrJVSgYGBCbYXLFiQ7t2706RJEwCOHDkCWJJY69dfpUYN2L4dvL1j8fB4HsOYYjv28uXLtt5hKXH58mXi4uJwcHAgT548j/qSRCSTUVJKRERERMQONm7cyLJly3B0dLRN4YP/KqXu3r2baauE/vjjD1q2bEnz5s1Zt24d8F9iI35VDkCOHDnw9fUFIDo6mpw5c1K6dGkaN24MwJo1a9Iv8CeIYRgJmpwn5cUXX7xnSzNatfLhzBkoWhRq1XqHO3cW8t133wGWKfM1atQgKCgoUdP65Fy4cAGwfA4cH2bun4hkakpKiYiIiIikE8Mw2LdvHzt27KBLly4A9OzZ0zaFDSB79uy2H84za7XU5s2bAfD29ratrmeVVAIk/uvv1q0bLi4utqTU6tWrH1+gTyDDMPj+++/JmTMn3377LZC4Usrq2WefxdnZGQB395HAMiIinKlbF9auDWXz5h8A2LNnD7du3eLYsWOcPXuWiIgIXnvttRT1crQmpawVgiLyZFFSSkREREQknSxcuJBhw4ZRt25dzp07R9GiRRk7dmyCMQ4ODpl+Ct+ePXsA+Prrr/nrr79o27atbV/8flJWbm5utue9evUCsCWl/vrrL27duvX4gn2CxMbG0qVLF9544w1u3rxp216hQoUkx+fIkYOhQ8fg77+NiIgPAQfy5FnM6tWwbdsftlVtzWYzW7ZssU2/BNi6dSvTp09/YEzWpFTOnDkf/oWJSKaV6ZNS0dHRHDt2jNjYWHuHIiIiGZSHhwceHh72DkNEMqjIyMh0u9Yvv/xie+7h4cGsWbPw9vZONM6alMqMzc4Nw7CtmlexYkUAGjVqZNufVKVU6dKlbc9LliwJWPoalSxZErPZzPr16x9bvE+KmJgYOnbsyC+//IKTkxNffvkl69atY8WKFdSqVSvJY44ehblz3yEkpBbOzmagF7dutQeimTNnDoCtkmrDhg22pFSOHDkA+PXXXx8Yl5JSIk+2TJuUCg8Pp0ePHnh4eFCmTBnOnTsHwFtvvcWn1nVJRUTkiefp6UlYWBhhYWEJGuuKiIClksfT0zNRtVJaMQyD6OhoAO7cucOqVasASxXJhQsXqF69epLHWftKZcZKqQsXLnD9+nWcnJwoW7YsAA0bNrTtTyopNWLECN544w1b3ymrpk2bAvDGG28oMfUIDMOgb9++/Pbbb7i4uLBgwQIGDhxIgwYNaNasWZLHzJkD1atbElP588OmTSZy5fqdqKgounXrxuLFiwEYNGgQkDAp9eabbwKwZcuWB/ZFu3jxIqCklMiTKtMmpYYOHcq+ffvYsGFDgnLfxo0b27L2IiIiIiLJCQsL43//+x9ms5l3332X8ePHp/k1evbsiZ+fHydPnmTx4sVER0dToEABqlataqsmSUpmq5SKi4tj1apV9OvXj3HjxgGW6idXV1cAgoKCKFasWIJEVXy5cuVi0qRJlCpVKsH2IUOGUK5cOS5fvkzTpk1ZuHDhY38tWdGECRP44YcfMJlMzJs3z7YSYlLCw6FXL+jYEe7ehbp1YfduqFnTxMiRIwGYPXs2hmHQq1cv+vbtC8Du3bvZtWsXYOkLljt3biIiIhJM6UuKKqVEnmyZNim1aNEivv32W55++mlMJpNte+nSpTl58qQdIxMRERGRzGDatGncuHEDd3d3AN59913CwsLS7PyGYbBgwQLu3r3L/PnzmTt3LgBPPfVUgv+/JiUzVUqZzWbatm1Ls2bN+Pbbb/nqq6+A/6buAZhMJlavXs22bduS7CmVnHz58rFjxw46dOhAbGws7du3Z8uWLWn9EjKNu3fv0rRpU9q2bWtL5jxITEwMo0aNAuCLL76gTZs2yY49eBCqVYMffwSTCT78ENauhTx5LPtfe+01OnbsCECpUqX4+uuvyZ8/P3Xr1rWdw9PTk8DAQBo0aADAunXrOHLkCOPHj2fJkiWJrqmklMiTLdMmpa5evUru3LkTbQ8LC3vgP/IiIvLkiIyMpFWrVrRq1Spd+8aISMYWFxdnS56MHTuWwoULExUVlaYJj4sXL9oadP/222+sXLkSsCSlHiQzVUpNnDiRJUuW4ObmRpEiRWzb4yelwDJtr1q1aqk+v4eHBzNnzqRVq1bExsayYMGCRw05w7t+/TqDBg1i1KhRGIZh2z506FBWr17N77//Tvny5fnnn38eeK4lS5Zw5coV8uTJQ79+/ZIcYxjw3XeWhNThw+DvD2vWwMiR4OT03ziTycSUKVP49ttvWblypW1afPxeaWXKlMFkMtmSUp988gmlS5emf//+tG3blpCQkHjXNTR9T+QJl2mTUtWqVWPp0qW2r62JqB9++CHZRn0iIvLkiYuLY9myZSxbtoy4uDh7hyMiGcSWLVs4ffo0Pj4+dO/e3bbS2+rVqx/qfIsXL2bUqFHExMTYth08eND2/K+//iI6OprSpUtTqFChB54vs6y+t3PnTt59910AvvzyywTvX40aNdLsOo6OjtSsWROwVAtlVYZhMGvWLIKCgvjyyy/58MMPGT58OAB//PEHkyZNAiAwMJCbN28yY8aMB55zypQpAHTt2tXWlDy+8+eheXPo0wciIy3P9+2DeG3AEvDw8KBv374JPscFCxZky5Yt1KxZ0xZv/D5iDg4OeHt7ExcXx5o1a2zbr169aus55evr+8DXIiJZj9ODh2RMY8aMoXnz5hw+fJjY2Fi++eYbDh06xPbt29m4caO9wxMRERGRDOy3334D4Nlnn8XDw4PGjRszZcoU1qxZQ1xcHGazGWdnZxYsWMDBgwfJli0bvXv3TtDLFCxT1zp37mxbZSxHjhz06dMHgAMHDiS67gsvvJCi+KzT9zJypdSWLVto0aIFkZGRNGvWjDfeeAOTycRff/3FgQMH0vwXxdZVCrNqUsowDDp16mT7LBUqVIhz584xfPhwpk+fztmzZwF49dVXKV++PAMGDODQoUP3PWdwcDDLly+3HZfwevDTT9C/P9y5A25u8Omn0K8fODxE6cJTTz3F9u3bbV8XK1aMdu3aERwczIQJE5g3bx6ffvopq1at4uWXXwawtV0pUKBAkgkzEcn6Mm2lVO3atdm6dSvh4eEULVqUVatWkSdPHrZv306VKlXsHZ6IiIiIZFBms9k2Baxdu3bAf1Ud+/btw8nJicaNG7Nr1y7atWvHsGHDePvtt5NcTGf9+vUJlr2P/9xaKRW/tYT1eg+SGSql+vTpQ2hoKA0bNmT+/Pm211m1alW6d++e5i01snpSavfu3fz66684OTkxYsQIjh8/zrBhwzCZTJw9exYHBwf69u3LhAkTbM3iH5SU2r59O2azmQoVKlCyZEnb9gsX4NlnoXt3S0KqZk3Yu9eSoHqYhFRSTCYT8+fPZ+vWrVSuXNm2kuKqVatsUxJPnDgBWBJYIvJkyrSVUgDlypXjp59+sncYIiIiIpKMiIgIQkJCCAwMtHcoNn/++ScXL17E29ubJk2aAJA7d25KlizJsWPHANi0aZOt4snK+gN0fEePHgWgSpUq7N69m82bN/Pee++xf/9+/v77b8CSiJo/fz7ly5cnKCiI06dPPzDGjN7oPDg4mAMHDmAymZgzZw5eXl6P/ZpZPSllbYT//PPP89FHHwGWfky9e/fmyJEjFC5c2Nazq0yZMoCl0igiIsLWrP9e1s9nuXLlAIiNhQkT4OOPITQUXFxg+HAYNChh76jHoXbt2nh4eHD58mUOHDhA+fLlOX78OABFixZ9vBcXkQwr01ZKLVu2zNYsMr6VK1faSlRFRERExL5ef/11ihYtytatW+0dis3ixYsBaN26dYLpeK+99hqOjo62H5D/+usvwPLDNJDkamfWH6obNGhAnTp1APj8889ZsWIFV65cAWDUqFGMHz+e2bNnpzjG+JVS8RtdZxTr1q0DLM3MrbE+blk5KWUYhi0p1b59+wT7/P39adCgQYIm8nny5MHX1xez2czs2bN56623uH79eqLzHjlyBICgoCD+/BOqVoWBAy0Jqdq1YfduGDLk8SekAFxdXalXrx5g+VkOVCklIpk4KTVkyJAkG9YahsGQIUPsEJGIiIiIxBcTE8OCBQswDIP58+fbOxyb3bt3A9hWB7MaOHAgoaGhzJw507bNz8+P7t27A9hWCYvPmpQqVqwYHTt2jLfHBHgDuXFxKUbz5v0wm0vz999w9GgOduwwsXMn7NoFf/9taSx94ACcOAHBweDi4gc4EBsby+3bt9Py5aeJtWvXAtCoUaN0u2ZWTkrt2LGDs2fP4unpSYsWLR443mQy2aqlevXqxYQJE/jwww8TjbMkpfKwfv1L1Kpl+ZzlyAE//ACbN8O/swDTjXX66rfffktUVJQqpUQk807fO378OKVLl060vVSpUkmWVouIiIhI+tq1axdhYWHAf0mMjMDagLx8+fKJ9rm5uVG9enXKli3LwYMH6dixI4ULFwbg3LmbHDkCly7999i2rT3QjcmTG2E2Z8fTsx2GkZ2ICBcMw/L734QzF52BuimI0g2IAyIJDHQiVy7w80v4yJnT8meePFCwIBQoAL6+kMatnBIxDENJqTQ0dOhQvv76a8BSvefh4ZGi48qUKcPmzZsxm80ATJs2jWHDhuHv7w9AaKiZ/fvbAANZs8YyvbJLFxg7FnLnTvvXkRIvv/wyw4YN4+LFi0ybNi1BUvfcuXP2CUpE7CrTJqWyZ8/OqVOnCAgISLD9xIkTeHp62icoERHJcDw9PTPk1BeRrC42NtY2xQssiaArV66Q+56fhi9fvoyvr2+6rbx15coVQkJCElSaxBcVBUeOmGjXbi5m814uX27De++ZgGCOHfMn8e9EuwKwZ4/16zyJzunqaund4+oKrq4GsbHheHh4YDabMJshLg7MZku/n4gICA+3rIxm4catW3DrFvz78/t9ubtbklPWJFXBglC0KBQvDsWKWRJYj5q0OnXqFOfOncPZ2dk2ZTE9ZMWkVEhICJ9++ikANWrU4LPPPkvxsfd+fqOiohg3bhyjRn3KzJkwZIiZmJiPAahWzcxXXznw9NNpF/vDcHV15d1336V///4MHz7cVgVYpEgRJaVEnlCZNinVpk0bBgwYwMKFC23lnidOnOCdd96hTZs2do5ORERE5MlkGAb9+/dnxowZtiSC1bp16xJMcfvtt9/o0KEDL730Ej///HO6xGetkipatChhYV5s2WKZ0rR/v+XPo0ctSSIIAoI4fNh6pKV6JXt2g3z5TOTLB97ed1m0aCJOTteYNu1zcuZ0wMeHBA83t4RJoJiYWJYtW0PLli2TTcQZBkRGwsiRXzFmzDc0afIcjRt3YMaMpRw7doOmTTsRFPQ0167B1asQEgLnz1ueR0RYklfJJbA8PS3JKeujZEkoXRqCgiBbtpS9h5s2bQKgevXq6frLYOvnKSIigtjYWJzSoxHSY/bnn38ClgTT9u3bU7ViYfyk1JAhQ/j008+ZPDmURYvA0q/fCThDvnwT2LHjyzRbVe9R9ezZk1GjRhESEgJAgQIFUlwdJiJZT6b9m3zs2LE0b96cUqVKUaBAAcDSfLJOnTp88cUXdo5ORERE5Mk0ffp0JkyYAGCrgmjZsiXLli1jzZo1tqTUP//8Q/fu3YmLi2Px4sXExcXh6Oj42OKKibEkniZNcgB+4dKlRvw7yymRHDksSZrixS2PokUNXn21LhERB9i5cyclSpQAYMWKrSxaNJSSJcvw8stp9/9Pk8lS8dSqVQ3GjDnHzp3TWb9+IrGxsf9edzLvvLOahg0bJjguMhIuXoQLFyxJqgsX4OxZOHnS0qvq7FkIC7Mk3/btS3zdggUtCaoyZf77MygIsmdPOG7btm0APJ3OZTfxk5yhoaH4+Pik6/Ufhx07dgBQq1atVCWkwFJZVb58eYoUKU6BAu8CXbl1qxS3blmmcdauvZklS5pQo0bLDJOQAvDw8GDQoEG8++67gJqcizzpMm1SKnv27Gzbto3Vq1ezb98+3N3dKV++PHXrpmSOvoiIPCkiIyN55ZVXAPj5558TrLQlImnr8uXL9O3bF7BUIp08eZL8+fPTr18/li1bxs8//0z9+vXZvn0706dPJzw8HIA7d+5w8OBBKlSokGaxxMZamoivXWt57NhhqSICS3Pz8HBL8qdkSahQAcqX/+/PAgXuneJm4pNPrnLs2G0uXrxoS0pZ+5gWL148zeKOr1q1ari7u9uSe08//TSFCxdm5syZdO7cmTNnzuDq6mob7+ZmmaqXXM/o6Gg4c8aSoDpxwlJNdfQoHDpkaa5+/rzlce8C14ULW96bihUtjw0bzgL/rUqYXlxdXXF2diYmJoa7d+9mqaRUzZo1U31sbKwH3brtY/x4WLQIIAdwnaFDXRg61JvBg2cCUQQFBaVhxGmjd+/efPrpp9y4ceOx3T8ikjlk2qQUWFadaNq0KU2bNrV3KCIikkHFxcXZVv2aPn26fYMRyeJ27dpFREQEJUqUYN++fXzzzTfUqFGDunXr8txzz7Fw4UJbkhgsSRfDMNi1axebN29+5KTUsWOWhMratbBhA9y5k3C/jw+YzVu5c2clH3/clIEDn05UBZSc/Pnzc+zYMS5cuGDbZm3S/Lh+qHZxcaFWrVq23lyjR4+mSpUqLFmyhJCQEI4dO5Zks/bkzwclSlge97p5Ew4ftjwOHfrvz0uXLBVWZ8/C4sXW0auA23z6qQdr1vyXrCpTxtI363Hy9vbmxo0bhIaGPt4LpYO4uDj++usvIHVJqVOnYMIEmDIFrO21cuaEqKhRhIZ+Svv2m/H2rsgxyxw+SpUqleaxPypvb29GjhzJm2++maLVBkUk68pUSanx48fz2muv4ebmxvjx4+879q233kqnqEREREQELA2wwdLrxs3Njffee8+2b9asWbRs2ZL169fTunVrBg4cSP369Rk1ahS7du1iy5YtvPnmm6m6XmwsbN0Kf/xhSZjc20cpRw5o0AAaN4b69aFIkRh8fBoDkbz88ispTkiBJSkFcPHiRQBmzpzJL7/8Ajze6UeNGjVi3bp11KtXz9ZUvGTJkuzcuZPjx4+nKil1PzlywFNPWR7x3bwJBw7A3r2Wx6ZNtzl50g3IzvbtsH37f2OdnKBUqf+SVBUrWiqs/PzSJETgv6RUVmh2fujQIcLCwsiWLdsDq5kiIizVUFOmWJKuVkFBMGAAvPwy1Ko1l/37Q229mk6ePAlk3Olxffr0oUePHri6uhITE2PvcETETjJVUurrr7+mc+fOuLm52ZZNTYrJZFJSSkRERCSdWZNSRYoUSbTPzc2N1atXc+vWLXLmzGnbbu1LtHnzZgzDeGBfnYgIWL4cFi6EpUstSRMrZ2eoV8+ShGrc2JIUid+matq0X4iMjCRPnjxJxng/8ZNS27Zt4+WXXwagbNmydOjQIVXnSo0BAwbg4uJCp06dbNuKFy9uS0o9bjlyQN26lgfAhx+OZdSoz3j22SG0azfSlqzauxdu3ICDBy2Pf/N1AOTP/1+CypqsKlqUh+pz5OXlBWSNFfi2/5vRq169Og5JvBlmsyXpN2uW5XHr1n/7mjWzJKOaNv3vffT392f//v1cvnyZqKgoW1Vf0eTmc2YAro+7tE5EMrxMlZQ6ffp0ks9FRERExP6sSankfgh2dHRMkJACyw/kTk5OXLp0iTNnzhAYGJjouJgYWL0afv3VUi0SPx/h6wutWkGbNpYf0JNbQS42NpbRo0cDMGjQoFQ3VbcurHPx4kUmT54MQLt27Zg9e3ayq+ilBWtT6PisPa3++eefVJ8vKioKJyenh24qb+mBFEvLlgV55RWwzsY0DEuT9fhJqn37LL2rLl60PJYu/e88np6W/l3xk1XlysGDFmGzNjvPCkmp33//HcBWAQeWlR83b4b582HBAkuvL6vChaF7d+jaFQICEp/P/9/O/SEhIZw+fRrDMPDy8iJXrlyP82WIiDySTJWUsoqJiaFkyZIsWbKE0qVLp9l5J02axNixYwkODqZMmTKMGzcuwT8S94qKimLEiBH88ssvhISEUKBAAT744ANeffXVNItJREREJLO4X6VUcjw8PChXrhx79uzhwIEDtqSUYVh+OP/lF/jtN0sVjlXBgvDii9C2LdSqZZk29iDz58/nxIkT5MyZk969e6fmZQH/VUodOXKEs2ctjb4HDRr0WBNSybH2sEptpdTt27cpV64cAQEBbNq06aGufejQIQAqVaqUYLvJZGkQX6AAtG793/a7dy2rHu7b91+y6sAByyqA907/c3CwrHYYf+pf+fKQL99/jeezSlLqypUrrFq1CoB69V5myhRYtQrWrEn4Wc+eHZ55xpKIatjw/tVl8ZNS1ql7RYsWTfWqfiIi6SlTJqWcnZ2JiopK079g58yZw4ABA5g0aRJPPfUUkydPpkWLFhw+fJhChQoleUz79u25fPkyU6ZMoVixYly5csW2VK+IiIjIk8QwjIdKSgEEBASwZ88ezp07x8WL8NNPMG2apcrGKk8eaN8eOnaEmjVTP/Vr7b+NeHr06GGbApYa1uqvo0ePAlC6dGlq1KiR6vOkhYdNSq1Zs4bz589z/vx57t69a0vwpNStW7ds/YpKliyZomO8vRP3qoqNtfT/il9RtWcPXLliaVZ/7BjMmZPwHKVKWR6XLnUBPDl+3ImYGMuUzYzg5MmTnD17loYNG953nNlsWfHwf/87QFzcd7i5NaZ+/YTVgb6+8Oyz8MIL0KhRypvHJ5WUSu29KCKS3jJlUgqgX79+fPbZZ/z44484peTXYw/w1Vdf0aNHD3r27AnAuHHjWLlyJd999x1jxoxJNH7FihVs3LiRU6dO4evrC1j+Q3U/UVFRREVF2b6+8++SMDExMZm2uZ817swav0ha0z2R8cT/XmTmv28zK90TmYPZbE6yp01qhISEEB4ejslkIl++fKn6nufNWxhox5dfNqJ/fwOz2fKLR29vgxdeMOjY0UzduoatP1RcnOWRGtbWDyVKlHioz2OpUqUYMmQIn3/+OWazme7duz/ULyPT4p6w/p/z8uXLXL9+nWzJzVm8x+rVq23Pjxw5kqja6UGsVVL58+fH3d39kV5DsWKWxwsv/LctJAT27TOxf7+JffssjxMn4O5dE3/9BZaF6l4GXmbkSBgzxqBIEShWzCAgwKBwYShc+L/nvr7/VVg9TkeOHOHpp5/m7t27fPnll/Tr1w+w9IA6csTExo3X+fHHHfj6Ps3p077cvm0CGgGNiIwEBweD6tUNGjc2aNLEoFo1I0H1X0rfZr9/O8qHhIRw4t+MbmBgYKb4+1f/VogklBXuiZTGbjIMw3jMsTwWzz33HGvXrsXLy4ty5crh6emZYP+CBQtSfK7o6Gg8PDyYN28ezz33nG17//792bt3Lxs3bkx0TJ8+ffjnn3+oWrUqP//8M56enrRp04aRI0fi7u6e5HU++eQThg8fnmj7rFmz8HjQBHoREXkohmHYfiHg6uqqaQwi99i2bRtfffUV7u7u1KhRg759+z7UfXL06FGGDBlCrly5+OGHH1J0zPXrbqxcGcAff/gTEfHfUnhlylyjUaNz1K59CTe3VGafktG7d29CQkIYNWoUZcqUeejznDp1ihMnTtCoUaOH7suUFrp27crt27f54osvHri62tWrV3F2dub999/n0qVLAAwePJin7l1q7wHWrl3LhAkTKF++PCNGjHjo2FMjJsaBkBBPLlzw4sIFb9avD+bSJW+cnMoSG5v0/7mt3NxiyZUrHB+fKHx8osiePcr2PFu2KNzdY/99xNmeu7jE4uCQOJllGBAb60BUlCNRUY5ERjoSGurClSsGP/64iNu3nYG8QAD+/jUIDfUjNNQlybhMpnAMYycODjvp27cKNWpE4eX16D947t+/n48//pgCBQrg7+/Prl276N27N82bN3/kc4uIpFZ4eDidOnXi9u3b9/3lSaatlPLx8aFdu3Zpcq5r164RFxdHnjx5EmzPkyePrUT5XqdOnWLLli24ubmxcOFCrl27Rp8+fbhx4wZTp05N8pihQ4cycOBA29d37tyhYMGCNG3aNMW/4cpoYmJiWL16NU2aNLFLTwWRjEb3hEhCuicyvjFjxhAbG8vdu3dZs2YNU6ZMIW/evKk+z81/l8ErU6YMLVu2THacYcCWLSYmTXJg0SITcXHWn/4vkS/fKlav7kzx4tmBcv8+Hl1cXBzXr18HoEOHDsm2ZkgPaXVPlClThm3btpEnT577vt+TJ0/m7bffxsPDw1alD5AtW7b7HpeULVu2APDUU0+l+ti08uGH0/n88895/fU3eeedrzh61MTp0ybOnoWzZ//7MzjYRGSkE+fPZ+P8+Ye7lslkYDJZElRmMxhGcsnaegm+iv/jQ4ECBhERu7h+fQNwCGfnI8TE7CZbNk9mzZpF06Z1Hy64JAQEBPDxxx8TFhZGaGgoAG3atKFx48Zpdo3HRf9WiCSUFe6J+P/m3E+mTUpNmzYtzc95728F77cssdlsxmQyMfP/2bvr8CrLP47j77PeYKObEYJ0jO7ulAZBQiQkpUsMQsEACQn5IaVIKR0S0t3dwuiODdZxfn8czyNzIxdnG5/XdXl5znOe+D64R7bP7vt7z59PsmSW3+yNHz+eZs2aMWXKlChHSzk7O0e57Kmjo2OC/UKzSgz3IBKT9EyIRKRnIn66ePEi+/btw87OjmTJkvHo0SMuXbr0RqHN1atXAUvvpaj+WwcFWZqWT5xoaXRtVbEi1KnzN0OH5sFsTkO+fB1eeq3Hjx/z5MkTPD09X6m227dvExISgoODA9myZbPpCCer6D4TuXLlYvfu3Vy6dOm555kxY4Yxley/Pxxcvnz5ta9v7WGVL18+mz3PyZMnB8Df34/s2R2JYrFGAAID4epVyz937lj6Vd258+/re/csTdifPrX8+8kTS/D0LLPZRFRzSuztLasHpkwJ/v5XuHv3NPnzp6VYMU/mzRuBq+s99u5dSPbsdiRNCmnS1AEsoWhIiKXP06pVq2J0wSbAeB4ePXrE48ePAUvvr4T0/179XSESUUJ+Jl617ug1D7CB8PBwvvvuO8qVK0fJkiUZNmwYgYGB0Tpn6tSpsbe3jzQq6u7du5FGT1llyJCBTJkyGYEUQN68eTGbzVy/fj1a9YiISMwJCgqiQ4cOdOjQIUJfPxGxtBAAqF69ujGV68yZM699nuDgYHbs2AFEbqz8+DGMHWtZwr5TJ0sg5eYGXbpYGlxv2wYdO7oDody6dSvCczp48GCKFy/OsWPHjG23bt2iUKFCZMmShXr16uHt7U1wcDALFizg4bPLlj3D29sbgCxZssSLQComWJudX3y2G/x/zJgxA7C0nbAGFtapfi867nmsTd7z5Mnz2sfGlFddfc/FBXLlgurVoU0b6NvX8nU4ezasWQP798OZM3DtmuVrNDQU/P3h/n1LYHXnjmXE061bcOOG5d8+PhAcbNnXxwcuX4a8edsDdRk8+DQzZ6bAxWUWAQFLcHG5iLs7XLt2jQcPHuDg4MCgQYNo3749+/bti/FACiBFihTGD4FmsxkHBwebjgoUEXkVCS6U+uabbxgyZAhJkiQhQ4YMjB8/nt69e0frnE5OThQrVixC80ewNIMsW7ZslMeUK1eOmzdvGkNjAc6fP4+dnR2ZM2eOVj0iIhJzQkNDmTt3LnPnztUKqSLPMJvNRijVpk0bI2iwBg+vKjAwkGrVqrFp0yYAqlSpAsD16zBgAHh6wtChlh/wM2eG776zfPbTT1CokOUcadKkwcXF5Z/jLL/cCwkJ4dtvv+XQoUN4eXmxYcMGAgMDady4Mdf+mY+1du1aWrduzeDBg2ndujWff/55lDVam5xnf96wmgTIGv5Z7+2/rl+/zqFDhzCZTHz++ef89ddfDB8+nClTpgAvD6VCQ0O5efMmZrMZf39/zp49a4yUSgih1OsymcDVFVKlgtSpIW1ay4qP6dNDxoyWf3t4RFztz2w2c/LkSQAKFCiAo6Oj0Tz+gKUrO4cPHzY+/+abb5gzZ47RkDymmUwmYwU+sPzCPCYWhBIRiU0JLpSaM2cOkydPZsOGDaxYsYLly5czb948otuvvV+/fsycOZNZs2Zx5swZ+vbty9WrV/n4448BSz+odu3aGfu3bt2aVKlS8eGHH3L69Gm2b9/OwIED6dix43MbnYuIiIjEF1evXuXcuXM4ODjQuHHjNw6l5s6dy86dO0mWLBkrVqwgbdoydOwI2bPDuHGW6VH588PcufD335agKkWKiOcwmUzGiA7rNMDTp09H2Kdz5858+eWX7Nu3jxQpUrB69WpcXFzYs2cPkyZNAmDPnj1R1mgdKfWylZITEmsodenSpSg/X716NQClS5cmXbp0vPvuu4waNYoSJUoAcPPmTfz8/ACiDOw7depEpkyZyJkzJ2nTpiVv3ryEh4eTJEkSMmXKFBu39EpiK5R6kcePH0c5gtC6+qGdnZ3x/Fj/fK2h1KFDhwAoWrRonNR67ZkGWt9++22cXFNEJDoSXCh15coV6tevb7yvVasWZrPZWEnkTbVs2ZIJEyYwcuRIvLy82L59O2vXriVr1qyAZai49ZskgKRJk7Jx40YeP35M8eLFadOmDQ0aNDC+KRIRERGJa71796ZSpUoRRnKHh4fTunVr6tSpEyF82LVrF2D5Ydnd3f21Qimz2czw4cOZNGkSP/zwAwA9evzA0qUNyZ3bMkUqNBQqV7ZMlTpxAtq1A6eoFyMDML7nunLlCvDvD/OlS5cmQ4YMXL16lW+++QawTEurV68e3bp1M+4R4OTJk1EuQZ2YR0rdvHkzQiuLixcvMnnyZKP/asOGDSMclyJFClKmTAlYAq1vv/0Wd3d3vv32W+OXvLt372bu3LnGPn5+ftjZWX5sqFixok1XMX3TUCo4OJijR4++0S+yW7RoQb58+ViyZEmE7dZRUjlz5jR+Kf3fUMo6UiquQqnmzZsDlim5WnVPRBKCBDeeMzg4OMJIJJPJhJOTU4z0CenevTvdu3eP8rM5c+ZE2pYnT55IU/5EREREbCEoKIipU6cSFhbGqlWreP/99wHL6msLFiwA4OjRoxQvXhywBA+A0arAGkpdvXqVp0+fkjRp0ude68CBA3z11Vf/vHsXR8cFjB3b0mgUXbs2fP45lCnz6vX/d6SUNZQqV64cbdq0MRp2V6hQwViBefDgwfz000/4+/vj6OhIcHAwZ86codA/8wIPHjxInz59jAAuMY2USpUqFe7u7jx58gRvb29y585Nnz59+PHHH42QDiKHUmAJUfbv38+FCxf46aefCAwMZPDgwVy6dIlp06bRv39/ANq2bUuLFi1Ily4dhQoV4tSpU+TIkSPO7jEqbxJK+fr6UqVKFQ4fPsyqVasi/IL7ZXx8fPjrr78A6NKlC6VLlyZTpkxs27aN7du3A5apeVbW5+vIkSN8++23bNmyBYBixYq98jWjY+zYsVSqVImOHTvGyfVERKIrwYVSAJ999hlubm7G++DgYL766qsITcfHjx9vi9JEREREbOLs2bOEhYUBsHTpUn755RcOHDhAQECAsc+xY8eMH5qtQY21wXmqVKlIkyYN9+7do3jx4tStW/e5309ZpsllAUYAbQkJsTQPr1vXEkaVKvX69f93pNTBgwcByw/zjRs3Zvz48Vy7do1x48YZI3XSpUvH1q1befjwIWPGjGHbtm0cOXLECKXGjx9v3CckrpFSJpOJd955h2PHjnHp0iVOnz5tjNivUKECPj4+FCtWjLx580Y6Nnfu3Ozfv5/Zs2dz6dIlHBwcCA8P56effiJlypTs3bsXNzc3vvnmGzJkyGAcF1ejfV7EGpa+aigVGBhIvXr1jBFLe/bsea1Qavv27UbI9/jxYypVqkS2bNmMsAkihlK5cuUiefLkPH78mMGDBwNQrVo1YwRVbHvnnXfo0aNHnFxLRCQmJLhQqmLFipw7dy7CtrJly0aYT2/LIcUiIiIitnDixAnj9e+//x7lPseOHaNr165cvHiRo0ePAkRY1MXT05N79+5x7tw5zp07x9ChQ0mTJk2Ec9y9C1On5gLOA84A1KkTxogR9kTn525rYLRo0SIKFChgrLhXvHhxo3fU48ePyZ07d4TjrD/sr1u3jm3btnH06FHat28PRPwzgcQ1UgowQqlz584xdepUAIYNG/bMKLaoNW/enF9++cXoO1W5cmXSpEnDggULGDNmDACDBg2KEEjFF68zUspsNtO9e3d27txpbLOGnq9q8+bNgKVlyOnTp7l8+XKk5vLPhlJ2dnb89ttvzJs3j1u3btGkSRN69OiRaFZ9FBGJaQkulNq6dautSxARERGJd/4bwIClOXiuXLkICQlh2LBhrFixIkKPzFSpUpExY0bjfYkSJYwRJdZzVq1aFQBfXxg/3tq8vA4AXl4P+emnlJQsGf0fuJs2bcr06dPZtWsX/fr1A8DDw8OYLpYuXTrSpUv33OOtq54dOXIEgICAAKM/VqlSpcidO3e8DFmiw9pXatiwYQQGBpI2bVqGDBny0uPq1KlD5syZjZUO69SpQ82aNY1pnhkyZGDAgAGxV3g0WGdGBAcHExAQ8MIFhubNm8fs2bOxs7Ojc+fO/PTTT89drfC//v77b3bu3GkEdx07dqROnTqMHDmS06dPM2jQIIYMGcK5c+eoWLFihGPr1KlDnTp13vAORUTeLgmu0bmIiMjrcHNz4+7du9y9ezfC1G+RxMbadNn6Q3uaNGkYN24cAwYMMH5AfjaQAqhRo0aE9/3796dbt27kypULgOPHjxMSAj/+CDlywIgRltX04CBQky1b7ClZMmbqd3V1Zfv27UyfPt24hxIlShgNtl/Gy8sLwGhmffz4cUJDQ0mTJg179uxh7ty5iW40vXV0mbXR+WeffWaMJHoRBwcHOnXqZLyvW7cuBQoUMPqQjR07liRJksRCxdGXLFkyYwrfy0Y9WZu9f/bZZ3Tu3Bl4/mqFzwoMDKRatWp06NCBixcvAlClShXc3d357rvvWLNmDZUqVWL37t3cunXrhWGpiIi8mEIpERFJ1EwmE2nSpCFNmjSJ7gdSkWdZR0r98MMPlC5dmp9++skIKPLmzYuDw78D5D/88ENatWoVaVTNu+++y9SpU41wYu1aM4UKQa9ecP8+5MoFgwYdAEqQP/9NkidPRkyys7Oja9eunD17llGjRjFhwoRXPjZfvny4uLjg4+PD8ePHjUbpxYoVS7TPvnWkFFjCmg8//PCVj+3cuTOpUqUyRpEBzJo1i1OnTtGuXbsYrzWmmEwmI4x70ainsLAwoy9Z8+bNjT+r27dv4+/vH+Uxjx494uDBg0ycODFC4OXl5RVpGqu1Fmdn5ze+FxERSYDT90REREQkosePH3Pt2jUAGjduHCmccHZ2Jm/evEZwNWTIEGM0VFRSpCgHrGXjRssIq1SpYORIKFv2JAMHDgMsU+JiS/r06Rk+fPhrHePo6EidOnVYtmwZCxYs4N69e8C/q6ElRs+GUp06dXqt0U0ZM2bk0qVLODk5GaGdi4sL+fLli/E6Y1r27Nk5ceLEC0OpU6dO4efnh7u7O3ny5MHe3p5kyZLh4+ODt7d3pPucMGECX3zxBb6+vhG2mc1mqlSpEmv3IiLytlMoJSIiiVpQUJDRn2b8+PH6rbYkStape5kzZyZ58uRR7lO4cGFOnDhBzpw5nxtI3b8PX34J06dXB0xAMH37OvD553aEhz8kQ4ZiBAcHA5bGz/FN69atWbZsGQsXLsTDwwOwjJRKrLJly4bJZMJsNtOtW7fXPt76Z5TQvMpIqf379wOWUNLaZPydd97hyJEjXLp0KUIotX37dvr27QtYAtygoCC8vLzo2bOnGpSLiMQyTd8TEZFELTQ0lKlTpzJ16lRCQ0NtXY5IjAsPDzemuRUqVOi5+1lDpLZt20b6LCQEJkyAd9+FKVMgLMyEvf0qIB+dO58jeXI4e/YswcHBpEqVii1bttCiRYuYv5loqlevHu7u7ly5csUYFZaYR0o5Oztz4MAB9u7dazSEfxu8Sii1b98+IOKIPutx/+0rtX79egCaNGmCr68vu3btYtOmTQqkRETiQIIdKXX8+PEot5tMJlxcXMiSJYt+Gy4iIiKJ3sCBA/njjz9wdHRk8ODBz92vTZs2FCtWLNIoqZ07oXt3sC7eV7gw/PADDBv2NXv3/s3x48fJmzev0SQ9f/78VK5cObZuJ1pcXV1p1KgRv/zyCwAjR44kc+bMNq4qdiXmkWDPYw2XvL29I30WHh7OpUuX2LNnDxAxlLJOd/xvmLVlyxYA6tevj5OTE2XLlo2NskVEJAoJNpTy8vJ6YdNKR0dHWrZsyU8//YSLi0scViYiIiISN9avX8/48eMBmDt3bqSl6Z9lMpnImzev8f7uXRg8GObMsbxPmRLGjoWOHcHeHgoWLMjevXs5ceIELVu2NEKpLFmyxNr9xIThw4cTGBhIhw4dqFu3rq3LkVjw7Eipu3fvYjabSZcuHWFhYbRp04ZFixYZ+0Y1UmrChAn8/vvv/Pnnn2TNmpUDBw4AqHeUiIgNJNjpe8uWLePdd99lxowZHD16lCNHjjBjxgxy587Nb7/9xs8//8zmzZtfu0mmiIiISELw+PFjPvroIwB69eplrJj3MmFhMH065M79byDVqROcOwedO1sCKYA8efIAcO7cOYAEE0rlypWLxYsXK5BKxLJlywbAw4cPyZQpExkyZKBatWrUrFkzUiCVIUMG4/2zjeGvX7/OggUL2LlzJ6GhoWTLls04r4iIxJ0EO1Lqq6++YuLEiRGabBYqVIjMmTPz2WefsX//fpIkSUL//v35/vvvbVipiIiISMxbtmwZN27cIEeOHIwdO/aVjjl4ELp1s/wbwMsLpk6FMmUi75s7d24Azp8/DyScUEoSP3d3d1KlSsWDBw+MXoGbN28GLCMCFy1aRKVKlUiZMmWE44oXL26swAewdetWQkJCAKhatWoc3oGIiFgl2FDqxIkTZM2aNdL2rFmzGo0tvby8uHXrVlyXJiIiIhLrrP10atSogZub2wv3ffoUPv0UJk8Gsxk8PGDUKEsvKYfnfDdoDaUuXLhAeHi4QimJV9KlS8eDBw+Af1dWffDgAZUrV6ZChQpRHpM6dWpu3LjBzZs3yZUrF/v37zd+VlAoJSJiGwk2lMqTJw9jx45lxowZODk5ARASEsLYsWON4eY3btwgXbp0tixTREREJFZcu3YN4KWNvNevh65d4coVy/v334dx4+CZWU1RypYtG46OjgQEBHDt2jWu/HMChVISHzx69Mh43bt371deKS9JkiTkzJmTzJkzc/36dS5duoSHhwfvvfdebJUqIiIvkGB7Sk2ZMoXVq1eTOXNmqlevTo0aNcicOTOrV69m2rRpgGW51+7du9u4UhERsSVXV1cuX77M5cuXcXV1tXU5IjHm+vXrAHh6ekb5+YMH0K4d1K5tCaSyZoU//4Tffnt5IAXg4OBAzpw5ATh48CCPHz8GFEpJ/PD1119jZ2fH/PnzXzmQsjKZTBFWkGzbti1JkyaN4QpFRORVJNiRUmXLlsXb25tff/2V8+fPYzabadasGa1bt8bd3R2w/AUjIiJvNzs7OzWvlUTpeSOlzGZYtAh694Z798BksrwePRpe9+fu3Llzc+bMGTZu3AhAihQpjO+zRGypQ4cOvP/++zg7O7/R8ZUqVeLXX38FoGvXrjFZmoiIvIYEG0oBJE2alI8//tjWZYiIiIjEKbPZbIRSz46Uun7d0sh89WrL+/z5YeZMKF36za5j7StlDaU0SkrikzcNpADq169PmjRpqFSpEgULFozBqkRE5HUk6FDq77//ZsKECZw5cwaTyUS+fPno3bs3OXLksHVpIiISTwQHB/Ppp58ClpVbrX0IRRIyHx8f/Pz8AMtIKbMZ5s6FTz4BX19wdIThw2HIEIjOl7w1lLp06RKgUEoSj/Tp03Pnzh1blyEi8tZLsD2l1q9fT758+di/fz+FChWiQIEC7N27l/z58xu/zRMREQkJCeH777/n+++/N5b+FknorKOkUqVKxePHrjRsCB9+aAmkSpWCo0fh88+jF0jBv6GUlUIpSUxMJhMmk8nWZYiIvNUS7EipIUOG0LdvX8aOHRtp++DBg6lRo4aNKhMRERGJXdZQKmnSThQoAA8fWgKokSNhwAB4zb7Pz1WgQAGSJk3K06dPjfciIiIiMSXBhlJnzpxh8eLFkbZ37NiRCRMmxH1BIiIiInHkzJn7wGKuXGkOQJEiMG8exHRm5OHhwalTp9i/fz9hYWE0atQoZi8gIiIib7UEG0qlSZOGo0eP8u6770bYfvToUdKmTWujqkRERERi1/Ll8MUXTYCk2NmF8fnn9gwbZukjFRuyZMmiaXsiIiISKxJsKNW5c2e6dOnCpUuXKFu2LCaTiZ07d/LNN9/Qv39/W5cnIiIi8kaePHmCv78/6dKli7D96VNLI/NZswCSAifp1m0/X3zR0RZlioiIiERbgg2lPvvsM9zd3Rk3bhxDhw4FIGPGjHz55Zd88sknNq5ORERE5PX4+vrSvHlzNm/eDMDevXspVqwYAPv3Q5s2cPEimEyQJctCrlxpT6lSM21ZsoiIiEi0JNjV90wmE3379uX69ev4+Pjg4+PD9evX6dSpE9u3b7d1eSIiIiKvZfXq1WzYsIHQ0FBCQ0OZNm0aYWHw1VdQtqwlkPL0hA0bQggO7gcE4+npaeuyRURERN5Ygg2lnuXu7o67uzsAFy9epEqVKjauSERE4gtXV1dOnjzJyZMncXV1tXU5Is914MABALy8vABYuHAPFSuGMXw4hIVBy5Zw7BicOPEjt27dIn369JQsWdKGFYuIiIhET6IIpURERJ7Hzs6O/Pnzkz9/fuzs9NeexF/WUKpPnz6kTfsJfn672b3bHnd3y8p6CxZAYOAtRo0aBcCoUaNwc3OzZckiIiIi0ZJge0qJiIiIJBahoaEcOXIE8OCPPxpx9257ANzdT3DkSAFy5DCxb98+mjRpwqNHjyhYsCAffvihbYsWERERiSb9ylhERBK14OBgvvzyS7788kuCg4NtXY4IAGFhYZjNZuP9mTNn8PcviMl0jFWrkmFvb8bBYRRPnhThzJk13Lhxg7p163Lz5k3y5s3LH3/8gb29vQ3vQERERCT6EtxIqZUrV77w88uXL8dRJSIikhCEhIQwYsQIAAYOHIiTk5ONK5K33a1btyhYsCBJkiRh+PDhfPjhR4waFQDswGx2JHt2mD/fxIoVfnzzTRgDBgwgTZo0PHz4kCJFirB9+3aSJk1q69sQERERibYEF0o1atTopfuYTKbYL0RERETkDaxbt44HDx7w4MEDunQZysiRpbh+3dKwPHfuo+zf74WHB+TJM5gZM2Zw7tw5zp07h6urK7/99psCKREREUk0ElwoFR4ebusSRERERN7Y7t27AbC3r0xY2K9cv54JCAB6M3p0bTw8vABIkSIFf/zxB3PnzsXX15f27duTJ08em9UtIiIiEtMSXCglIiIikpDt2rUX+BSzeRRgAs6SLFln+vatznvvNYywb5UqVahSpYotyhQRERGJdQqlREREROLImTOPOHt2AlCd8HBo3x5GjEhNunQbcXFxsXV5IiIiInFKoZSIiIhILPLz8+PMmTM8flyc5s3dgOqYTP7Mnu1G+/YAqW1coYiIiIht2Nm6ABEREZHErH//gZQosYqaNc08fuwMHKdRo9H/BFIiIiIiby+NlBIRkUTNxcWF/fv3G69F4tL9+zBvXkugEmYzZMiwklu3WlKv3o+2Lk1ERETE5hRKiYhIomZvb0+JEiVsXYa8hfbvh6ZNwwgIqAT4kyXLGO7dGwcEUrZsWVuXJyIiImJzCSqUSpEiBSaT6ZX2ffjwYSxXIyIiIhKZ2QzTpkGfPhASYg+cB5py9epJwPL9TO7cuW1ZooiIiEi8kKBCqQkTJhivHzx4wOjRo6lVqxZlypQBYM+ePaxfv57PPvvMRhWKiEh8ExwczMSJEwH45JNPcHJysnFFkpj5+UHXrjB/vuV9vnxnOH26NOBr7FO2bFns7NTWU0RERCRBhVLtn+kI2rRpU0aOHEnPnj2Nbb179+bHH39k06ZN9O3b1xYliohIPBMSEsKgQYMA6N69u0IpiTXnzkHTpnDqFNjbwzffwPbtQzl92jfCfpq6JyIiImKRYH9Nt379emrXrh1pe61atdi0aZMNKhIREZG31e+/Q/HilkAqQwbYsgX694eDBw8AULFiRWNfhVIiIiIiFgk2lEqVKhXLli2LtH358uWkSpXKBhWJiIjI2yYkBPr2hebN4elTqFQJDh+GChXg1q1b3Lx5Ezs7Ozp37gxYGu+XLFnSxlWLiIiIxA8Javres0aMGMFHH33E1q1bjZ5Se/fu5c8//2TmzJk2rk5EREQSuzt3LGHUjh2W94MHw+jR4PDPd1e7d+8GIH/+/DRs2BAvLy/KlCmDm5ubjSoWERERiV8SbCjVoUMH8ubNy6RJk1i6dClms5l8+fKxa9cuSpUqZevyREREJBHbt8/SP+rGDfDwgLlzoVGjiPvs2rULgPLly+Ph4cGRI0fivlARERGReCzBhlIApUqVYr51eRsRERGROPDzz9C9OwQHQ548sHw55M4deT9rKFWuXLm4LVBEREQkgUiwPaUA/v77b4YPH07r1q25e/cuAH/++SenTp2ycWUiIiKS2AQHQ7du0KmT5XWjRpYRU1EFUv7+/hw+fBhQKCUiIiLyPAk2lNq2bRsFCxZk3759/PHHHzx9+hSA48eP88UXX9i4OhERiS9cXFzYsmULW7ZswcXFxdblSAJ16xZUqQLTp4PJZOkd9ccflql7UTlw4AChoaFkzJiRrFmzxm2xIiIiIglEgg2lhgwZwujRo9m4cSNOTk7G9ipVqrBnzx4bViYiIvGJvb09lStXpnLlytjb29u6HEmAdu+GYsUs/06WDFavhk8/BbsXfBe1c+dOwDJKymQyxVGlIiIiIglLgg2lTpw4QePGjSNtT5MmDQ8ePLBBRSIiIpLY/PQTVK5sGSmVLx8cOAB16778uLVr1wJQoUKF2C1QREREJAFLsKFU8uTJuXXrVqTtR44cIVOmTDaoSERE4qOQkBCmTJnClClTCAkJsXU5kkAEBUGXLvDxxxASYllpb+9eePfdlx97/vx5du/ejZ2dHc2aNYv9YkVEREQSqAQbSrVu3ZrBgwdz+/ZtTCYT4eHh7Nq1iwEDBtCuXTtblyciIvFEcHAwPXv2pGfPngQHB9u6HEkAbtyASpXgf/+z9I8aMwaWLAF39+cfs3PnTmO1vTlz5gBQu3ZtMmTIEAcVi4iIiCRMDrYu4E199dVXdOjQgUyZMmE2m8mXLx9hYWG0bt2a4cOH27o8ERERSYB274YmTeDOHUiRAhYsgFq1XnzM33//TeXKlQkLC6N69eocOXIEgA8//DAOKhYRERFJuBJsKOXo6Mj8+fMZOXIkR44cITw8nCJFivDuq4yrFxEREfmPOXOga1cIDoaCBWHZMsiR4+XH/fHHH4SFhQGwadMmANKmTUuDBg1isVoRERGRhC/BhlJWOXLkIMerfMcoIiIiEoWwMBg8GMaNs7xv0gTmzYMkSV7t+KVLlwLQv39/UqVKhbu7OzVq1MDZ2TmWKhYRERFJHBJUKNWvX79X3nf8+PGxWImIiIgkBj4+0Lo1/LNYHp9/Dl98AXav2HXz+vXr7Nu3D5PJRP/+/dVDSkREROQ1JKhQytqj4WVMJlMsVyIiIiIJ3cWL0LAhnDkDrq6W6XstWrzeOZYtWwZA2bJlFUiJiIiIvKYEFUpt2bLF1iWIiIhIIrB5MzRvDg8fQqZMsGIFFCv2/P3NZjMBAQG4ubkZ28LCwpgyZQoAzZo1i+2SRURERBKdVxycLiIikjA5OzuzevVqVq9erR4/iciff/5Jnz59CA4Ofu1jp02DmjUtgVTJknDgwIsDKYBffvmFJEmSMGfOHGPb77//zrlz50iRIgUdO3Z87TpERERE3nYJaqTUfx04cIAlS5Zw9erVSN+UWpuOiojI283BwYF69erZugyJYf369ePMmTPUqlWLOnXqvNIxISHQpw9MnWp536YNzJwJLi4vP/bXX38F4PPPP6dNmzaEhoYycuRIAPr06YOHh8eb3IaIiIjIWy3BjpRauHAh5cqV4/Tp0yxbtoyQkBBOnz7N5s2bSZYsma3LExERkVgSFBTE+fPnAbhx48YrHfPwIdSubQmkTCYYMwZ++eXVAqmQkBB2794NwLVr15gyZQr16tXj9OnTJE+enN69e7/xvYiIiIi8zRLsSKmvv/6aH374gR49euDu7s7EiRPJnj07Xbt2VaNRERExhISEMH/+fADatGmDo6OjjSuS6Dp37hxhYWEA3Llz56X7nzkDDRrA339D0qQwf76lwfmrOnz4MH5+fsb7vn37AuDu7s6qVatInjz5a9UvIiIiIhYJdqTU33//bUzHcHZ2xs/PD5PJRN++fZkxY4aNqxMRkfgiODiYDz/8kA8//PCN+g9J/HPq1Cnj9ctCqXXroHRpSyCVLRvs3v16gRTA9u3bAahYsSJp0qQBoFSpUmzevJny5cu/3slERERExJBgQ6mUKVPy5MkTADJlysTJkycBePz4Mf7+/rYsTURERJ5x5coVevTowe3bt2PkfK8SSpnNMG4c1K8Pvr5QsSLs3w8FC77+9bZt2wZAo0aNOHPmDDdv3mTv3r0UL178jeoXEREREYsEO32vQoUKbNy4kYIFC9KiRQs++eQTNm/ezMaNG6lWrZqtyxMREZF/zJ8/n/379wPEyGjml4VSQUHw8cdgXSivUyeYMgWcnF7/WmFhYezcuROwjJRKlSrVm5QsIiIiIlFIsCOlfvzxR1q1agXA0KFDGTBgAHfu3KFJkyb8/PPPNq5OREREwBLqWEczL1y4MEJvplexe/duPvvsM4KCgoxtLwql7tyBqlUtgZSdHUycCDNmvFkgBXD27Fl8fHxIkiQJhQsXfrOTiIiIiEiUEmwolTJlSjJmzAiAnZ0dgwYNYuXKlYwfP54UKVK80TmnTp1K9uzZcXFxoVixYuzYseOVjtu1axcODg54eXm90XVFREQSq2PHjhnT6p88ecLvv/9ufHb06FH69u2Lr69vlMceOHCAGjVqMHr0aGbPns3ff//NlClTuHDhgrHPs6HUsWNQsqSlb1SyZJZ+Ur17W1bbe1P79u0DoHjx4jg4JNgB5iIiIiLxUoINpdauXcv69esjbd+wYQPr1q177fMtWrSIPn368Omnn3LkyBEqVKhAnTp1uHr16guP8/HxoV27dpoyKCIiEoWtW7cCYG9vD8D//vc/zGYzgYGBNGnShAkTJjB9+vRIx929e5f69esbgdayZcto2LAhPXv2jHC+R48eERQUxLJlULYsXL0KuXLBvn1Qs2b067eGUqVKlYr+yUREREQkggQbSg0ZMsRYDvpZ4eHhDBky5LXPN378eD766CM6depE3rx5mTBhAp6enkybNu2Fx3Xt2pXWrVtTpkyZ176miIhIYmdtEt6rVy8cHR3ZtWsXS5cuZcKECVy+fBmAPXv2RDruu+++4+7du2TNmhWw/NLp9OnTxudNmzY1Ri4NHx5Ikybg728Jovbuhdy537zmgIAA+vTpQ+/evY3aFEqJiIiIxLwEOw79woUL5MuXL9L2PHnycPHixdc6V3BwMIcOHYoUZtWsWZPdu3c/9zjrVIJff/2V0aNHv/Q6QUFBEXpiWKcrhISEEBIS8lo1xxfWuhNq/SIxTc9E/GNnZ8dvv/1mvNZ/m7gTGhpqNAlv3rw5rq6ujBkzhs6dOxMQEGDst2fPHoKDgzH9M8/u3r17TJ06FYBJkyYxYMAAY8reRx99xODBg0mbNi3btx/k9u3RfP99MgB69Qrjm2/CcXCAN/3P7OvrS6NGjYy6rYoWLaqvHYkR+ntCJDI9FyIRJYZn4lVrT7ChVLJkybh06RLZsmWLsP3ixYskSZLktc51//59wsLCSJcuXYTt6dKle+7y1RcuXGDIkCHs2LHjlXtMjBkzhhEjRkTavmHDBtzc3F6r5vhm48aNti5BJF7RMxG/WP8fu2HDBhtX8na5du0aT548wdXVldu3b+Pl5UWGDBm4desWAIULF+bUqVPcuXOHOXPmGH8Pz58/H39/f3LkyEF4eDgFChQwQqn8+fNz+vRpduy4xMOHy4GC2NmF8fHHJ6hW7QrR/U+8ePFidu7ciclkwmw2A5Y+lseOHePYsWPRO7nIM/T3hEhkei5EIkrIz4S1BcPLJNhQqmHDhvTp04dly5aRI0cOwBJI9e/fn4YNG77ROU3/6YRqNpsjbQPLSkKtW7dmxIgR5MqV65XPP3ToUPr162e89/X1xdPTk5o1a+Lh4fFGNdtaSEgIGzdupEaNGjg6Otq6HBGb0zMh8q8//vgDgMyZM1O7dm0cHR3JnTs3s2fPpnbt2lSpUoXy5ctz8OBB3NzcqFu3LgADBgwAYOTIkdSrV4/MmTOzatUqypcvT8+ePTlwwES3bvYEB5uAe/Trt5evv64N5I9Uw+PHjxk7diwtWrSgaNGiL615ypQpgOUXST/++CPXr1+nQoUKRm0i0aW/J0Qi03MhElFieCaet5DNfyXYUOq7776jdu3a5MmTh8yZMwMY3zh+//33r3Wu1KlTY29vH2lU1N27dyONngLL6kEHDx7kyJEjRsPV8PBwzGYzDg4ObNiwgapVq0Y6ztnZGWdn50jbHR0dE+wXmlViuAeRmKRnIv4IDQ1l2bJlADRu3FgrqMUh6+gmT09P45koXLgwEyZMMPYpU6YMBw8e5MCBA3zwwQdcuXKFixcvYm9vT7169XB0dKR48eJcvHiRVKlSsWSJIx07QlAQJE9+ncePK5AyZRccHRtEWcPQoUP5+eefmT9/PidOnCBNmjTPrTc8PJwDBw4AUKNGDfLnz0/Xrl3p1KmTnmeJcfp7QiQyPRciESXkZ+JV606w35knS5aM3bt3s3HjRo4dO4arqyuFChWiYsWKr30uJycnihUrxsaNG2ncuLGxfePGjbz33nuR9vfw8ODEiRMRtk2dOpXNmzfz+++/kz179te/IRERiRVBQUG0aNECgKdPnyqUikPWxuTWXx5FpUyZMkyePNloKP7XX38BULJkSZIlS2bs5+mZleHDYcwYy/sGDSBHjhlMmODNnTt3ojz3kSNHmDVrFgB37tyhU6dOLF++PMpR0GAJ0R4/foyLiwsFCxakaNGi3Lhx4/VuWkREREReWYL+ztxkMlGzZk1qxsCaz/369aNt27YUL16cMmXKMGPGDK5evcrHH38MWH7TeuPGDebNm4ednR0FChSIcHzatGlxcXGJtF1ERORtdebMGeDFoVSFChUAOHjwINevX2fTpk0AVK9e3djnyRNo2xZWrLC8HzIEvvoKJk5MAfDcUGrQoEGYzWYqVKjAvn37WLlyJX/88QfNmjWLcv99+/YBUKxYsQT7W0kRERGRhMTO1gW8rn379rFu3boI2+bNm0f27NlJmzYtXbp0ibDC3atq2bIlEyZMYOTIkXh5ebF9+3bWrl1rLEV969Ytrl69GiP3ICIiktiFhYVx9uxZwDJ973kyZ85MxYoVMZvN/Prrr5FCKW9vKFfOEkg5O8Mvv1hGS9nZYUyxj2o0082bN41zzZ0711hhd+DAgQQGBkZZizWUKlWq1BvcsYiIiIi8rgQXSn355ZccP37ceH/ixAk++ugjqlevzpAhQ1i1ahVjrGP7X1P37t3x9vYmKCiIQ4cORZgKOGfOHLZu3frCuo4ePfpG1xUREUlsrH+fOjs7kzZt2hfu27ZtWwDGjh3LvXv3cHNzo3Tp0mzfDiVKwIkTkD49bNsGH3zw73GFChUCLKOs/hs0rfhnWFXp0qXJnj07gwYNIlOmTHh7ezNx4sQo61AoJSIiIhK3ElwodfToUapVq2a8X7hwIaVKleJ///sf/fr1Y9KkSSxevNiGFYqIiIi1n1Tu3Lmxt7d/4b7NmjXD2dkZHx8fAPr3788vvzhRvTrcvw9Fi8KBA/DfrCh//vxkzJiRgIAAduzYEeGzpUuXAtCkSRMAkiRJwogRIwD49ddfI9Vw4cIF45dLpUuXfr2bFREREZE3kuBCqUePHkVYEW/btm3Url3beF+iRAmuXbtmi9JERETkH9YFQfLkyfPSfZMnT877778PQN++A/HxGUGnThASAi1awI4dEFVbKpPJRK1atQBYv349AOvWraNPnz5s2bIFIMICJo0bN8be3p6TJ0/i7e0d4VyffvopYWFh1K9fnyxZsrz2/YqIiIjI60twoVS6dOm4fPkyAMHBwRw+fJgyZcoYnz958kTNSUVERGxo4cKFjBw5EoCiRYu+0jHTpk1jz54znDr1LZMmWVbHGzkSFi4EN7fnH/dsKHX27FkaN27MxIkTCQsLo0CBAuTMmdPYN2XKlJQrVw6ANWvWGNsPHjzIkiVLMJlMfP311691ryIiIiLy5hJcKFW7dm2GDBnCjh07GDp0KG5ubsbKPQDHjx8nR44cNqxQRETiEycnJ2bPns3s2bNxcnKydTmJ3p07d2jXrh1BQUHUr1+frl27vtJxV6+60KFDHjZssIRQv/8On30GJtOLj6tevTomk4mTJ0/SsGFDgoKCKFKkCO+//z4//vhjpP3r168PwOrVq41t8+fPB6BVq1YULFjwFe9URERERKLLwdYFvK7Ro0fTpEkTKlWqRNKkSZk7d26EHzJmzZpFzZo1bVihiIjEJ46OjnTo0MHWZbw1/vrrL0JCQihUqBArVqwgLCzspcds3GiZpvf4MXh6wsqV4OX1atdLlSoVVapUYfPmzVy4cIFkyZKxcuVKMkc13w9LKDVo0CC2bNmCn58fSZIkYefOnQA0aNDgFe9SRERERGJCggul0qRJw44dO/Dx8SFp0qSRmqcuWbKEpEmT2qg6ERGRt9vGjRsBy8hmOzu7F4ZSZjP8+CP07QthYVCmDCxbBs+0jnwlK1asYPny5ezYsYOWLVs+N5ACS4+rLFmycPXqVfbt20fJkiU5cuQIAOXLl3+9C4uIiIhItCS4UMoqWbJkUW5PmTJlHFciIiLxWWhoqNEEu1atWjg4JNi/+uI9s9nMpk2bAMu0uhcJDoZevWDGDMv79u3hp5/A2fn1r5s0aVI++OADPvjgg5fuazKZKFu2LFevXmXPnj2YzWbCwsLIkiULnp6er39xEREREXlj+s5cREQSNWtvI4CnT58qlIpF58+f5/r16zg7O79w1NH9+9CsGWzbZukZ9d130K/fy/tHxZTSpUuzcOFC9uzZQ2hoKKBRUiIiIiK2oO/MRURE5LUEBgayceNGKlasaIxc3rNnDyNGjACgXLlyuLq6RnnsyZPQsCFcvgzu7pbV9erWjbPSAYxVe/fu3UtgYCCgUEpERETEFhRKiYiIyGuZPHkygwYNIlWqVCxZsoScOXNSuXJlgoODAWjUqFGUx61eDe+/D0+fQo4clobm+fLFYeH/8PLywsXFhQcPHrBlyxZAoZSIiIiILdjZugARERFJWA4dOgTAgwcPqF27NsOGDSM4OBgvLy82b95Mz549I+xvNsN339nRsKElkKpSBfbts00gBeDk5ESxYsUACA8Pp0aNGhQoUMA2xYiIiIi8xRRKiYiIyGu5cOGC8To4OJhff/0VgMGDB1OlShVMzzSHCgiAH34oyqef2mM2w8cfw/r1kCpVnJcdQenSpQFwd3dn5syZEWoWERERkbihUEpERERemdls5vz58wAsXboUe3t7AFKnTk3jxo0j7HvjBlSrZs/27Z44OJiZOhWmTQNHxzgvO5IuXbpQtmxZfvnlF7JkyWLrckRERETeSgqlREREJEqBgYH89ttv3Llzx9h269Ytnj59ir29PfXq1TOm6n388cc4Ozsb++3fDyVKwMGDdri7B7F2bRjdusX5LTxXrly52LVrF++9956tSxERERF5a6nRuYiIJGpOTk78+OOPxmt5dVOmTGHAgAEkT56chQsXUqtWLWOUVPbs2XFycmLcuHE0adKEsmXLGsf9+it06gRBQZA/v5levbZTuXJlG92FiIiIiMRXCqVERCRRc3R0pEePHrYuI0Fas2YNAI8fP+a9997D29ubc+fOAZaRRgD29vZUrFgRgLAwGDYMvv3WcnzDhjB7dig7dvjHffEiIiIiEu8plBIRERHu3LnDnj17SJYsGVWqVMHf359du3YB4OrqSkBAAGvWrDFGSuXOnTvC8b6+0Lo1/JNj8emnMHKkJagSEREREYmKQikREUnUwsLC2LFjBwAVKlQwGnPLv7Zt20b16tUJDQ0F4ODBg9y/f5/g4GA8PT3p1KkTX3zxBWvWrCE4OBj4d6QUwMWLllFRZ86AiwvMng2tWlk+UyglIiIiIs+jUEpERBK1wMBAqlSpAsDTp09JkiSJjSuKf1atWmUEUgCTJk0iTZo0ANSoUYN69erxxRdfsGHDBlKlSgX8G0r99Rc0bw6PHkGmTLBiBRQrFvf3ICIiIiIJj1bfExERecsdOHAAgG7/LI+3cOFCfv/9d8ASShUpUoT06dPj5+fH1atXAciTJy+TJ0OtWpZAqlQpOHBAgZSIiIiIvDqFUiIiIm+xsLAwDh06BED37t0pXbo0wcHBXLlyhZQpU1KjRg3s7OyoW7euccynn47giy8y0Lu3ZXpeu3awdStkyGCjmxARERGRBEmhlIiIyFvs7Nmz+Pn5kSRJEvLmzcvnn3+Ovb09lSpVYs+ePcZ0vf79+1OrVi3+978VbNv2OTNngp0dfP89zJlj6SUlIiIiIvI61FNKRETkLWadule0aFHs7e2pU6cOT548wdXVNcJ++fLlY+zYP3nvPbh6FTw8YOFCqFPHFlWLiIiISGKgkVIiIiJvAbPZTEhISKTtBw8eBKBEiRLGtv8GUgC//w7lylkCqXffhX37FEiJiIiISPQolBIREXkLtG3blvTp03Pu3DnMZjPBwcHcunWLDRs2ABFDqWeFhcGwYZYV9vz9oUYNSyCVJ09cVi8iIiIiiZGm74mISKLm6OjIt99+a7x+G/n5+bF48WJCQkIYMmQI/v7+bNiwAZPJhNlsJmnSpFSqVCnScY8eQZs2sG6d5f2AATBmDDjouwcRERERiQH6tlJERBI1JycnBg4caOsybCIkJAQ/Pz8OHDhgTN1bvny58bnZbKZ48eL8/PPPZPjP0nmnTkGjRnDxIri6wsyZ0Lp1HBYvIiIiIomeQikREZFEKDw8nPr167N9+3aqVq0KYIyMMplM/PHHHxQvXpzMmTNjMpkiHLt0KbRvD0+fQtassGwZFClii7sQERERkcRMoZSIiCRqYWFhHD58GPh3hbm3wdy5c41+UWvXrgXgyy+/ZNu2bbRp04bGjRtHOiY8HL74AkaPtryvUgUWL4bUqeOsbBERERF5iyiUEhGRRC0wMJCSJUsC8PTpU5IkSWLjimLfo0ePopyy2K5dOz7//PMoj3n8GD74ANassbzv2xe+/Vb9o0REREQk9mj1PRERkURmw4YNPHjwgFy5ctH6n0ZQ2bJlI1u2bFHuf+YMlCxpCaRcXOCXX2D8eAVSIiIiIhK79O2miIhIInPx4kUAypQpw6hRo7h58yZt27aNct8VK6BtW3jyBDw9YflyKFo0DosVERERkbeWQikREZFE5u+//wYgR44ceHp6smXLlkj7hIfDyJEwYoTlfaVKlv5RadPGZaUiIiIi8jZTKCUiIpLIPBtKRcXX1zI6auVKy/veveH778HRMa4qFBERERFRTykRkbfSkiVLaNSoEffu3bN1KRILrNP3ogqlTp2y9I9auRKcnWHOHJg4UYGUiIiIiMQ9hVIiIm+ZBw8e0KlTJ1asWMGECRMICgri2rVrti5LYkhAQAA3b94EIodSCxdCqVJw7hxkzgw7dkD79raoUkRERERE0/dERN463377Lb6+vgDMmTOH/fv3s3nzZlatWkXdunVtXF3Mc3R05IsvvjBeJ3aXLl0CwMPDg1SpUgEQHAwDB8KkSZZ9qlWDBQsgTRpbVSkiIiIiolBKROStcvfuXSZPngxYApqbN28ao2q6devG6dOnSZIkiS1LjHFOTk58+eWXti4jzjzbT8pkMnHzJjRvDrt3Wz4fOhRGjQJ7exsWKSIiIiKCpu+JiLxVNmzYQEBAAIULF+bjjz82tjs7O3P16lVGjhxpw+okJjwbSm3dCkWKWAKpZMlg+XL4+msFUiIiIiISPyiUEhF5i+zYsQOAGjVq0K1bN1xdXalSpQq//fYbALNnzyY8PNyWJca48PBwTp06xalTpxLdvUXFGkrdv/8h1avD3btQqBAcPAjvvWfj4kREREREnqHpeyIib5Ht27cDULFiRfLmzcvNmzdJkiQJZrOZJEmScO/ePY4fP46Xl5dtC41BAQEBFChQAICnT58muumJ/3Xu3C3gd7ZutfQHa9sWpk8HNzfb1iUiIiIi8l8aKSUiksgFBgYyefJkFi1axNmzZzGZTJQvXx6A5MmT4+joiJOTE5UqVQJg06ZNtixXomHnzkf89dcYoCkODuFMnQpz5yqQEhEREZH4SaGUiEgiduHCBUqXLk3v3r1p1aoVAAUKFCBFihSR9q1RowYAGzdujNMaJWYsWABVqybBbM6Fo+Ntduww0a0bmEy2rkxEREREJGoKpUREEoHw8HBjFT2rO3fuUL16dY4dO4ad3b//u69YsWKU57CGUjt27CAwMDD2ipUY9eRJMIUKbaN1awgJcQI2MmHCDkqXVholIiIiIvGbQikRkQTmyZMnNGjQgFatWvH48WMAhg0bRqZMmRg3bhwAoaGhNG7cmKtXr/Luu+9y4cIFypQpA0D9+vWjPG++fPnIkCEDAQEBxmipffv2Ubt2bRYuXBj7Nyav7dSpADJm/JsTJyr9s+Ur0qXrQKdO6mguIiIiIvGfGp2LiCQg4eHhtG/fntWrVwNw8uRJFixYwOTJkwEYOHAg+fLlIzg4mD179pAsWTJWr17NO++8w5YtWzh37hyFChWK8twmk4nWrVszbtw4vv76ay5evEi/fv0AuHnzpjH9D+D8+fM0bdqUrl270rNnz1i+a4nK0qXwwQd2BATkxWR6SLdue0mdOpjatX/HycnJ1uWJiIiIiLyUQikRkQRk7NixLFu2DCcnJ1KmTMmpU6coVaoUAQEBODg4EBoaStu2bSlWrBgAnTp1IleuXAA4Ozs/N5CyGjBgAFOmTGHv3r3s3bvX2H7ixAlCQ0NxcHAw6jh58iS9e/cmb968VKtWLZbuWP4rKAgGDgxn8mQ7wBnYzciRFxg+vD1Q18bViYiIiIi8Ok3fExFJINatW8fw4cMBmDJlCrt37yZt2rQEBAQAMH36dPLmzcuDBw/YsGEDAG3btn2ta6RPn56uXbsa70eNGoXbP0u3/f333wA8fvzYmM5nNpt5//33efDgQfRuLhY5OjoyYMAABgwYgKOjo63LiZbLl6FUqeB/AimAb0matD6ffNLEpnWJiIiIiLwJhVIiIjHI19eXefPmcejQoRg/b5s2bTCbzXTt2pVOnTqRPXt2Vq5ciZubGzlz5qRt27aMGTPGOKZAgQIvHRkVlU8//ZR69eoxceJEhg8fTr58+QDLVEGA+fPnExAQQN68ecmfPz/37t1j1KhRMXOjscDJyYnvvvuO7777LkFPa1u+HIoWhWPHnICHQH1gMB07tsXd3d22xYmIiIiIvAGFUiIiMejLL79k6dKlfPzxxzF63l9//ZVHjx6RK1cuJk6caGwvVaoUly9f5uDBgzg5OdGwYUPKly8PQIcOHTCZXn8FtjRp0rB69Wp69+4NWMItsIRS4eHhTJs2DYBu3boZtUyZMoULFy5E6x4lasHB0LcvNG4Mjx9D8uRnAS9Kl35A3bp1GTJkiK1LFBERERF5IwqlRERiyJUrV5gxYwYAx44d4+zZszFyXrPZzPTp0wHo3r07zs7OET5PmzYtyZIlAyzNypcuXcqcOXP45JNPYuT61lDq1KlTrFq1ilOnTuHh4UHbtm2pVq0aderUITQ0lG+++SZGrhfTwsPD8fb2xtvbm/DwcFuX81q8vaFCBZgwwfK+b99QgoJKAdeYPn06a9asIUOGDDasUERERETkzSmUEhGJprCwMGbMmEHTpk0JDg42ti9atChGzr9jxw5OnDiBi4sL7dq1e+n+adKkoX379kZT8ujKnz8/YBkp9dVXXwHQo0cPkidPDlhGTAHs378/Rq4X0wICAsiePTvZs2c3+m8lBL//DkWKwP79kCKFmd69N+Hm9iUBAb6kT5/+jaZmioiIiIjEJ1p9T0TkH6tXr+bx48eUKFGC3Llzv/Jxo0eP5ssvvwQsK9xVr16dNWvWsGDBAoYPH469vf1r1REWFkZYWBhOTk7MnTuXnj17AtCqVStSpEjxWueKCdaRUmfOnAHA1dWVPn36GJ8XLFgQgLNnzxISEpLgm4nbmp8f9OkDM2da3pcqBa1aLadv33+bmdesWfONpmaKiIiIiMQnGiklIgIcPXqUBg0a0LZtW/LkycP69etfuP/t27cpW7YsTZs2ZfTo0QAMHjyYgwcP0qZNG5ydnTl37hyenp789ttvr1xHeHg4xYoVI0eOHHzzzTd06NCBp0+fUr58ecaOHRute3xTmTJlivB+2LBhpE2b1nifNWtW3N3dCQkJ4dy5c3FdXqJy9CgUL24JpEwmGDoU1q/3Z9w4S38va8DZokULG1YpIiIiIhIzFEqJiAA7d+6M8P7bb7994f6//PILe/bsYenSpYSGhtKoUSPGjBlD7ty5cXNzY/LkyaRMmZJbt27xwQcfMGvWrFeq49q1axw7dozr168bDax79OjB1q1bSZcu3ZvdXDSZTCZ69epF5syZWbJkCcOHD4/0uXU01YkTJ4ztZrP5ta5z8eJFunbtyvXr16NfdAJjNsOoUU8oUSKMs2chY0bYtAm+/hqmTp3I9evXyZo1K1evXuXo0aPUq1fP1iWLiIiIiESbQikREeDAgQMAfPjhh9jb27N582aOHz/+3P3/+usvwNJvqXLlykydOjXCdKoOHTpw69YtevTogdlspnPnzq+0Ot3p06cjvK9atSoTJkx47SmAMW3SpElcvXqVZs2aRfm5dQrfiRMnMJvNNGjQgLx583Lr1q1Xvka3bt2YMWOG0bfqWeHh4YwZM4ZixYqRNWtWvvvuO0JDQ9/sZuKZO3egXj34/HN3QkPtSZ9+P0eOhFO1qiXYswaaI0eOJGPGjBQuXNjGFYuIiIiIxAyFUiIiwMGDBwFo0qQJTZpYevdMnDgxyn2Dg4PZsWMHAL/99htbtmyJcgU0JycnJk+eTJUqVQgPD2fx4sUvrcMaStWtW5elS5eycuXKGGtYHl0v6mH0bCh1+PBhVq9ezblz52jdujVhYWEvPffJkyfZtGkT8G/g96w5c+YwbNgwDh8+zNWrVxk0aBC1a9d+pXPHZ+vXQ+HCsG4dQADQndu3S/G//40BLH8uFy9exNnZ2fi6FBERERFJLBRKichb7+nTp0YT7+LFixtNvH/55Rd27NhBiRIl6N69u7Gy3r59+/D39ydNmjTGtLXnMZlMtGnTBoDff//9pbVYQ6kSJUrQuHFjkiRJ8qa3FaesodTJkyeZO3eusX3r1q1Rjnz6r0mTJhmvL1y4wLVr14z39+/fZ+DAgQAMGjSIGTNmkCRJEv766y8mT55s7Ofv70/Lli0pWrQo1apVe61RWnEtKAj694fatS0jpVKmvAmUIHPmVQCMGDGC69evs3TpUgBq1apF0qRJbVixiIiIiEjMUyglIm+9w4cPYzabyZw5M+nTp6ds2bJUqlSJkJAQqlWrxsGDB5k2bRoNGjTg6NGjrF69GrBMrbOze/n/Rt977z3s7e05evQoFy9efOG+1nAsX7580b+xOGQNpby9vfn1118BaN++PQCjRo3i0KFDzz326dOn/PLLLwCkTJkSgM2bNxufDxo0iIcPH1K4cGG++uorOnfuzLhx4wD49NNPjWmR06ZNY/HixRw5coTNmzczZcoUABwcHOjevTvdu3e36aizsLAwqlevTrFirSlSJIDx4y3bP/ookICAgsAp5s6dS8WKFQkJCWHcuHEsW7YMQKOkRERERCRRUiglIm8969S9EiVKGNs+++wzAEJCQnBzc8PNzY0NGzZQpEgRowl6tWrVXun8qVOnpkqVKsCLR0uZzWZjpFRCC6VSpkxJ0aJFAXj06BHp06dn5syZNGvWjNDQUD744AMuX76Mj48PPj4+EY7dunUrgYGBZM+ena5duwL/TuHbvn07s2fPxmQyMX36dCNU6ty5M1WqVMHf35/69etz8+ZNvv/+ewBq1KgBwMKFCzGbzTg7OzNlyhSmTJmCs7NznPx5ROXw4SP89VceDh+eyZkzrri7B7N8OeTKNYmAgIcUKlSIKlWq8OmnnwIwefJkjh07hr29PQ0aNLBZ3SIiIiIisUWhlIi89axNzosXL25sq1q1KhUrVgTghx9+YOfOnTRr1gxHR0dcXFwoX748TZs2feVrNGrUCMDom/TgwQPMZjM7d+4kd+7cLFy4kFu3buHj44O9vT3vvvtuDN1d3Fm5ciXt27fH0dGRoUOH4uDgwNSpU0mfPj1nz54lb968pEiRglSpUlGzZk28vb0B2LBhA2CZomYN+lasWMGgQYNo164dAF26dKF06dLGtezs7Jg/fz5ZsmTh/PnzvPvuu9y+fRtPT08WLVqEm5sbf//9txE42tqNG/DBB6mBHwE3YCPgRd68540piH369MFkMlGjRg2KFy9OWFgYdnZ2fPHFF8YIMhERERGRxEShlIi81cxmM1u2bAGgbNmyxnaTycTy5cvZu3cvXbp0oUiRIixZsoSnT5/i5+fHjh07XisoKFOmDACHDh1i5cqVpE6dmk6dOtGpUyfOnz9P586d+fPPPwHIkSOHTUf0vKlMmTIxZ84cgoKC6N27NwBp0qRhz549lC9fnqCgIMxmM2FhYWzcuJFevXoBsH79egBq1qxJuXLlKFCgAL6+vnz33XdcuXKFjBkzMmbMmEjXy5AhA2vXriV9+vT4+/sDMHToUFKkSEHDhg0BWLBgAWazmXv37nHv3j3MZnNc/FFEsGgRFCwI589nAwJo0GAjZcqM4MmTMxQtWpTr16+TNm1a3n//fcDytbdo0SJGjBjBqVOnjFF7IiIiIiKJjUIpEXmrnTp1ijt37uDq6moER1YpUqSgVKlSEbY5OTm9Uh+p/ypQoADOzs48fvyY0aNHAzBr1izOnTsHWPoq9ejRA0h4U/f+67+r9GXLlo2tW7dy+PBhbt++zf79+wFYu3YtO3bs4Pz589jb21O1alVcXFzYs2cPM2bMoG3btkyaNIkjR46QIkWKKK+VP39+Ll++zO7du1m9ejUff/wxAK1atQJg2bJl+Pv7kzZtWtKmTWuEV3Hh0SNo0wZatbK8trc/AhTls8+Ss2jRAjw9PfHz8wOgV69euLi4GMe+8847fP755+TJkyfO6hURERERiWvxY51xEREbsU6nq1ixYqyOTnJycqJw4cLs37/fmC5oNXDgQCZPnkxgYCAAdevWjbU6bMXe3p4iRYoAkC5dOqpUqcKWLVvo0KEDAKVLlyZZsmQAJE2alM6dO9O5c+dXOreLi0ukQLFatWrY29vj7e3N1atXY+5GXtGmTdChg2XanskURqpUP3H//ickTepCkSJFcHBw4Ny5cxw7dox79+5Rp06dOK9RRERERMTWFEqJyFvNGkq9atPy6ChevLgxSsjNzY2hQ4fy6NEjxowZQ6tWrbh48SIlSpQge/bssV6LrXXp0oUtW7Zw6dIl4N+RTTEladKkFC9enH379rFz584YPfeLBATA0KEwcaLlfbZswXh7V+D+fct/93LlyhnN2l1dXSP0yRIRERERedsolBKRt1ZISAjbtm0DoHr16rF+vWdX96tQoQLDhw833hctWtRYve5t0LhxYwoWLMitW7f4+uuv+eijj2L8GpUrV2bfvn1s3749xs8dlV27oGNHOH/e8r5bNyhefBkffbTf2KdJkyZxUouIiIiISEKgnlIi8tbatGkTT58+JVWqVBQuXDjWr/fs6n5xMTIrPnN2dubQoUPcvXuXzp07v1GfrpepVKkSQKyPlPL3h379oEIFSyCVMSOsXQtTp8KRI5Zr9+7dm5s3b9KlS5dYrUVEREREJCFRKPWMqVOnkj17dlxcXChWrBg7dux47r5Lly6lRo0apEmTBg8PD8qUKWOsICUiCcO0adMA+OCDD2IlFPmvPHny4OHhAUCNGjVi/XrxnaOjY6Sm6DGpXLly2NnZ4e3tHSPn8/X1pV+/fpw8edLYtnMneHnBDz+A2QwffginToG1RdSePXsAy8qOGTJkiJE6REREREQSC4VS/1i0aBF9+vTh008/5ciRI1SoUIE6deo8t0Hu9u3bqVGjBmvXruXQoUNUqVKFBg0acOTIkTiuXEReldls5sGDBwBcuXKFNWvWANCtW7c4ub6DgwN//PEH8+bNw8vLK06u+Tbz8PCgWLFiMXa+cePG8cMPP1CwYEH8/Mz07QsVK8KFC5Apk2V01KxZkDy5ZX9/f3+OHTsGEKkRu4iIiIiIqKeUYfz48Xz00Ud06tQJgAkTJrB+/XqmTZvGmDFjIu0/YcKECO+//vprVqxYwapVq4wVpkQk/vD29uaDDz5g9+7dzJ07l+PHjxMeHk7VqlXJnTt3nNURF72r5F+NGzfmwIEDZMiQgZo1axpNxp8nODiYoKAg3N3dI3327wip8uTM6c/t20kASx+p8ePhn8UDDYcOHSI0NJQMGTLg6ekZE7cjIiIiIpKoKJTC8kPIoUOHGDJkSITtNWvWZPfu3a90jvDwcJ48eULKlCmfu09QUBBBQUHGe19fX8DSbDkkJOQNKrc9a90JtX55Ozx58oQyZcpw+/ZtAHr27Im/vz8APXr0iNGvXz0T8UuTJk0YNmwYd+7cYfTo0djZ2b3wv02zZs3Ytm0bBw8eJFu2bBE+u3nTF5gA9OL2bTvgGtWrL2b69N4A/Pe01l5WpUqVIjQ0NMbuKaHRMyESkZ4Jkcj0XIhElBieiVetXaEUcP/+fcLCwkiXLl2E7enSpTN+iH2ZcePG4efnR4sWLZ67z5gxYxgxYkSk7Rs2bMDNze31io5nNm7caOsSRJ7r6NGj3L59mxQpUpAsWTKjx5C159DatWtj/Jp6JuKPd999lwsXLjBq1Cjq1q373P2Cg4NZu3YtYWFhjB07loYNGxqfHTqUln37fgay/LPlf8AAtm71Z+HCtEavsGfNnz8fgNSpU8fK11hCo2dCJCI9EyKR6bkQiSghPxPWQQAvo1DqGf9tuGs2m1+pCe+CBQv48ssvWbFiBWnTpn3ufkOHDqVfv37Ge19fXzw9PalZs2aUP9AkBCEhIWzcuJEaNWrg6Oho63ISrLCwMOzs7GK16XNCFh4eztatWylXrhzOzs6vffzp06cBqFq1Kv3796dixYqkTZuW33//nVSpUsVorXom4p/z588zaNAg9u7dy8SJE7G3t4/wub+/P76+vly7do2wsDAAbt68Sd26dblzB/r3t2fxYmsLRm969jxJ0qSXWLs2G8ePH+fWrVu0atUqwjkfPHjA2bNnARg0aFCkUVdvEz0TIhHpmRCJTM+FSESJ4Zmwzgx7GYVSWH6LbW9vH2lU1N27dyONnvqvRYsW8dFHH7FkyZKX9opxdnaO8gdqR0fHBPuFZpUY7sFWTp8+TfHixenWrRvjxo17o3PMnDmTBw8eMGjQoEQZbI0dO5ahQ4fyySefROrn9iqszaaLFy9OmTJlOHnyJMmSJSN9+vQxXOm/9EzEH02bNmXQoEEcP36cX375hc6dO0f4/IMPPmDjxo107NjR2LZt23ZmzYKhQx159Ajs7MyEh48jQ4afmDz5AlCfd955hy5dujBz5kwGDhwY4dnbtGkTYWFhFCpUiHfffTeubjVe0zMhEpGeCZHI9FyIRJSQn4lXrVur7wFOTk4UK1Ys0tC4jRs3UrZs2ecet2DBAjp06MBvv/1GvXr1YrtMSaTmz59PQEAA48eP5++//37t4x8/fkyXLl0YMmSIsfx8YhIWFsa0adMAmDdvXoS+bK/KuiqmdRGC3Llzx2ogJfHLs79cGDZsGD169ODAgQMAPHr0iLVr1xIUFMRPP/30z17vEhCwmo8/tgRSRYrAZ5+tBgaSN28W41ytWrUiadKkXLhwIdKzt3LlSoAIUwBFRERERCQihVL/6NevHzNnzmTWrFmcOXOGvn37cvXqVT7++GPAMvWuXbt2xv4LFiygXbt2jBs3jtKlS3P79m1u376Nj4+PrW5BEqhnR+iNHTv2tY/ft28fZrMZsIyYSmz++usvrl69ClgChDVr1rzW8U+ePOH8+fMAWhlTuH//PlOnTjX+f75582bCw8MBCA+3Bz4FjgNVcHQM5vvvYf9+CAqyLHrx7EqN7u7uvPfeewAsWbIEgMDAQIYOHcry5csBhVIiIiIiIi+iUOofLVu2ZMKECYwcORIvLy+2b9/O2rVryZo1KwC3bt0yfjAG+OmnnwgNDaVHjx5kyJDB+OeTTz6x1S1IAvHw4UMOHz5svLf2OwKYO3eu0YT7VT07QmPRokUsXbqUffv2RbvO+GLGjBkAJEmSBIBffvnltY63Tt3LnDnzC3u+ydth7NixODg4cPbsWS5cuMCGDRv++aQCcBgYDbgAf5IvXwv69wcHBzh37hwAefLkiXA+6+IWS5YsITw8nI8//pixY8cSEhJC8+bNKVasWFzdmoiIiIhIgqNQ6hndu3fH29uboKAgDh06RMWKFY3P5syZw9atW433W7duxWw2R/pnzpw5cV+4JBi7d+8mX758FCtWzBjhdObMGcAyxSgkJIRhw4a91jn37t1rvPb396dp06ZUqlSJO3fuxGjtcS0sLIz+/fvzxx9/ABhTq9asWcOjR49e+TzWAFCjpASgZ8+eVKpUCYDVq1ezbt0RYB6wHSiAnd19fvjhLlCHU6fW4O/vj9ls5tSpU0DEkVIAtWrVwsPDgxs3btC7d2/mzp2LnZ0dixYtYtGiRdjZ6a9ZEREREZHn0XfLInHkzJkzVKlSxQiLVqxYwa1bt/Dx8cHe3p4VK1ZgMplYsGBBhKDpRcLDw419u3fvbmwPCgpi/fr1MX8TseD27dv0798/wugxgGnTpjF+/HgAvvrqK9q0aUPevHmNlShe1e7dlmlXCqXEqkGDBoA9X3/tx7VrG4G2mExm4CfatPmKTz5JQ4YMGQgNDeXAgQOsWrWK8+fP4+zsHOnryNnZmUaNGgEwZcoUAIYMGUKLFi0S5aIDIiIiIiIxSaGUSByZO3cuwcHBeHh4AJbVuaxT93LkyEGpUqVo3749ADVq1OCrr77ixo0bLzzn2bNn8fHxwc3NjYkTJ3L16lUGDx4MwLp162Lxbv715MkTY4rc63rw4AHVq1dn/PjxvP/++4SEhABgNpuN5ubffPONMXrMuqDAq/aV8vPzY9WqVQDUrVv3jWqUxCd9+mbAIe7fHw4kw8PjPPv2mbh2rR7/+99YTCYT5cuXB2DLli30798fsPQejGoK6KBBgyhbtiwFCxakTZs2fPHFF3F4NyIiIiIiCZdCKZE4YDabjWloX375JQAHDx5k165dAOTLlw+Ab7/9lrJly/L06VOGDx9O5syZjdEXVgcOHCBbtmx8//33RuBSokQJHBwc8PT0/GcUCKxfv56wsLBYva/AwEAqVaqEl5eX0ej5VZ0/f54qVaoY06LOnz9Pr169aNSoESNHjuT06dO4uLjQtWtX4xhrKLVu3TqjOfWLrF69Gn9/f9555x1Kliz5WvVJ4mFvb0+zZs2oX78ZXbva06pVJqAw8IB33vmGEyeSUKKEpe+Ys7MzAOXKlQMsoejFixdJnz49Q4cOjfL8+fPnZ9euXRw/fpxff/0VJyenOLozEREREZGETaGUSCwLDw/n6NGjXLx4ERcXFzp37ky+fPkwm838+OOPAOTNmxeANGnSsGPHDubNm0eZMmUAyxL2vr6+xvlmzpzJlStXGDhwoPFDsnX6EECpUqVInjw5jx49ivWG5wMGDODIkSMAfPLJJxHqfJHffvuNYsWKceLECdKmTUuvXr0AS9+oFStWGMFds2bNSJYsmXFcuXLl8PDw4N69exw4cOC55//7778ZMGCAMf2vVatWmkr1FnNwcKFixSVs376E+fNdMJmgefOHTJiwjjNn+pIlS6ZIx1hDqcDAQAAmTJiAu7t7nNYtIiIiIpLYKZQSiSVPnjxhwIABuLq6UqpUKcDSFDlp0qTUqFEDsCxPD/+OlAKws7Ojbdu27Ny5kzx58uDr68v//vc/4/Nngyaz2UynTp3o3bu3sc3BwYFatWoBGCOpYsOePXuMUVzp0qXj1q1bRpj0PAEBAXTu3Jk2bdrw9OlTKleuzJEjR/j+++8pUKAA9vb2xrQpgI4dO0Y43tHRkZo1awI8d2RWWFgYLVu2ZNy4cezfvx+A999//01vUxKBKVOgd2/w9YVixWDvXli8OCWffPLBc0c1FS5cGDc3NwDatWtHy5Yt47JkEREREZG3gkIpkVjSpUsXxo0bR3BwsNErqXnz5gA0btzY2M/NzY0KFSpEOt7Ozo4BAwYAllEawcHB+Pj4cOLECcAyrWjcuHFMnz490gpfzZo1A2DevHmEhobG/M2B0fOpffv2/PzzzwDMnj3buNf/unPnDqVKlWLmzJmYTCY+//xzNm3aRMaMGXFycmLPnj3cvXuX7du3M2XKFEaNGkXlypUjnaddu3aApan01atXje0BAQGsXLmSMWPGcOjQIdzd3SlYsCAdOnSgQIECMXz3kpB07gxFisC0abBvH7zKTE5HR0e+++47PvjgAyZPnhz7RYqIiIiIvIUcbF2ASGIUHBzMypUrAViwYAH29vbcvXvXGLFTqVIlDh06REhICLly5SJFihRRnqdNmzYMHz6c69evM3PmTHLkyEF4eDjZs2dn0KBBz71+w4YNSZ06NTdv3mTt2rU0bNgwRu/v4cOHLF68GLCs+lesWDHSpEnDvXv32LZtG9WrV490zIABAzhx4gTp0qXj119/jbRP0qRJjdfPriT4X/Xr16dSpUps27aNoUOHMn/+fMCy4tmkSZOM/UaMGEHfvn2jdZ+SOJjNfhw5kpRu3aBt26ckSZLklY7r3r37C78WRUREREQkejRSSiSGXL16le7du1O5cmUWL16Mv78/adOmpWXLljRv3pwePXpEGNFUtGhRSpUq9dxACsDFxYXhw4cDlpBl/fr1ABGmuEXFycnJWMnv2al/v//+O56enmzbti3K42bOnMnq1aufe97w8HC+//57PvjgA4KCgvDy8qJEiRLY29vz3nvvAbBs2bJIx+3Zs4dff/0Vk8nEqlWrogytXpXJZDJ6Rf3222/cuHEDHx8fY7RW0qRJqVChAj179nzja4iIiIiIiEjsUyglEk0PHz6kW7du5MyZk2nTprFt2zZjxbiqVatGu8F2ly5dyJkzJ3fv3mXixInAv02YX6RTp06AZQW6sWPH4u/vT69evbh+/bpxnmedO3eOzp0706BBAwYOHEihQoVo2LAh169fN/ZZtmwZAwcOZN26dQB07drVuD/rlMTly5dHWhnPOqrrww8/pESJEq/7RxBJ0aJFjUbwq1evZt68efj5+ZE3b158fX3Zvn07jo6O0b6OiIiIiIiIxB6FUiLR1KNHD6ZPn05ISAjFixcHwN/fH7CEUtHl6OjIhAkTcHR0NMKeSpUqvfS4PHny8PnnnwMwdOhQSpYsye3btwHYsGGDsaqY1dGjR43X33//PSdOnGDVqlUULFiQ06dPA5bV8QBq167NpEmTjOALoFq1aiRNmpSbN2+SMmVKfvjhB8ASdu3cuRN7e3tGjx79hn8KkVmnJC5dutRouN6jRw+tsiciIiIiIpJAKJQSiYawsDBj1NCSJUvYv38/JZ/polytWrUYuU69evX4+++/+emnn1i8eDF58uR5peNGjBjBDz/8gJ2dHadOnQIsDdT9/PzYsmVLhH2twRNYpsD17dsXLy8vHj9+zJgxY/j777/ZuHEjJpOJqVOn0qtXLxwc/m1L5+zszKBBg3B0dMTHx4fhw4fz8OFD5s2bB0CdOnXIkCFDdP8oDNbpghs2bODcuXMkS5aMtm3bxtj5RUREREREJHYplBKJhmPHjuHj44OHhweNGjXCZDLRr18/AHLkyEH27Nlj7Fqenp506dLFWMHvVfXp04edO3dSpEgRatasSceOHQGMRuxW1tBq/Pjx+Pr6Mn78eGbMmAHA4sWL+eKLLwCoVavWc+/rs88+4+nTpxQuXBh/f3+mTZvGL7/8Avy7al5MyZMnDzlz5jTeT5o0CQ8Pjxi9hoiIiIiIiMQehVIi0bB161YAKlSoYIwaatGiBXPmzGHx4sXxZipZmTJlOHz4MOvXr6dJkyaAZWTX8ePHjX2soVT+/PmNukuUKEHx4sUJDg42Vrnr1avXC6/l5ORkBHMjRozg2rVrJEuWjAYNGsToPZlMJiOga9q0qUZJiYiIiIiIJDAKpUSiwRpKVa5c2dhmMplo3749RYsWtU1RL1G1alVy587NgwcPKF26NPv37ycoKIgLFy4AkC9fvgj79+jRw3g9atQo6tat+9JrtGrVigwZMhASEoLJZGLEiBG4uLjE7I1gGZm1bNkyY2U/kajY29tTt25d6tati729va3LERERERGRfzi8fBcRsQoJCcHR0ZGwsDA2b97M9u3bgYihVHzn7OzMrl27aNq0Kdu2beOHH35g2LBhhIWF4eHhQaZMmSLs37p1a/bu3Uu+fPno3bv3K13DycmJ1atXs337dpo0aUKWLFli41ZwdXWlUaNGsXJuSTxcXFxYs2aNrcsQEREREZH/UCgl8orGjRvHp59+yty5c/ntt9+MnkweHh54eXnZtrjXlCpVKr799ltKlSrFqlWrqFmzJhBx6p6Vk5MT06dPf+1rFC1aNN6OFhMRERERERHbUygl8ormzZtHUFAQbdq0ISwsDCcnJ2rUqEGHDh0irEKXUJQoUYJs2bLh7e3NuHHjAEsoJSIiIiIiIhIX1FNK5BU8evSIEydOABAWFgbAmDFjWL16Nc2aNbNlaW/MZDLRokUL4N8m5yVLlrRlSSKxws/PjyRJkpAkSRL8/PxsXY6IiIiIiPxDoZTIK9i1axdmsxlPT08KFSpEs2bN6NOnj63LiraWLVsarzt06ED79u1tWI1I7PH398ff39/WZYiIiIiIyDMS3pwjERuwNjSvXbs2M2bMsHE1Mado0aL89NNPeHh40LJlS61gJyIiIiIiInFGoZTIK7CGUhUqVLBxJTGvS5cuti5BRERERERE3kIKpURewGw2s2bNGg4dOgRAxYoVbVyRiIiIiIiISOKgnlIiL/DDDz/QoEEDQkNDKVOmDFmzZrV1SSIiIiIiIiKJgkIpkRfYtm0bAG3atOHPP/+0cTUiIiIiIiIiiYem74m8wLVr1wB4//338fDwsHE1IvIm7OzsqFSpkvFaRERERETiB4VSIi9w/fp1ADJnzmzjSkTkTbm6urJ161ZblyEiIiIiIv+hXxmLPEdgYCD37t0DFEqJiIiIiIiIxDSFUiLPcePGDcAyyiJlypQ2rkZEREREREQkcVEoJfIcz07dM5lMNq5GRN6Un58fadKkIU2aNPj5+dm6HBERERER+Yd6Sok8h/pJiSQe9+/ft3UJIiIiIiLyHxopJfIc1pX3FEqJiIiIiIiIxDyFUiLPYR0p5enpaeNKRERERERERBIfhVIiz6HpeyIiIiIiIiKxR6GUyHMolBIRERERERGJPQqlRJ5DPaVEREREREREYo9W3xN5xpMnT7C3t8fe3p67d+8C6iklktDZ2dlRvHhx47WIiIiIiMQPCqVE/rFp0yaaNm1K0qRJad26NQDJkiUjVapUNq5MRKLD1dWVAwcO2LoMERERERH5D/3KWN56ZrOZqVOnUqdOHXx9fbl58ybff/89AKNGjcJkMtm4QhEREREREZHER6GUvNXMZjNt27alR48ehIaG0rx5c3LmzAlA/fr16dmzp40rFBEREREREUmcNH1P3mrXr19n/vz52NnZMX78eHr16sW9e/dYs2YNLVq00CgpkUTA39+ffPnyAXD69Gnc3NxsXJGIiIiIiIBCKXnLnT59GoA8efLwySefAJAuXTo6duxoy7JEJAaZzWauXLlivBYRERERkfhB0/fkrWYNpayjKEREREREREQkbiiUkreaNZTKmzevjSsRERERERERebsolJK32pkzZwCNlBIRERERERGJawql5K1lNps1fU9ERERERETERtToXN5K4eHh3L59m0ePHmFnZ0euXLlsXZKIiIiIiIjIW0UjpSRe27lzJz4+PjF6zvDwcEqWLEmmTJkAeOedd3BxcYnRa4hI/GEymciXLx/58uXDZDLZuhwREREREfmHRkpJvLVjxw4qVqxI9uzZuXTpUoyd98aNGxw6dMh4nz179hg7t4jEP25ubpw6dcrWZYiIiIiIyH9opJTEW1u2bAHg8uXLHDhwIMbO+9+Aq3z58jF2bhERERERERF5NQqlJN4KDQ01Xv/www+vdMyZM2cIDg5+4T7WUKp06dIsWrSIfv36vXmRIiIiIiIiIvJGFEpJvHXnzh3j9ZIlS7h69eoL9587dy758uXjs88+e+F+1lDKy8uLFi1akDRp0ugXKyLxlr+/P/nz5yd//vz4+/vbuhwREREREfmHQimJt27fvm28Dg0NZcSIEQCEhIQwZcoUDh8+bHxuNpv55ptvAFi9evULz2sNpd55552YLllE4iGz2czp06c5ffo0ZrPZ1uWIiIiIiMg/FEpJvGUNpQYPHgzAnDlzOHPmDJMnT6Znz56ULFmSUaNGYTab+euvvzhz5gwAp0+f5vHjx889r0IpEREREREREdtTKCXRtm/fPsqXL2+EQjHFOn2vUaNGvPfee4SHh/P555+zePFiAMLCwvj888/5448/mDBhQqSankehlIiIiIiIiIjtKZSSaPHx8WHKlCns37+f8ePHx9h5zWazMVIqffr0jB49GoA//viDffv2YTKZ6Ny5MwAffvgha9aswWQyUbJkSQD27t0b5XmfPn3K3bt3AYVSIiIiIiIiIrakUEqiZezYsfj6+gKwfPnyCCvmRYevry9BQUEApEuXjgIFCvDee+8Z/WAqVKjAhAkTyJw5M0+fPgVgzJgxtG3bFoA9e/ZEed7Lly8DkDJlSpIlSxYjtYqIiIiIiIjI61MoJW/s8uXLTJ48GQBHR0fu37/P9u3bY+Tc1lFSHh4euLq6AjB06FDj8+bNm+Pm5sbEiRMxmUy0a9eOQYMGUaZMGcAyUio8PDzSeTV1T0RERERERCR+UCglb8zPz4/ChQtTqFAhPvjgA8AyvS4mWPtJpUuXzthWqlQpOnToQJ48eWjVqhUATZo04d69e8yZMweTyUShQoVIkiQJPj4+bNy4MdJ5FUqJvH1MJhNZs2Yla9asmEwmW5cjIiIiIiL/UCglb6xAgQLs2LGDQYMG0bhxYwCWLl0aI1P4nu0n9azZs2dz5swZUqdObWxLlSqV8YOmo6Oj0Wvqs88+i7T8++bNmwHInz9/tGsUkYTBzc0Nb29vvL29cXNzs3U5IiIiIiLyD4VSEi12dnYkTZqUqlWrkjp1am7fvs2mTZuifd6oRkq9qiFDhuDm5saBAwdYvXq1sf3hw4esX78egGbNmkW7RhERERERERF5cwqlJEY4OTnx/vvvAzBv3rxon+95I6VeRbp06ejVqxcAo0eP5unTp8yaNYtJkyYREhJCoUKFyJcvX7RrFBEREREREZE3p1BKYky7du0AWLZsGT4+PtE6V3RCKYB+/frh7OzM/v37KVu2LB999BEjRowAMPpRicjbISAggBIlSlCiRAkCAgJsXY6IiIiIiPxDoZTEmGLFipEvXz4CAwPp2LEjT58+feNzRWf6HkDatGn58MMPAThx4oSx3c7OTqGUyFsmPDycgwcPcvDgwShX5RQREREREdtQKCUxxmQyMWbMGBwdHVm6dCl169bFbDZz+PBhbty48Vrn8vb2Bt48lALLaClrA/SJEyeycuVK/vzzT7Jnz/7G5xQRERERERGRmOFg6wIkcWnYsCFbt26lVq1a7Nixg48++ojZs2eTN29eTp06FWk59sDAQO7du4enp6exbe/evZw6dQpHR0dKlCjxxrW8++67zJs3j7t379KrVy8tBS8iIiIiIiISj2iklMS4smXLMmDAAABmz54NwJkzZzh27BghISHG9JklS5aQM2dOsmbNyv/+9z/j+HHjxgHQpk2bN+4pZfXBBx9EGDElIiIiIiIiIvGDQimJFf369SNNmjQRtn3zzTekS5eO2rVrM3fuXFq0aMGNGzcwm818/PHHLFu2jEuXLrF06VIA+vfvb4vSRURERERERCQOKJR6xtSpU8mePTsuLi4UK1aMHTt2vHD/bdu2UaxYMVxcXHjnnXeYPn16HFUa/7m7uzN79mwaNWpkrHq3cOFCHj16xMaNG+nQoQMA3bt3p1OnToSHh9O1a1e++uorwsPDqVWrFgUKFLDhHYiIiIiIiIhIbFIo9Y9FixbRp08fPv30U44cOUKFChWoU6cOV69ejXL/y5cvU7duXSpUqMCRI0cYNmwYvXv35o8//ojjyuOvevXqsWzZMnr27Im9vT0Azs7OxlS6MmXKMHHiRKZOnco777zDvXv3mDVrFqBRUiISs1KnTk3q1KltXYaIiIiIiDxDjc7/MX78eD766CM6deoEwIQJE1i/fj3Tpk1jzJgxkfafPn06WbJkYcKECQDkzZuXgwcP8v3339O0adMorxEUFERQUJDx3tfXF4CQkBBCQkJi+I7ihrXuF9Xv7u5OjRo1+PPPP/n000/JmDEjy5cv54cffsBsNgMwePBgunbtCkDBggWpVKlSgv0zkbfbqzwTErecnJy4efOm8V7/beKWngmRiPRMiESm50IkosTwTLxq7SazNRV4iwUHB+Pm5saSJUto3Lixsf2TTz7h6NGjbNu2LdIxFStWpEiRIkycONHYtmzZMlq0aIG/vz+Ojo6Rjvnyyy+NqWzP+u2333Bzc4uhu4mfHj9+zPnz5ylevDh2dpEH6IWEhNCjRw/u3r3LJ598QpUqVWxQpYiIiIiIiIhEl7+/P61bt8bHxwcPD4/n7qeRUsD9+/cJCwsjXbp0EbanS5eO27dvR3nM7du3o9w/NDSU+/fvkyFDhkjHDB06lH79+hnvfX198fT0pGbNmi/8jxSfhYSEsHHjRmrUqBFlEPc68uTJw6FDh3j//fe1Wp4kWDH5TIgkBnomRCLSMyESmZ4LkYgSwzNhnRn2MgqlnvHfIMRsNr8wHIlq/6i2Wzk7O+Ps7Bxpu6OjY4L9QrOKiXsoUKCAmptLopEYnuvEIiAggDp16gCwbt06XF1dbVzR20nPhEhEeiZEItNzIRJRQn4mXrVuhVJYGuDa29tHGhV19+7dSKOhrNKnTx/l/g4ODqRKlSrWahURkdcTHh5uTMMODw+3cTUiIiIiImKl1fewNMEtVqwYGzdujLB948aNlC1bNspjypQpE2n/DRs2ULx48QSbZIqIiIiIiIiIxBWFUv/o168fM2fOZNasWZw5c4a+ffty9epVPv74Y8DSD6pdu3bG/h9//DFXrlyhX79+nDlzhlmzZvHzzz8zYMAAW92CiIiIiIiIiEiCoel7/2jZsiUPHjxg5MiR3Lp1iwIFCrB27VqyZs0KwK1bt7h69aqxf/bs2Vm7di19+/ZlypQpZMyYkUmTJtG0aVNb3YKIiIiIiIiISIKhUOoZ3bt3p3v37lF+NmfOnEjbKlWqxOHDh2O5KhERERERERGRxEfT90REREREREREJM5ppJSIiCR6bm5uti5BRERERET+Q6GUiIgkakmSJMHPz8/WZYiIiIiIyH9o+p6IiIiIiIiIiMQ5hVIiIiIiIiIiIhLnFEqJiEiiFhgYSL169ahXrx6BgYG2LkdERERERP6hnlIiIpKohYWFsXbtWuO1iIiIiIjEDxopJSIiIiIiIiIicU6hlIiIiIiIiIiIxDmFUiIiIiIiIiIiEucUSomIiIiIiIiISJxTKCUiIiIiIiIiInFOq+/ZkNlsBsDX19fGlby5kJAQ/P398fX1xdHR0dbliNicnon4x8/Pz3jt6+urFfjimJ4JkYj0TIhEpudCJKLE8ExYcw5r7vE8CqVs6MmTJwB4enrauBIRkbdDxowZbV2CiIiIiMhb48mTJyRLluy5n5vML4utJNaEh4dz8+ZN3N3dMZlMti7njfj6+uLp6cm1a9fw8PCwdTkiNqdnQiQiPRMiEemZEIlMz4VIRInhmTCbzTx58oSMGTNiZ/f8zlEaKWVDdnZ2ZM6c2dZlxAgPD48E+7CIxAY9EyIR6ZkQiUjPhEhkei5EIkroz8SLRkhZqdG5iIiIiIiIiIjEOYVSIiIiIiIiIiIS5xRKSbQ4OzvzxRdf4OzsbOtSROIFPRMiEemZEIlIz4RIZHouRCJ6m54JNToXEREREREREZE4p5FSIiIiIiIiIiIS5xRKiYiIiIiIiIhInFMoJSIiIiIiIiIicU6hlIiIiIiIiIiIxDmFUiIiIiIiIiIiEucUSomIiIiIiIiISJxTKCUiIiIiIiIiInFOoZSIiIiIiIiIiMQ5hVIiIiIiIiIiIhLnFEqJiIiIiIiIiEicUyglIiIiIiIiIiJxzsHWBbzNwsPDuXnzJu7u7phMJluXIyIiIiIiIiISbWazmSdPnpAxY0bs7J4/HkqhlA3dvHkTT09PW5chIiIiIiIiIhLjrl27RubMmZ/7uUIpG3J3dwcs/5E8PDxsXM2bCQkJYcOGDdSsWRNHR0dblyNic3om4h8/Pz8yZswIWH4ZkCRJEhtX9HbRMyESkZ4Jkcj0XIhElBieCV9fXzw9PY3c43kUStmQdcqeh4dHgg6l3Nzc8PDwSLAPi0hM0jMR/7i5ubF48WIA0qRJg4OD/uqLS3omRCLSMyESmZ4LkYgS0zPxslZF+s5cREQSNQcHB5o3b27rMkRERERE5D+0+p6IiIiIiIiIiMQ5jZQSEZFELTQ0lGXLlgHQuHFjTd8TEREREYkn9J25iIgkakFBQbRo0QKAp0+fKpQSERERmwoLCyMkJMTWZUg8FhISgoODA4GBgYSFhdm6nCg5Ojpib28f7fPoO3MRERERERGRWGY2m7l9+zaPHz+2dSkSz5nNZtKnT8+1a9de2ijclpInT0769OmjVaNCKREREREREZFYZg2k0qZNi5ubW7wOG8S2wsPDefr0KUmTJsXOLv61Ajebzfj7+3P37l0AMmTI8MbnUiglIiIiIiIiEovCwsKMQCpVqlS2LkfiufDwcIKDg3FxcYmXoRSAq6srAHfv3iVt2rRvPJUvft6diIiIiIiISCJh7SHl5uZm40pEYo716zk6PdIUSomIiIiIiIjEAU3Zk8QkJr6eFUqJiIiIiIiIiEicU08pERFJ1JycnJg9e7bxWkRERERE4geFUiIikqg5OjrSoUMHW5chIiIiIiL/oel7IiIiIiIiIvJGrl27RuXKlcmXLx+FChViyZIlti5JEhCNlBIRkUQtNDSU9evXA1CrVi0cHPRXn4iIiEhMcXBwYMKECXh5eXH37l2KFi1K3bp1SZIkia1LkwRAI6XkjV14cIFPt3zKOO9xfLrlUy48uGDrkkREIgkKCqJ+/frUr1+foKAgW5cjIiIikqhkyJABLy8vANKmTUvKlCl5+PDhS4978OABadOmxdvb+7Wv2axZM8aPH//ax0n8o1BK3sjsI7PJOyUvPx/9mcehj/n56M/knZKXOUfn2Lo0ERERERERsYGDBw8SHh6Op6fnS/cdM2YMDRo0IFu2bJE+O3r0KCaT6bmB1eeff85XX32Fr69vNCsWW1MoJa/twoMLdF7VmY5FOnK552VG5RzF5Z6X+dDrQzqt7MTFhxdtXaKIiIiIiIjEoQcPHtCuXTtmzJjx0n0DAgL4+eef6dSpU4Ttp06dom3btjRq1AiAGjVq0KVLl0jhVKFChciWLRvz58+PqfLFRhRKyWubdWQWyVySManOJFwdXQFwdXRlUp1JeDh78PPhn21coYiIiIiISOJz4cEFhm4ayvt/vM/QTUPjpIVKs2bNSJ06NdOmTTO2HTx4EGdnZ9auXQtY2iU0btyYoUOHUrZs2Zeec926dTg4OFCmTBlj29KlS/Hy8sLPz4/+/fsDMGjQIC5fvkz+/PnZtWtXhHM0bNiQBQsWxMQtig0plJLX5u3jTeF0hXFxcImw3dXRFa/0Xnj7eNumMBERERERkUTK2kJlxuEZ3Hl6hxmHZ8RJC5XJkyfTrFkzRowYAYC/vz9t2rShc+fO1K1bF7PZTIcOHahatSpt27Z9pXNu376d4sWLG++Dg4Pp2rUrtWrVYunSpVSoUAGwjJRat24defPmpXv37hHOUbJkSfbv36+eoQmcQil5bdmSZePYnWMEhARE2H7izgn2XNvDsdvH4iy1FxERERERSeyebaFyve91NrffzPW+1+OkhUqGDBno06cPd+7c4c6dO/Tp0wd7e3u+++47AHbt2sWiRYtYvnw5Xl5eeHl5ceLEiRee09vbm4wZMxrvT5w4wf3796MMtRwcHGjevDnHjx+P0EA9U6ZMBAUFcfv27Ri6U7EFhVLy2joW6YhPoA+91/U2gqn/Hf4fhacXJjAskGQuyeIstRcREREREUnsbN1CJVeuXLi5uTFy5Ejmzp3L/PnzcXW11FG+fHnCw8M5evSo8U/BggVfeL6AgABcXP6deWM2mwEwmUxR7m/dbt0PMK7v7+//5jcmNudg6wIk4Xk31bvMbDiTTis7sfTsUlKbUnP+6HlMmPip/k90KdaFgJAAeq/rTaeVnSifpTw5U+a0ddki8pZycnLixx9/NF6LiIiIJDS2bqFiZ2dHgQIFmDp1Kt9++y1FihSJ1vlSp07No0ePjPeFChUiVapUzJ8/nxYtWkTYNywsjN9//538+fOTKlUqY7t11FSaNGmiVYvYlkZKyRvp4NWBsz3P8pHXR/iH+ePi4MKJbifoUqwLoMbnIhJ/ODo60qNHD3r06IGjo6OtyxERERF5bc9roRIQEsDR20fJlixbrF7fbDZjMpkoWrSo0YQ8OooUKcLp06eN905OTkydOpU1a9bQokULdu/eDcCWLVuoX78+J06ciNBoHeDkyZNkzpyZ1KlTR7sesR2FUvLGcqbMyVdVviK7a3ZKZypN/rT5I3yuxuciIiIiIiLRF1ULFevsFN8gXz4q+lGsXn/ChAns27eP8PBw7Owixgh16tThiy++oHTp0mTNmjVC2NSoUSNatmxJiRIlePfddzl27BgAtWrV4tSpUxFGS7Vo0YIjR47g5OTEN998A8DIkSPJkCEDJ0+eNJqfW+3YsYOaNWvG1i1LHFEoJdGW1iktx+8et1lqLyLyImFhYWzdupWtW7cSFhZm63JEREREXpu1hcrso7PJ/ENmqs6tSqbxmZh9dDYzG86M1XYpJ06cYOjQoXTv3p3Tp08TGhoa4fOTJ0+SPXt29u7dS+fOnVm1apXx2fHjxylevDgHDhxg+PDhTJgwAYCCBQtSvHhxFi9eHOFcBQsW5Ndff2XFihWAZaTUrFmzyJEjR4T9AgMDWbZsGZ07d46FO5a4pFBKoq1aqmo2Te1FRF4kMDCQKlWqUKVKFQIDA21djoiIiMgbsbZQ6VK0C+mSpqNrsa6c7XmWDl4dYu2agYGBtG7dmpYtW/LVV18RHBzM2bNnjc99fHxwdHSkQwdLDU5OTiRPnhyAp0+fEhQURL9+/QDImzdvhJFRn332GRMnTiQ8PDzSdb28vDCbzWTLli3Kun7++WdKlSpF6dKlY+ZGxWbU6FyiLaNzRn6q9xNd13Rl6dmlFE5XmKO3j+Ib5Bvrqb2IiIiIiMjbImfKnIypPibOrjdkyBD8/Pz48ccfcXd3J2vWrPzwww+MHDmSTJkycfLkSUqWLGnsf/LkSbp0sfQZPn78OPnz58fe3h6Aw4cPR1iVr27duly4cIEbN27g6en5WnU5OjoyefLkGLhDsTWFUhIj2hVqR6Xslfj58M94+3jTtVhXPir6kQIpERERERGRBGjDhg1MmTKFbdu24e7uDsDw4cMZMmQId+/eZdWqVZw8eTJC0HTixAkKFCgAWEKpK1euEBISwuPHj5k2bRorV66McI1PPvnkjWqzBl+S8CmUkhgT16m9iIiIiIiIxI6aNWsSEhISYVunTp3o1KmT8f7UqVNUr14dgNDQUJ4+fWpM3zt+/DiNGzemXLlyBAQEMG7cOLJmzRpn9UvCoFBKYtWFBxeYdWQW3j7eZEuWjY5FOvJuqndtXZaIiIiIiIhE06RJk4zXDg4OXLhwwXh//PhxFixYwNixY21RmiQQanQusWb2kdnknZKXGYdncOfpHWYcnkHeKXmZc3SOrUsTERERERGRWPQmvaLk7aORUhIrLjy4QOdVnelYpCMTa0/E1dHVWJGv08pOlM9SXv2mREREREREEqnLly/bugRJADRSSmLFrCOzSOaSjEl1JuHq6AqAq6Mrk+pMwsPZg58P/2zjCkXkbeHo6Mi3337Lt99+i6Ojo63LERERERGRf2iklMQKbx9vCqcrjIuDS4Ttro6ueKX3wtvH2zaFichbx8nJiYEDB9q6DBERERER+Q+NlJJYkS1ZNo7dOUZASECE7QEhARy9fZRsybLZpjARERERERERiRcUSkms6Fik4//Zu/e4KOv0/+OvAUYYUUfBwLOYkJEaIFZmlqbmoUx3O7nVTyUOYlaUbbVL5X6pbbOyTClNWRCtXa0tLTU18VBqnjYDlCwNzSkxD4U2pA4wyvz+oLlXDpoHdADfz8eDxzD33HPPdd9z36NzcX2uD/ZiO0lLk4zElLunVFFJEXHd4jwcoYhcKk6cOMEXX3zBF198wYkTJzwdjoiIiIiI/EbD9+SCCAsMI31oOvEL45m/fT4RwRHk7s+lqKSI9KHpanIuIhdNcXEx1157LQBHjhzB39/fwxGJiIiIiAgoKSUXUExkDL3a9SIjOwOb3UZidCJx3eKUkBIRERERERERJaXkwgoNCGVC/wmeDkNEREREREREahn1lBIRERERERERkYtOSSkREREREREREbnolJQSEREREREREZGLTkkpERERERERERG56NToXC6q/MJ8ZubMxGa3EWINITYqlrDAME+HJSL1mNls5v/+7/+M30VEREREpHZQpZRcNJk5mYRPDSctO40DRw6Qlp1G+NRwZuXO8nRoIlKPNWjQgJSUFFJSUmjQoIGnwxERERGpV/bs2UOfPn246qqruPrqq3n//fc9HZLUIaqUkosivzCfhEUJxEbFMmXQFCxmCw6ng6SlScQvjKdXu16EBoR6OkwRERERERE5Cz4+PkyePJnIyEgOHjxIt27duPXWW/H39/d0aFIHqFJKLoqZOTOx+llJHZyKxWwBwGK2kDo4lSa+TcjIzvBwhCJSX5WVlbFt2za2bdtGWVmZp8MRERERqVdatmxJZGQkAEFBQQQEBHDo0KEKjLtB6wAAxhZJREFU6xQWFhIUFITNZjvr7d91111MmjSpBiKV2khJKbkobHYbEcER+Pn4VVhuMVuIbBGJzW7zTGAiUu85HA66dOlCly5dcDgcng5HREREpN7avHkzZWVltG3btsLyCRMmcPvttxMSElLlObm5uZhMplMmrP72t7/xj3/8g6KiogsQsXiaklJyUYRYQ9hyYAsOZ8UvhA6ng9z9uYRYQzwTmIiIiIiIiJy3wsJCRo4cSVpaWoXlDoeDjIwM4uPjKyzftm0bI0aM4A9/+AMAt9xyC6NHj66SnLr66qsJCQnh3//+94UMXzxESSm5KGKjYrEX20lammQkptw9pYpKiojrFufhCEVEREREROqAFSsgMrL89iK46667aN68OW+99ZaxbPPmzfj6+rJkyRIASkpK+OMf/0hycjI9e/as8PylS5fi4+PD9ddfbyybP38+kZGRHD16lD//+c8APPXUU+zevZvOnTuzbt26CtsYOnQoc+fOvVC7KB6kpJRcFGGBYaQPTSczN5M2r7eh7+y+tJ7UmszcTNKHpqvJuYiIiIiIyO9xuWD8eNiypfzW5brgL/nGG29w11138dxzzwFw7Ngx7r//fhISErj11ltxuVzExMTQt29fRowYUeX5a9asoXv37sb90tJSEhMTGThwIPPnz+fGG28Eyiulli5dSnh4OGPHjq2wjWuvvZb//ve/lJSUXMA9FU9QUkoumpjIGLY/vJ3R3UYT3CiYxOhEtj+8nZjIGE+HJiIiIiIiUvtlZcHGjTBuXPltVtYFf8mWLVvy2GOPceDAAQ4cOMBjjz2Gt7c3EydOBGDdunW89957fPTRR0RGRhIZGUleXp7xfJvNRqtWrYz7eXl5/Pzzz9UmsHx8fLj77rvZunVrhWbprVu3pqSkhP3791/APRVP8PF0AHJpCQ0IZUL/CZ4OQ0REREREpG5xuSAlBXr0gNdegw0byu8PGAAm0wV96SuuuIKGDRvy/PPPM3v2bDZu3IjFUj6req9evU47w7HD4cDP738TXrl+q+4ynSJm93LXSVVg7tc6duzY+e2I1DqqlBIRERERERGp7dxVUikp5UmolJSLVi3l5eVFly5dmDZtGi+88AJRUVHGYxs2bKB9+/a8//771T63efPmHD582Lh/9dVXExgYWG3j8hMnTvDBBx/QuXNnAgMDjeXuqqnLLruspnZJagklpUREpF4zm8088cQTPPHEE5jNZk+HIyIiInL23FVSHTtC8+aQnV1+27Fj+fIL3FvK5XJhMpno1q2b0Zjc7frrr2fq1KmnbEQeFRXF119/bdxv0KAB06ZNY/Hixdxzzz2sX78egE8//ZQhQ4aQl5dXoak6wFdffUWbNm1o3rx5De+ZeJqSUiIiUq81aNCAiRMnMnHiRBo0aODpcERERETOXmkpFBTArl3QvTtER5ff7toFe/eWP34BTZ48mU2bNlFWVoaXV9U0QlBQUIXE08kGDhzItm3bKlRL3XPPPeTk5NCgQQNefvllAJ5//nlatmzJV199ZTQ/d1u7di0DBgyowT2S2kI9pURERERERERqM19fWL8efvqp6mNBQeWPXyB5eXkkJyczduxY0tPTOX78OD4+FVMJ48eP54cffqC0tLTKHwG7du1K9+7d+c9//kNiYmKF5f/617/Izc0lKiqKTz/9lJCQkCqvX1xczIcffsiyZcsuyP6JZ6lSSkRE6rWysjJsNhs2m+20TThFREREarW2baFbt6o/bdpcsJcsLi7mvvvuY/jw4fzjH/+gtLSU7du3V1jngw8+IDg4mIiICL799ttqtzN+/HimTJlS7f/FIiMjcblc1SakADIyMrjuuuvo0aPHee+P1D5KSomISL3mcDjo0KEDHTp0wOFweDocERERkTrjr3/9K0ePHuXNN9+kadOmtG/fntdff529e/cC5bPh/f3vf+fVV1+lS5cupxzCd+utt5KYmGg872yYzWbeeOON89oPqb00fE9EREREREREKsjKymLq1KmsXr2axo0bA/Dss8/y17/+lYMHD7Jo0SJeeOEFEhMTCQoKOm1SCuDRRx89pzhGjx59Ts+TukFJKRERERERERGpYMCAATidzgrL4uPjiY+PByA/P5/Vq1ezdu1aoLxH1PTp0y96nFK3KSklIiIiIiIiImclLCyMdevWGff79u1L3759PRiR1EXqKSUiIiIiIiIiIhedklIiIiIiIiIiInLRKSklIiIiIiIiIiIXnXpKiYhIvebj48PYsWON30VEREREpHbQ/85FRKRe8/X1ZerUqZ4OQ0REREREKtHwPRERERERERERuehUKSUiIvWay+Xi559/BqB58+aYTCYPRyQiIiIiIqCklIiI1HPHjh0jKCgIgCNHjuDv7+/hiEREREREBDR8T0REREREREREPEBJKRERERERERERueiUlBIRERERERERj0hJSSEyMrLevI4n1OV9U1JKRERERERERKq1Z88e4uLiaNWqFQ0aNKB9+/Y8+uijFBYWnvW2TCYTH330UYVlTzzxBCtXrqyhaM/PvHnzuO6667BarTRu3JjOnTvz5z//2Xi8ppM/MTEx/OEPfzjtOiaT6bQ/MTExteoYni01OhcRERERERGRKr777juuv/56rrjiCubOnUuHDh3Ytm0bTz75JEuXLmXjxo0EBASc12s0atSIRo0a1VDE527FihX86U9/4sUXX2To0KGYTCa+/vrrC5LsOXHixBnPCL1v3z7j9/fee4+//e1v7Nixw1hmsVhqzTE8F7W+UmratGl06NABPz8/oqOjWbt27WnXX716NdHR0fj5+XH55Zczffr0KuvMmzePq666Cl9fX6666io+/PDDCo9PmDCBa665hsaNGxMUFMQf/vCHCm86lE8xnpKSQqtWrbBYLPTp04dt27ad/w4L+YX5JK9I5t5595K8Ipn8wnxPhyQiIiIiIlLjjh49esqf4uLiM17X4XCc0bpn66GHHqJBgwZkZWXRu3dv2rVrx+DBg1mxYgV79+7lmWeeMdYNCQnh73//O/fddx+NGjWiVatWvPHGGxUeB/jjH/+IyWQy7leuPnJXD7344osEBwfTtGlTnnvuOY4fP86TTz5JQEAAbdq0YebMmRVi/ctf/sIVV1xBw4YNufzyyxk/fjxOp/OM9/Xjjz+mV69ePPnkk3Tq1IkrrriCP/zhD8Y+zJo1i+eee44tW7YYVUqzZs0CYNKkSXTt2hV/f3/atm3L2LFjOXLkiLHtWbNm0bRpUz7++GMjF/HAAw8we/ZsFixYYGzvs88+qxJXixYtjB+r1YrJZKqyrKaO4d69exk+fDjNmjUjMDCQYcOGYbPZzvgYnotanZR67733eOyxx3jmmWfIycnhxhtvZPDgwfzwww/Vrr97925uvfVWbrzxRnJycnj66adJSkpi3rx5xjobNmxg+PDhjBgxgi1btjBixAjuueceNm3aZKyzevVqHnroITZu3Mjy5cs5fvw4AwYMqHARv/LKK0yaNIk333yTL774ghYtWnDLLbfw66+/XrgDcgnIzMkkfGo4adlpHDhygLTsNMKnhjMrd5anQxOROsrHx4dRo0YxatQofHxUICwiIiK1h7vCpbqfO++8s8K6QUFBp1x38ODBFdYNCQmpdr2zcejQIZYtW8bYsWOxWCwVHmvRogX3338/7733Hi6Xy1g+ceJErr76arKzs0lOTmbcuHEsX74cgC+++AKAzMxM9u3bZ9yvzqpVq/jxxx9Zs2YNkyZNIiUlhSFDhtCsWTM2bdrEmDFjGDNmDHv27DGe07hxY2bNmsXXX3/NlClT+Oc//8nrr79+xvvbokULtm3bxldffVXt48OHD+fPf/4znTt3Zt++fezbt4/hw4cD4OXlRWpqKl999RWzZ89m1apVPPXUUxWef+zYMSZMmEB6ejrbtm0jNTWVe+65h0GDBhnb69mz5xnH+3vO9hgeO3aMm2++mUaNGrFmzRo+//xzGjVqxKBBgygtLa2xuCqr1f87nzRpEnFxccTHxwMwefJkli1bxltvvcWECROqrD99+nTatWvH5MmTAQgPD2fz5s28+uqrxgU9efJkbrnlFpKTkwFITk5m9erVTJ48mblz5wLwySefVNhuZmYmQUFBfPnll9x00024XC4mT57MM888wx133AHA7NmzCQ4OZs6cOSQmJla7PyUlJZSUlBj3i4qKAHA6nWeVwa1N3HHXRPz5h/JJWJRATEQMk26ZhMVsweF0MG75OOIXxnNdy+sIDQg979cRuZBq8pqQmuHl5cU///lP477em4tL14RIRbomRKq6FK4Lp9OJy+WirKyMsrKyM3qOe/0zdSbrns32duzYgcvlolOnTtU+78orr+Tw4cMcOHCAoKAgAHr27GkkY0JDQ/n888+ZNGkS/fr1IzAwEIAmTZoY65eVlRlJLfdruFwuAgICmDx5Ml5eXoSFhfHKK69w7Ngx/vrXvwLlVVEvvfQSa9eu5U9/+hMATz/9tBFbu3btePzxx/nPf/7DE088YWz3dMfgoYceYs2aNXTt2pX27dtz3XXXccstt3D//ffj6+uLr68v/v7++Pj4GPG7t5eUlGTcb9++Pc899xwPPfQQb775prGO0+nkzTffJCIiwljXz8+P4uLiKttzx1r5HHD/XnkfauIYzpkzBy8vL9LS0oyhhRkZGQQEBLBq1SoGDBhQ5Zi5Y3U6nXh7e1d47Eyv51qblCotLeXLL780DpjbgAEDWL9+fbXP2bBhQ5UDNXDgQDIyMnA6nZjNZjZs2MC4ceOqrONOZFXHbrcDGGNld+/ezf79+yu8lq+vL71792b9+vWnTEpNmDCB5557rsryrKwsGjZseMrXrwvc2e/z8c6P79DQqyEDywby6fJPjeUDywbyH6//MH7+eEa0GnHeryNyMdTENSFSn+iaEKlI14RIVfX5uvDx8aFFixYcOXKkQtVJQUHBKZ/j7e1tFDIAfPvtt6dc18vLq8K6ubm51a538jq/xz1SyOFwVPs895DBI0eO4OfnR1lZGd26dauwblRUFG+99VaFZZW3V1JSwokTJyoUbVxxxRUVhr8FBgZyxRVXVHhes2bN2LNnj7FswYIFvPXWW+zevZujR49y/PhxGjdubDxe+XWqM2fOHHbv3s3atWvZvHkzTzzxBJMnTza+s59qG2vXrmXSpEns2LGDX3/9lePHj1NcXMy+ffvw9/enuLiYBg0aEBISUuG5TqeT48ePnzKmyiOxiouLcblcVdaviWO4ceNGdu7cidVqrfKa27Zto0ePHlXiKy0txeFwsGbNGo4fP17hsWPHjlW7T5XV2qTUzz//zIkTJwgODq6wPDg4mP3791f7nP3791e7/vHjx/n5559p2bLlKdc51TZdLhePP/44vXr1okuXLsbruJ9XeTvff//9KfcpOTmZxx9/3LhfVFRE27ZtGTBgAE2aNDnl82ozp9PJ8uXLueWWWzCbzee1rTkfzSHaEs0fhvyhymNv2d/C29+bW2+99bxeQ+RCq8lrQmqGy+Uy/lFs2LDhGTeVlJqha0KkIl0TIlVdCtdFcXExe/bsoVGjRvj5+RnLz+Z74IVa91QiIiIwmUzYbLZqt2ez2WjWrBkdOnTAZDLh5eWFr69vhXX9/Pzw9vausMxisVS47+vrW2Eds9lcZR2z2Yy/v3+FZd7e3jRo0IAmTZqwceNG4uLiSElJYcCAAVitVt577z0mTZpkPKfy65xuv93VTLt37+bKK69k6dKlPPDAA9Vu4/vvv+eee+4hMTGRf/zjHwQEBPD555+TkJBg7Iefnx8Wi6VKwsdsNuPj41MlJpfLxa+//krjxo0r/N/Vz88Pk8lUZf2aOIY+Pj5ER0fzzjvvVDkml112WbXHrbi4GIvFwk033VThvIYzT4DW2qSUW+UvDy6X67RfKKpbv/Lys9nmww8/zNatW/n888/POzZ3yV9lZrO5zn/41sQ+XN7sclbsXsFxjmMx/2/MssPpYMuBLSRGJ9b54ySXjvpwXdcXR48epVmzZkD5X/L8/f09HNGlSdeESEW6JkSqqs/XhXu2NS8vL7y8anVrZ8Nll13GLbfcwltvvcXjjz9eoa/U/v37mTNnDiNHjqwwbGvTpk0V9m/Tpk1ceeWVxjKz2YzL5aqwjvs7tHuZu+l35eN0umUbNmygffv2PPvss8Zj7l7UJ2/35Ptn4vLLL6dhw4Y4HA4j6XbixIkK28jOzub48eNMmjTJWP7BBx8Yr3Xye175tX19fSkrK6uy3D0Mr/I+n2o7NXEMo6Oj+c9//kOLFi3OOKnp5eWFyWSq9to902u51l4NzZs3x9vbu0oF08GDB6tUKLm1aNGi2vV9fHyM8aunWqe6bT7yyCMsXLiQTz/9lDZt2lR4HeCsYpPfFxsVi73YTtLSJBzO8lJQh9NB0tIkikqKiOsW5+EIRURERERELh1vvvkmJSUlDBw4kDVr1rBnzx4++eQTbrnlFlq3bs0//vGPCuuvW7eOV155hW+//ZapU6fy/vvv8+ijjxqPh4SEsHLlSvbv38/hw4drLM7Q0FB++OEH3n33XXbt2kVqaioffvjhWW0jJSWFp556is8++4zdu3eTk5NDbGwsTqeTW265xYh/9+7d5Obm8vPPP1NSUkLHjh05fvw4b7zxBt999x3vvPMO06dPP6PXDAkJYevWrezYsYOff/7Zo33V7r//fpo3b86wYcNYu3Ytu3fvZvXq1Tz66KOnHWZ6vmptUqpBgwZER0dXGVe8fPnyU3akv/7666usn5WVRffu3Y0s3anWOXmbLpeLhx9+mPnz57Nq1So6dOhQYf0OHTrQokWLCtspLS1l9erVNdot/1ITFhhG+tB0MnMzafN6G/rO7kvrSa3JzM0kfWi6mpyLiIiIiIhcRGFhYWzevJmOHTsyfPhwOnbsyOjRo7n55pvZsGGD0XfZ7c9//jNffvklUVFR/P3vf+e1115j4MCBxuOvvfYay5cvp23btkRFRdVYnMOGDWPcuHE8/PDDREZGsn79esaPH39W2+jduzffffcdI0eO5Morr2Tw4MHs37+frKwsOnXqBMCdd97JoEGDuPnmm7nsssuYO3cukZGRTJo0iZdffpkuXbrw73//u9qJ2aqTkJBAp06d6N69O5dddhnr1q07632vKQ0bNmTNmjW0a9eOO+64g/DwcGJjY3E4HBe23ZCrFnv33XddZrPZlZGR4fr6669djz32mMvf399ls9lcLpfL9de//tU1YsQIY/3vvvvO1bBhQ9e4ceNcX3/9tSsjI8NlNptdH3zwgbHOunXrXN7e3q6XXnrJ9c0337heeukll4+Pj2vjxo3GOg8++KDLarW6PvvsM9e+ffuMn2PHjhnrvPTSSy6r1eqaP3++Ky8vz3Xvvfe6WrZs6SoqKjrj/bPb7S7AZbfbz+cweVRpaanro48+cpWWltbYNvML811/Xf5X158++JPrr8v/6sovzK+xbYtcaBfimpDzc+TIERfgAlxHjhzxdDiXHF0TIhXpmhCp6lK4LhwOh+vrr792ORwOT4dywbRv3971+uuvezqMeuHEiROuw4cPu06cOOHpUE7rdOf1meY7anVPqeHDh1NYWMjzzz/Pvn376NKlC0uWLKF9+/YA7Nu3zxgnCuUVTEuWLGHcuHFMnTqVVq1akZqayp133mms07NnT959912effZZxo8fT8eOHXnvvfe47rrrjHXeeustAPr06VMhnszMTGJiYgB46qmncDgcjB07lsOHD3PdddeRlZVF48aNL9DRuHSEBoQyof+ZZZZFREREREREpG6q1UkpgLFjxzJ27NhqH5s1a1aVZb179yY7O/u027zrrru46667Tvm467fm6KdjMplISUkhJSXld9cVEREREREREZGKan1SSgQgvzCfmTkzsdlthFhDiI2KJSwwzNNhiYiIiIiICGCz2TwdgtRBSkpJrZeZk0nCogSsflYigiPI2pXFxPUTSR+aTkxkjKfDE5Faztvb26iOPXnKYhERERER8SwlpaRWyy/MJ2FRArFRsUwZNAWL2YLD6SBpaRLxC+Pp1a6XZuUTkdPy8/Pj/fff93QYIiIiImfUKkakrqiJ89mrBuIQuWBm5szE6mcldXAqFrMFAIvZQurgVJr4NiEjO8PDEYqIiIiIiJye2WwG4NixYx6ORKTmuM9n9/l9LlQpJbWazW4jIjgCPx+/CsstZguRLSKx2W2eCUxEREREROQMeXt707RpUw4ePAhAw4YNMZlMHo5KaquysjJKS0spLi7Gy6v21RK5XC6OHTvGwYMHadq06Xm1yFBSSmq1EGsIWbuycDgdRqUUgMPpIHd/LonRiR6MTkTqgqNHj9KoUSMAjhw5gr+/v4cjEhERkUtRixYtAIzElMipuFwuHA4HFoulVicvmzZtapzX50pJKanVYqNimbh+IklLk4whfO6eUkUlRcR1i/N0iCIiIiIiIr/LZDLRsmVLgoKCcDqdng5HajGn08maNWu46aabzmto3IVkNptrZBIhJaWkVgsLDCN9aDrxC+OZv30+EcER5O7PpaikiPSh6WpyLiIiIiIidYq3t7dmBJbT8vb25vjx4/j5+dXapFRNUVJKar2YyBh6tetFRnYGNruNxOhE4rrFKSElIiIiIiIiUocpKSV1QmhAKBP6T/B0GCIiIiIiIiJSQ2pfG3cREREREREREan3lJQSEREREREREZGLTsP3RESkXvP29ubWW281fhcRERERkdpBSSmpk/IL85mZMxOb3UaINYTYqFjCAsM8HZaI1EJ+fn4sXrzY02GIiIiIiEglGr4ndU5mTibhU8NJy07jwJEDpGWnET41nFm5szwdmoiIiIiIiIicIVVKSZ2SX5hPwqIEYqNimTJoChazBYfTQdLSJOIXxtOrXS9CA0I9HaaIiIiIiIiI/A5VSkmdMjNnJlY/K6mDU7GYLQBYzBZSB6fSxLcJGdkZHo5QRGqbo0eP4u/vj7+/P0ePHvV0OCIiIiIi8htVSkmdYrPbiAiOwM/Hr8Jyi9lCZItIbHabZwITkVrt2LFjng5BREREREQqUaWU1Ckh1hC2HNiCw+mosNzhdJC7P5cQa4hnAhMRERERERGRs6KklNQpsVGx2IvtJC1NMhJT7p5SRSVFxHWL83CEIiIiIiIiInImNHxP6pSwwDDSh6YTvzCe+dvnExEcQe7+XIpKikgfmq4m5yIiIiIiIiJ1hJJSUufERMbQq10vMrIzsNltJEYnEtctTgkpERERERERkTpESSmpk0IDQpnQf4KnwxARERERERGRc6SklIiI1GteXl707t3b+F1ERERERGoHJaVERKRes1gsfPbZZ54OQ0REREREKtGfjEVERERERERE5KJTpZTUG/mF+czMmYnNbiPEGkJsVCxhgWGeDktEREREREREqqFKKakXMnMyCZ8aTlp2GgeOHCAtO43wqeHMyp3l6dBExMOOHj3KZZddxmWXXcbRo0c9HY6IiIiIiPxGlVJS5+UX5pOwKIHYqFimDJqCxWzB4XSQtDSJ+IXx9GrXi9CAUE+HKSIe9PPPP3s6BBERERERqUSVUlLnzcyZidXPSurgVCxmCwAWs4XUwak08W1CRnaGhyMUERERERERkcqUlJI6z2a3EREcgZ+PX4XlFrOFyBaR2Ow2zwQmIiIiIiIiIqekpJTUeSHWELYc2ILD6aiw3OF0kLs/lxBriGcCExEREREREZFTUlJK6rzYqFjsxXaSliYZiSl3T6mikiLiusV5OEIRERERERERqUyNzqXOCwsMI31oOvEL45m/fT4RwRHk7s+lqKSI9KHpanIuIiIiIiIiUgspKSX1QkxkDL3a9SIjOwOb3UZidCJx3eKUkBIRvLy86N69u/G7iIiIiIjUDkpKSb0RGhDKhP4TPB2GiNQyFouFL774wtNhiIiIiIhIJfqTsYiIiIiIiIiIXHRKSomIiIiIiIiIyEWnpJSIiNRrx44dIyQkhJCQEI4dO+bpcERERERE5DfqKSUiIvWay+Xi+++/N34XEREREZHaQZVSIiIiIiIiIiJy0SkpJSIiIiIiIiIiF52SUiIiIiIiIiIictGpp5TUW/mF+czMmYnNbiPEGkJsVCxhgWGeDktEREREREREUKWU1FOZOZmETw0nLTuNA0cOkJadRvjUcGblzvJ0aCIiIiIiIiKCKqWkHsovzCdhUQKxUbFMGTQFi9mCw+kgaWkS8Qvj6dWuF6EBoZ4OU0QuEpPJxFVXXWX8LiIiIiIitYMqpaTemZkzE6ufldTBqVjMFgAsZgupg1Np4tuEjOwMD0coIhdTw4YN2bZtG9u2baNhw4aeDkdERERERH6jpJTUOza7jYjgCPx8/Cost5gtRLaIxGa3eSYwERERERERETEoKSX1Tog1hC0HtuBwOiosdzgd5O7PJcQa4pnARERERERERMSgpJTUO7FRsdiL7SQtTTISU+6eUkUlRcR1i/NwhCJyMR07dozOnTvTuXNnjh075ulwRERERETkN2p0LvVOWGAY6UPTiV8Yz/zt84kIjiB3fy5FJUWkD01Xk3ORS4zL5eLrr782fhcRERERkdpBSSmpl2IiY+jVrhcZ2RnY7DYSoxOJ6xanhJSIiIiIiIhILaGklNRboQGhTOg/wdNhiIiIiIiIiEg11FNKREREREREREQuOiWlRERERERERETkolNSSkRERERERERELjr1lBIRkXrNZDLRvn1743cREREREakdlJQSEZF6rWHDhthsNk+HISIiIiIilWj4noiIiIiIiIiIXHRKSomIiIiIiIiIyEWnpJSIiNRrDoeDa665hmuuuQaHw+HpcERERERE5DfqKSUiIvVaWVkZmzdvNn4XEREREZHaQZVSIiIiIiIiIiJy0SkpJSIiIiIiIiIiF52SUiIiIiIiIiIictEpKSUiIiIiIiIiIhedGp3LJSW/MJ+ZOTOx2W2EWEOIjYolLDDM02GJiIiIiIiIXHJUKSWXjMycTMKnhpOWncaBIwdIy04jfGo4s3JneTo0EbnAmjdvTvPmzT0dhoiIiIiInESVUnJJyC/MJ2FRArFRsUwZNAWL2YLD6SBpaRLxC+Pp1a4XoQGhng5TRC4Af39/fvrpJ0+HISIiIiIilahSSi4JM3NmYvWzkjo4FYvZAoDFbCF1cCpNfJuQkZ3h4QhFRERERERELi1KSsklwWa3EREcgZ+PX4XlFrOFyBaR2Ow2zwQmIiIiIiIicolSUkouCSHWELYc2ILD6aiw3OF0kLs/lxBriGcCE5ELzuFw0KdPH/r06YPD4fj9J4iIiIiIyEWhpJRcEmKjYrEX20lammQkptw9pYpKiojrFufhCEXkQikrK2P16tWsXr2asrIyT4cjIiIiIiK/UaNzuSSEBYaRPjSd+IXxzN8+n4jgCHL351JUUkT60HQ1ORcRERERERG5yJSUkktGTGQMvdr1IiM7A5vdRmJ0InHd4pSQEhEREREREfEAJaXkkhIaEMqE/hM8HYaIiIiIiIjIJU89pURERERERERE5KJTUkpERERERERERC46Dd8TEZF6r2HDhp4OQUREREREKlFSSkRE6jV/f3+OHj3q6TBERERERKQSDd8TEREREREREZGLTkkpERERERERERG56Gp9UmratGl06NABPz8/oqOjWbt27WnXX716NdHR0fj5+XH55Zczffr0KuvMmzePq666Cl9fX6666io+/PDDCo+vWbOG22+/nVatWmEymfjoo4+qbCMmJgaTyVThp0ePHue1r3Lx5Rfmk7wimXvn3UvyimTyC/M9HZKI1LDi4mJuu+02brvtNoqLiz0djoiIiIiI/KZWJ6Xee+89HnvsMZ555hlycnK48cYbGTx4MD/88EO16+/evZtbb72VG2+8kZycHJ5++mmSkpKYN2+esc6GDRsYPnw4I0aMYMuWLYwYMYJ77rmHTZs2GescPXqUiIgI3nzzzdPGN2jQIPbt22f8LFmypGZ2XC6KzJxMwqeGk5adxoEjB0jLTiN8ajizcmd5OjQRqUEnTpxgyZIlLFmyhBMnTng6HBERERER+U2tbnQ+adIk4uLiiI+PB2Dy5MksW7aMt956iwkTJlRZf/r06bRr147JkycDEB4ezubNm3n11Ve58847jW3ccsstJCcnA5CcnMzq1auZPHkyc+fOBWDw4MEMHjz4d+Pz9fWlRYsWNbGrcpHlF+aTsCiB2KhYpgyagsVsweF0kLQ0ifiF8fRq14vQgFBPhykiIiIiIiJSb9XapFRpaSlffvklf/3rXyssHzBgAOvXr6/2ORs2bGDAgAEVlg0cOJCMjAycTidms5kNGzYwbty4Kuu4E1ln47PPPiMoKIimTZvSu3dv/vGPfxAUFHTK9UtKSigpKTHuFxUVAeB0OnE6nWf9+rWBO+66Fv8/v/wnVj8rr/V/DR98cDqd+ODDa/1fY94380jbnMY/bv6Hp8OUOqiuXhP12cnvRV3+vK2rdE2IVKRrQqQqXRciFdWHa+JMY6+1Samff/6ZEydOEBwcXGF5cHAw+/fvr/Y5+/fvr3b948eP8/PPP9OyZctTrnOqbZ7K4MGDufvuu2nfvj27d+9m/Pjx9O3bly+//BJfX99qnzNhwgSee+65KsuzsrJo2LDhWb1+bbN8+XJPh3BWNto20tq7NauyVlV5rI1PGzZ+s5ElDg3HlHNX166J+uzkPlLLli3Dz8/Pg9FcunRNiFSka0KkKl0XIhXV5Wvi2LFjZ7RerU1KuZlMpgr3XS5XlWW/t37l5We7zeoMHz7c+L1Lly50796d9u3bs3jxYu64445qn5OcnMzjjz9u3C8qKqJt27YMGDCAJk2anNXr1xZOp5Ply5dzyy23YDabPR3OGVv36ToycjO4+ZabsZgtxnKH00HB9gIGdR3ErTff6sEIpa6qq9dEfXb06FHj94EDB+Lv7+/BaC49uiZEKtI1IVKVrguRiurDNeEeGfZ7am1Sqnnz5nh7e1epYDp48GCVSie3Fi1aVLu+j48PgYGBp13nVNs8Uy1btqR9+/bk55969jZfX99qq6jMZnOdPdHc6to+JEQnMGnjJP684s+kDk41ekr9ecWfKSopYnT30XVqf6T2qWvXRH128vug98VzdOxFKtI1IVKVrguRiuryNXGmcdfa2fcaNGhAdHR0lXK15cuX07Nnz2qfc/3111dZPysri+7duxsH5FTrnGqbZ6qwsJA9e/bQsmXL89qOXBxhgWGkD00nMzeTNq+3oe/svrSe1JrM3EzSh6arybmIiIiIiIjIBVZrK6UAHn/8cUaMGEH37t25/vrrSUtL44cffmDMmDFA+XC4vXv38vbbbwMwZswY3nzzTR5//HESEhLYsGEDGRkZxqx6AI8++ig33XQTL7/8MsOGDWPBggWsWLGCzz//3FjnyJEj7Ny507i/e/ducnNzCQgIoF27dhw5coSUlBTuvPNOWrZsic1m4+mnn6Z58+b88Y9/vEhHR85XTGQMvdr1IiM7A5vdRmJ0InHd4pSQEqln/P39jaHcIiIiIiJSe9TqpNTw4cMpLCzk+eefZ9++fXTp0oUlS5bQvn17APbt28cPP/xgrN+hQweWLFnCuHHjmDp1Kq1atSI1NZU777zTWKdnz568++67PPvss4wfP56OHTvy3nvvcd111xnrbN68mZtvvtm47+4DNWrUKGbNmoW3tzd5eXm8/fbb/PLLL7Rs2ZKbb76Z9957j8aNG1/owyI1KDQglAn9J3g6DBEREREREZFLTq1OSgGMHTuWsWPHVvvYrFmzqizr3bs32dnZp93mXXfdxV133XXKx/v06XPav6pbLBaWLVt22teQuim/MJ+ZOTOx2W2EWEOIjYolLDDM02GJiIiIiIiI1Du1tqeUyMWWmZNJ+NRw0rLTOHDkAGnZaYRPDWdW7ixPhyYi56G4uJi7776bu+++m+LiYk+HIyIiIiIiv1FSSoTyCqmERQnERsVSMK6AVaNWUTCugAciHyB+YTw7D+38/Y2ISK104sQJPvjgAz744ANOnDjh6XBEREREROQ3SkqJADNzZmL1s5I6OBWL2QKAxWwhdXAqTXybkJGd4eEIRUREREREROoXJaVEAJvdRkRwBH4+fhWWW8wWIltEYrPbPBOYiIiIiIiISD2lpJQIEGINYcuBLTicjgrLHU4HuftzCbGGeCYwERERERERkXpKSSkRIDYqFnuxnaSlSUZiyuF0kLQ0iaKSIuK6xXk4QhEREREREZH6xcfTAYjUBmGBYaQPTSd+YTzzt88nIjiC3P25FJUUkT40ndCAUE+HKCIiIiIiIlKvKCkl8puYyBh6tetFRnYGNruNxOhE4rrFKSElIiIiIiIicgEoKSVyktCAUCb0n1BhWX5hPjNzZmKz2wixhhAbFUtYYJiHIhSRs9WwYUOOHDli/C4iIiIiIrWDekqJnEZmTibhU8NJy07jwJEDpGWnET41nFm5szwdmoicIZPJhL+/P/7+/phMJk+HIyIiIiIiv1GllMgp5Bfmk7AogdioWKYMmoLFbDGan8cvjKdXu14a2iciIiIiIiJyjlQpJXIKM3NmYvWzkjo4FYvZAoDFbCHpuiTMXmaGzh1K8opk8gvzPRypiJxOSUkJMTExxMTEUFJS4ulwRERERETkN0pKiZyCzW4jIjgCPx8/Y1lmTiZRM6I47jpOoaNQw/lE6oDjx48ze/ZsZs+ezfHjxz0djoiIiIiI/EbD98Tjamsj8RBrCFm7snA4HVjMFmM438iIkXz4zYfERsbyt95/I2lpEnEL4thYsBF7ib1W7YOIiIiIiIhIbaWklHhUZk4mCYsSsPpZiQiOIGtXFhPXTyR9aDoxkTEejS02KpaJ6yeStDSJ1MGpxnA+l8vFr6W/EtctDovZQvdW3UnPSWf2ltlc3+Z6snZl8cq6VxgUNogmvk1OmaSqLhkHVFjWt0NfVu1eddYJu9qa6BMRERERERFxU1JKPKa2NxIPCwwjfWg68Qvjmb99Pj5ePhSVFPHO1ndIH5pOaEAo+YX5PLTkIVo2askN7W7g/bvfZ8bmGTy4+EGW5C+hR5seRqLthb4vYC+2Y7PbKCouYtmuZRWScS+vexmTyURTv6ZEBEewaMciXlr3Ev5mf65tfW2126kucWX1tfLsp8/WykSfiIiIiIiIiJuSUuIxJzcSd/dtspgtpA5OZd4388jIzmBC/wkejTEmMoZe7XqRkZ3Bgh0LKCop4ouEL+gS1AX43z44nA5Cm/0vSRUTGcOH33xIn/Z9WDVyFYP+NYjklck09WtKp8BObNq7CRMmJvSbwOjo0eQdyCNiegQul4vVMavx9fYlfGo4nQI7kV+YT9rtabRu3LrCdqJaRFVJXC3NX4q9xE7v9r1Zev9SI9E36sNRxC6I5YOvP6BrUFdVTomIiIiIiIjHqdG5eEx1jcShPDEV2SISm93mmcAqCQ0IZUL/CSz40wKcJ5xM2TgFh9MBwK7Du/D19jWG87mTVNNum0ZUyyhsdhsFRQWs27OOBt4NiIuM4+aQmwmwBDAqYhRjF49l56GdzMmbQzNLM6y+Vv699d/GdjbEbcDqZyUjO6PKdmYMmUHx8WI6BXbC4XSQdnsaCd0S8PX2Ze33a9n7614A3v3qXeZvnw9A3sE8NWcXERERERGRWkFJKfGYEGsIWw5sMRI8bg6ng9z9uYRYQzwT2Cm4h/Nl5mbS5vU29J3dl0U7FrHvyD6m3TaN0IBQI9HmcrmMfXAnmHq07sHeI3uNdabdNo0mvk3IyM4wlrkTWe77zSzNjARd5e1Um7j6tYAebXoY908eInljuxvp2bYnBeMKuOPKO4hdEMuQOUNIXpFMfmG+pw+viIiIiIiIXGKUlBKPiY2KxV5sJ2lpkpGYcveUKiopIq5bnIcjrComMobtD29ndLfRBDcKZmTESLxN3nyx9wscToeRaBu7eKyxDza7ja5BXck7mEeINcRYBzASTu5lOftyKqxz6NghI7lVeTvVJa5CrCHkHcyja1DXComsl/u/bDxPlVNyqWnYsCEHDx7k4MGDNGzY0NPhiIiIiIjIb5SUEo+prvKo9aTWZOZmGo3EayP3cL65d85lxu0zKuzDp7ZPOeQ4xOwts43qqTaN27CxYCP2Yjtx3eKMZNzYJWONJNR9Xe/jsOMw9hI79199v7FOz5k9jedV3k51iSv38zbu3UjrRq2NRNZTy5+iqKSIfpf3q7Zy6oHIB4hfGM/OQzs9fXhFapzJZOKyyy7jsssuw2QyeTocERERERH5jZJS4lGVK48SoxPZ/vD2OjVL3Mn70KFZB24NvRUvkxfJK5PpO7svaV+mUXKihF7te9G6cWvCAsOYdts0ZufO5peSX/js+8/oPas3UP7lufes3iR+nIivty87CndgMVsYvWh0le1Um7hq0oYb2t5A6YlSMnIzWL9nPWu+X8PMnJmkD01n5Xcrq1ROuZvLu4cSioiIiIiIiFwMmn1PPM5deVSXVd6HnYd2Gr2ixl4zlqaWpjyz8hnavN6GiOAIcvfnYsLE4LDBNPFtQp/2fYzhiu7nJV2XRP/L+7PiuxWn3I47ceVv9mf0otHk7s+lqKSIl/q9xC/Fv5B3MI899j3cddVdDO88nNiFsRUqp9yvaTFbuCLwChbsWGAMA9QMfVJflJSU8PjjjwMwadIkfH19PRyRiIiIiIiAklIiF0R1ibY7w+80Ek6J0YnEdYurdohi5ef1u7zfKbdTOXFV3XZn5c4ifmE8K3avoFGDRuyx72Ht92vJGJZhrDdj8ww27d2En48fLRq1IGtXFhPXTyR9aHqdqloTqc7x48eZNm0aAK+88oqSUiIiIiIitYSSUiIXSU1VhFW3ncqJq5PFRMbQq10vMrIzqlROAeQdyOPBxQ9iwsQXCV/QJaiL0XA+fmE8vdr1qrX9vURERERERKTuUlJK5BJwciLr5MqpiOAINuzZgAsXaUPS6BLUBSgfzpd0XRL/2vovhs4dyrBOwzScT0RERERERGqUGp2LXGIqN5fv0KwDPdr0ICE6wVgnMyeTqBlRHHcdp9BRSFp2GuFTw5mVO8tzgYuIiIiIiEi9oqSUyCXIXTk19865DOs0jG8Lv8XhdACQX5hPwqIERkaMpJG5EbGRsRSMK+CByAeIXxjPzkM7PRy9iIiIiIiI1AdKSolc4mKjYrEX20lamoTD6WBmzkysflZcLhe/lv5KXLc4LGYLqYNT8Tf7M2L+CO6ddy/JK5LJL8z3dPgiIiIiIiJSRykpJXKJCwsMI31oOpm5mbR5vQ0zc2dSVFLEO1vfIX1outHk/N2v3uXX0l/J3p/NgSMHNKRPREREREREzosanYtIhRn6FuxYQFFJkTETH/xvSJ/Z28wj1zzCqwNfxeF0MOrDUcQuiOWDrz+ga1BXNUOXWslisbB7927jdxERERERqR1UKSUiwP/6TC340wKcJ5xM2TjF6DOV9mUaPl4+HD9xnDHXjAHKK6fmb58PQN7BPFVOSa3l5eVFSEgIISEheHnpnz0RERERkdpClVIiUoF7OF/8wnjmb59PRHAEn//wOc4yJ5nDMgkNCDUqp2KjYtnx8w5aNWnFzKEzSVqaRPzCeHq162UM+xMRERERERGpjv5kLCJVxETGsP3h7YzuNprgRsFEt4ymqV9ThnceDmA0Q3+5/8vkHcwjxBqiZuhSa5WWlvLkk0/y5JNPUlpa6ulwRERERETkN2edlHI4HOzdu7fK8m3bttVIQCJSO7iH8829cy5v//Ftfi351Zihz2a30TWoK08tf4qikiLiusUBaoYutZPT6eTVV1/l1Vdfxel0ejocERERERH5zVklpT744AOuuOIKbr31Vq6++mo2bdpkPDZixIgaD05EaofKM/St37OeNd+vYWbOTGOGvsrN0FeNWkXBuAIeiHyA+IXx7Dy009O7ISIiIiIiIrXIWSWlXnjhBbKzs9myZQszZ84kNjaWOXPmAOByuS5IgCJSO5w8pK9rUFcA7rrqLmNIX3XN0N1D+pr4NiEjO8NjsYuIiIiIiEjtc1aNzp1OJ5dddhkA3bt3Z82aNdxxxx3s3LkTk8l0QQIUkdrDPaQPYFbuLOIXxrNi94pqm6G7FRQV0Ni3MXO+Kk9gx0bFEhYY5pH4RUREREREpPY4q0qpoKAgtm7datwPDAxk+fLlfPPNNxWWi0j993vN0AEyczIJnxrOHvseAPWYEhEREREREcNZJaXeeecdgoKCKixr0KABc+fOZfXq1TUamIjUfqdrhu7uMRUaEIoJEytHrlSPKRERERERETGcVVKqTZs2tGjRosKyTz75BIAbbrih5qISkTqncjP0/u/0p8xVRn5hPhnDMggNCDV6TPmb/RkxfwT3zruX5BXJ5Bfmezp8ERERERERucjOKilVnT/84Q88+uijlJSU1EQ8IlKHnTykD6CttS07HtlBTGSMsc67X73Lr6W/kr0/mwNHDmhIn1xwFouFr776iq+++gqLxeLpcERERERE5DfnnZT6/PPPWbZsGdHR0afsK/Xjjz8ybNiw830pEakD3EP67utyH0dKj9C6cWvjMfeQPrO3mUeueYRVo1ZRMK6AO668g9gFsQyZM0SVU1LjvLy86Ny5M507d8bL67z/2RMRERERkRpy3v877969Ozk5OfTs2ZPrrruOSZMmGY+VlZXx9ddf87e//Y0NGzac70uJSB0SGxWLvdhu9JgCSPsyDR8vH46fOM6Ya8YA5ZVT87fPByDvYJ4qp0RERERERC4RPjWxEYvFwj/+8Q8aNGjAk08+ydy5c42EVElJCe3bt2fChAk18VIiUke4e0zFL4xn/vb5RARH8PkPn+Msc5I5LJPQgFCjcio2KpYdP++gVZNWzBw6k6SlScQvjKdXu16EBoR6elekjistLeXFF18E4Omnn6ZBgwYejkhERERERKAGKqVmzJhBq1ataNGiBbNmzeKaa67Bx8eHnJwc4uPjOXz4MLt37yYuLq4m4hWROuTkHlPBjYKJbhlNU7+mDO88HICZOTOx+ll5uf/L5B3MI8QaomboUuOcTifPPfcczz33HE6n09PhiIiIiIjIb867UurZZ5/lrrvu4rHHHuOKK67AZDIB8Prrr/P0009z9OhR3nzzTRo2bHjewYpI3ePuMQXlPaXCp4aTtDSJ1MGp2Ow2ugZ15anlT1FUUkRct/Lk9cnN0C1mC1m7snhl3SsMChtEE98mhFhDiI2KJSwwzJO7JiIiIiIiIufhvCul+vTpQ0pKCp06dTISUgDjxo3jv//9L5s3b+bqq69m06ZN5/tSIlLHuYf0ZeZm0ub1Nqzfs541369hZs5M0oemVxjSd3Iz9Bf7vogLF0vyl2D7xaa+UyIiIiIiIvXAeSel3n//fYKDg6t9rGvXrnzxxRcMGTKEm2666XxfSmoh08qV9HnsMUwrV3o6FKkjTh7S1zWoKwB3XXWXMaSvcjP0/MJ8HlryEDGRMTT1bUqf9n0oGFfAA5EPEL8wnp2Hdnpyd0REREREROQcXfC5sX19fZk8eTIff/zxhX4pudhcLrxSUrDabHilpIDL5eGApK5wD+n7+L6PmTlsJvO+mUeb19vQd3ZfpmyaQsmJEjKGZRAaEGr0nZp22zSiWkZhs9uwmC0kXZeE2cvM0LlD1XNKRERERESkDrrgSSm3W2655WK9lFwsWVl4bdrEzqFD8dq0CbKyPB2R1EG/1wzdZrcRERyBy+Uid38uIdYQMnMyiZoRxXHXcQodhRrOJyIiIiIiUgedd6NzuUS5XJCSQtl117HtgQe4/MABvFJSYMAAOKm3mMiZOF0z9BBrCFm7shi7eCxFJUX0u7wfg/41iJERI/nwmw+JjYzlb73/RtLSJOIXxtOrXS9CA0I9vEcXVn5hPjNzZmKz2wixhtC3Q19W7V5l3FcTeBERERERqQuUlJJzk5UFGzdS9vHHcPw4ZePH4zVkCLz0Erz3Hrz6KvTv7+kopQ5yN0OPXxjP/O3zCQsI45DjELO3zGb6kOms/G4lVj8rLpeLX0t/Ja5bHBazhdTBqcz7Zh4Z2RlGgqs+qJyAsvpaefbTZ7H6WYkIjmDRjkW8tO4l/M3+XNv6WrJ2ZTFx/URe6PsC9mK7ElWAn58f//3vf43fRURERESkdlBSSs7eb1VSdOyIq3lzrOvW4brhBrj8cnjxRThyBMaPh379VDUl5yQmMoZe7XqRkZ2BzW4j0BLIsl3LSF6ZjI+XD0UlRbyz9R1jxj4Ai9lCZItIbHabZ4M/TycnoYqKi1i2a5mRgFqavxR7iZ3e7Xuz9P6lFBQVED41nE6BncgvzCft9jRaN27NoH8NInllMk39mhLVIoqsXVm8su4VBoUNoolvk0suSeXt7c0111zj6TBERERERKSSi9ZTSuqR0lIoKIBduzD36EGfP/8Zc48e8N135QmppCTYuFE9puS8uIf0zb1zLovvX2z0nQq0BOLj5UPumFxiImOM9R1Oh9Fzqi7JL8wneUUy9867l9v+fRvhU8NJy05j9+HdLNm5hDJXGRP6TWDVqFUkdEvA19uXtd+vZe+ve40m8BviNmD1s5KRnUFBUQHr9qyjgXcD4iLjWDVqFS/2fREXLpbkL8H2i009uEREREREpFZQpZScPV9fWL8efvoJ5/HjrPv8c2644QbMCQlgNsPkyfDf/5ZXU6nHlNQQd5IqNiqW8KnhTNk4hdTBqVjMFhxOB0lLk7AX2zlcfJh7591bK6uBTjcULywgjE17N2HCxIR+E9h9eDf5h/IZesVQxi4eS98OfSn4tYAebXqw9cBWo4osIjiCZpZmRpWYO1HV5bIu7D2yl/zCfB5a8hAxkTF8+M2H9Gnfh1UjV11SPbhKS0uZMmUKAI8++igNGjTwcEQiIiIiIgKqlJJz1bYtdOsGUVHYO3bE9PPPkJdXPnzPZCpPSKlaSi4Ad8+pzNxM2rzehr6z+9J6UmsycjLABO9//T4HjhyoFdVAp6qCOnDkAG9tfovkVcn0ateLgnEF3BxyMwGWAEZFjGLs4rHkHcwjIjiCabdNo4lvEzKyMwixhpB3MI+uQV2NxNaWA1s4dOyQUSVms9voGtSVvIN5hFhDjCTVtNumEdUyCpvdZvTgcm+3vnM6nTz11FM89dRTOJ1OT4cjIiIiIiK/UVJKzp/Lhdff/w4dO0Lz5pCdXX7bsWN5csrl8nSEUs/ERMYYw/mCGwVz91V342XyIi4qjoJxBawatYqCcQU8EPkA8Qvj2Xlo5wWPyZ2A+n8f/T/e+fEdXln/ylkNxXNXPbmTUIXHCtlyYAuAUQUVGxWLvdjOxr0bad2otXG/58ye2IvtxHWLo03jNmws2Gjcd2/X5XJVGN5oMVu4IvAKFuxYwL3z7iV5RTL5hfkX/DiJiIiIiIi4KSkl583r+HFMe/fCrl3QvTtER5ff7toFe/eW96ASqWEn95wKsARg9bMaw/mAC14NdKoqqINHD/LJz5/w7GfPnrIKauehncZQPHcvKHfVE5QnoQIbBmIvtjN2yVhy9uUQYg2hTZM23ND2BkpPlJKRm0Hix4n4evuyo3AHFrOF0YtGk/ZlGiUnSujVvhetG7c2tjt28ViKSoqI6xYHwIzNM9i0dxO7f9ldayrLRERERETk0qKeUnLeysxmjq9ejfmXX6o+GBRU3oNK5AJyVwP5+fhVWF5QVEBj38bM+WoOwDn3mDqbXlAPXP0Ad//zbj459Em1VVALdiwwklBZu7KMoXjP93meiesnGkmoMd3HMLTTUMZ8PAYXLj77/jNmTJpBUUkRL/V7iV+Kf8Fmt5F0XRL9L+/Piu9WYLPbGHvNWJpamvLMymdo83obwgLCOOQ4xOwts5k+ZDqhAaHkHcjjwcUPYsLEFwlf0CWoi9GX61LpMyUiIiIiIp6npJTUjLZt4fLLPR2FXKLcCR6H02FUSmXmZJKwKIEyVxltrW1Jy05j4vqJpA9NrzBrX3VOTkIVFRexbNcyrH5WIoIjWJq/FHuJnd7te7P0/qU8v/r5Cg3Jb2xzI4ech7i29bV8dfCrCgko+N9QPHcSauPejTzS6hHCAsOYdtu0ikmoL2dgwsTgsME08W1Cn/Z9iOsWV23CqN/l/SrcvzP8TqMZeqAlkGW7lpG8Mpl3v3qXDXs24MJF2pA0ugR1Af5XWTbvm3lkZGcwof+EGnhnRERERERETk1JKRGp82KjYpm4fiJJS5NIHZxKQVEBCYsSCA0IJb8wn5UjV9K6cWuSliYRtyCuvOdSiZ0Qawh9O/Rl1e5VZ1QFNTp6NE9mPckb/33jlFVQmVsyCWoQxKc/fXraKij3ULw1P6whIzeD7P3Z5O7PPeMk1O9xD29023lop5Gk6tCsA1Y/KwnRCRWeYzFbjKSZiIiIiIjIhaaeUnLhrVgBkZHltyIXQOUZ+fq/058yVxn5hflkDMsgNCAUi9lC91bdKaOM2Vtmc+DIAd747xsM+NcA3vjvG2c0I96Z9IL63v49/QL7VWhI7q6Cmp07m19KfuGz7z+j9aTWrNuzjpf6vcSY6DEENwomMTqRHY/sYPF9i5l751wm9J9QY8PoTu7BNazTML4t/BaH01FhHYfTUaEZuoiIiIiIyIWkpJRcWC4XjB8PW7aU32omPrlATp6RD6CttS07HtlhDNXLL8znoSUP0bJRS4ZcMYQZQ2ZQfLyYToGdcDgdpN2e9rsz4rmTUHkH84wqKPcMeO4qqPbW9gSaA+nZpqfRkLzv7L78dcVfMWHi1rBbCWkaQmJ0Itsf3s5fev3FSBbVZBLqdNwxJy1NMhJTDqeDUR+O4pfiX8g7mFevZuPz8/Pj008/5dNPP8XPz+/3nyAiIiIiIheFhu/JhZWVBRs3wrhx8Prr5fcHDvR0VFJPnTxkLS07jdaNWxuPzcyZidXPisPpILRZqHF/Q9wGOqZ2JCM7w6iC2npg6zn3glrz/RreOvAWjjJHhYbkidGJ5zwUr6a5K8viF8Yzf/t8IoIj2FSwiWPHj+Fv9ueY89hZ9eCq7by9venTp4+nwxARERERkUpUKSUXjssFKSnQowe89lr5bUqKqqXkgquuEmjX4V34evvya+mvxHWLM6qgmlmaGQmn36uCCrGGGL2gTlUF1b5pewYGDiQvMc8jVVBn6uTKsobmhjiOOxjeeTg/PfkTq0atomBcAQ9EPkD8wnh2Htrp6XBFRERERKQeUlJKLhx3lVRKCphM5bcbN5YvF7mAKveY6ju7L4t2LGLfkX1Mu20aoQGhRi+oQ8cOGX2U3Emo8+kF9a8//IsRrUbUqgTUqbgry7oGdaWZpRmz/jDLmL3QPRufv9mfEfNHcO+8e+vskD6n08nUqVOZOnUqTqfT0+GIiIiIiMhvNHxPLgx3lVTHjtC8OWRnl9927Fi+fMCA8kSVyAUSExlDr3a9jBnnRkaMJCMngy/2fsGIq0cYM/b1nNkTe7GduG5xtG7c+oLOiFdbuavG/Hwq9lt696t3+bX0V7L3Z2MxW8jalVUnh/SVlpby8MMPAxATE4PZbPZwRCIiIiIiAkpKyYVSWgoFBeU/3btXfay0FHx9PRObXDJO7jEFcH3b6yv0UfL19mVH4Q78zf6MXjSa3P25FJUU1dpeUBeKu3eWw+kwKqXyC/NJWJSA2dvMI9c8wqsDXzWaoccuiOWDrz+ga1BXYqNiCQsM8/AeiIjUffmF+czMmWkMJ9fnq4iIXAqUlJILw9cX1q+Hn36q+lhQkBJS4hGVq6eSrkui/+X9WfHdiksmAVUdd9VY0tIkUgenYjFbSPsyDR8vH5wnnIy5ZgxQXjk1f/t8APIO5rGhYEOdrJwSEaltMnMySViUgNXPSkRwRJ2tTBURETlbSkrJhdO2bfmPSC1SuXoKoN/l/TwUTe1Q3Wx8n//wOc4yJ5nDMgkNCDUqp2KjYtnx8w5aNWnFzKEzSVqaRPzCeHq163XJJfNERGrCyZ+vUwZNwWK24HA69PkqIiKXBDU6FxGRCrPxBTcKJrplNE39mjK883AAZubMxOpn5eX+L5N3MI8Qa4jRDL2JbxMysjM8vAciInWT+/PVXakK6PNVREQuGaqUEhERoGIVWX5hPuFTw40hfTa7ja5BXXlq+VMUlRQR1y0OKP/idEXgFSzYsUB9UC5hlXvh9O3Ql1W7V2Gz22jbuC0dSjp4OkSRWuXHkh955tNn2PPrHrbs38IVAVdUmWzCYrYQ2SISm93mmSBFREQuAiWlRESkispD+ho1aMQe+x7Wfr+WjGEZxlCSGZtnsGnvJvx8/GjRqIX6oFwiTk5CFRUXsWzXMqMXzqIdi3hp3Uv4m/25tvW1ZO3K4hfHLzTo2IC46DhPhy7icbO3zObhbx6mqaUpEcER7P5lN8XHi0n7Mo3R0aON9RxOB7n7c0mMTvRgtCIiIheWklJy8a1YAU88Aa++Cv37ezoaETmFkxvD5x3MY499D3dddZcxpC/vQB4PLn4QEya+SPiCLkFdauUMfb6+vnz88cfG73J2KldBWX2tPPvps1j9rIQFhLFp7yZMmJjQbwI3h9xM+NRwOgV2Ir8wn7Tb0wjyC+KujLtIXJxI7w691RtH6rRznSHP/by8g3ksyV9Cz6Y9WZKwhCYNm5B3II+I6RGM+XgMPdv2ND5Lk5YmVahMFRERqY+UlJKLy+WC8eNhy5by2379wGTydFQicgonD+mblTuL+IXxrNi9gojgCDbs2YALF2lD0ugS1AU49Qx9L/R9AXux3SND/Hx8fLjtttsuymvVB6erglqavxR7iZ3e7Xuz9P6lPL/6efIP5TP0iqGMXTyW+G7xWP2sbIjbQMfUjmRkZ/B87+eJbxPP5mObycjOqDLRgEhdca4z5J38vEYNGgGw/pf1vP/N+8RFx9E1uCvTh0wn8eNErvnnNVzf5npy9+dSVFJE+tB0JXJFRKReU1JKLq6sLNi4EcaNg9dfL78/cKCnoxKRM3By5ZTNbqNDsw5Y/awkRCcAnHKGvkH/GkTyymSa+jUlqkUUWbuyeGXdKwwKG0QT3ybqQ+VBZ1MFNTp6NE9mPckb/32Dtd+vZe+ve7HZbUQERzDttmks2LGANd+vISI4gmaWZhV64fh6+RIRHKHeOFLnVK5wuvuqu5n1h1mnnSHv5OuqSYMmZORkGDPrxS6MZa91L35H/CpUD46OHs3MnJkUlRQR3CiYxOhE4rrFKSElIiL1nmbfk4vH5YKUFOjRA157rfw2JaV8uYjUCe7Kqbl3zmVYp2F8W/gtDqcDqH6GvoKiAtbtWUcD7wbERcaxatQqXuz7Ii5cLMlfgu0XG2nZaVz55pXcNuc27p13L8krkskvzK+xmJ1OJ7NmzWLWrFk4nc4a225dl5mTSfjUcNKy0zhw5ABvbX6L5FXJ9GrXi4JxBdwccjMBlgBGRYxi7OKx7Dy0k4JfC+jRpgdWPysZ2RmEWEPYcmALAJEtIgHYcmALh44dInd/LiHWEABKykrI3peN7bDtgrzHIvmF+SSvSK7R8+vkayTvYB4AH3z9Ae9tew+ofoa8ytfV21vf5oTrBNe0ugaL2UKINYRtP21jZKuRFZ7ncDr4tvBbhnUaxtw75zKh/4QaS0hdiGMjIiJSU5SUkovHXSWVklI+ZC8lpfx+VpanIxORcxAbFYu92E7S0iQcTke1M/S5E1U9Wvdg75G95Bfm89CSh4iJjKGpb1P6tO9TbZIqfGo4s3Jn1UicpaWlPPDAAzzwwAOUlpbWyDbrKveX0yFzhhC3MI47w++kYFwBq0atIqFbAr7evtVWQbm/PIdYQ8g7mEfXoK7Y7DbjHBi7ZCw5+3K4sd2N2Ivt9JzZE3uxnbhucTicDp7b9RxFpUVsL9zOgSMHavw9Fs+rLvFxsZIhlRNB55roPjnexEWJRuVnwbgCerbtyU3tbyI2Kpb4hfHsPLQTqDgDaXXX1e1X3E7LRi15cPGD7Dy007hm3v7xbbpc1gWb3XZB+0dVd2x07YmISG2i4XtycbirpDp2hObNITu7/LZjx/LlAwaot5RIHXMmM/S5E1VbD2ylZ9ueRpJq2m3TsP1iI+9gHhPXTyQmMoYPv/mQPu37sGrkKpKWJhG3II6NBRuxl9g1xO8cnG5onruvzQdff8DgsMHERMYYVVBbD2w1ElBZu8r/aOAeivd8n+eZuH4iG/du5JFWjxAWGMa026Yx5uMxuHCx9eBWfL192VG4A3+zP6MXjebLH7+kqLSIm9rdxCf/75PTDnuSuqm6Xksvr3sZk8lEU7+mZ9V/6UycbnicxWxhxuYZPLj4QZbkL6FHmx6nfO3T9U/7qOCjKhVOWbuymH/PfOZ9M8/oj3byDKRHnUeBitdVx2YdWbl7JY0bNP7fc26bweiPR+M65KJtUVtaT2pdY/2jfu/Y6NoTEZHaRpVScnGUlkJBAezaBd27Q3R0+e2uXbB3b/njIlLnxETGsP3h7YzuNpquQV0BKszQ16Zxm/LE0m9VM+7qG5fLRe7+XAqPFRpJqqiWUdjsNixmC91bdaeMMmZvma2/7p+hk6s8bvv3bacdmldd1cfvVUGFWENo06QNN7S9gdITpWTkZtB3dl/+uuKvmDBxa9ithDQNIem6JFaMWMEj1z5CcKNgwpuH4+/tz8d/+hiL2QJUP+xJ6pbTVd19NuozAFwuF6tjVrNq1CoKxhXwQOQDFaqMzsXvDY+rrhqzYFwBd1x5B7ELYhkyZwjJK5J5ae1LxnZ2H97Nkp1LKHOVMaHfhNNWOP1lxV+Ma6TyDKTVXVfu51nMFnYeLt/vu8Pv5nrr9QB0DepKYnQi2x/eXiVZd7aVZr93bEDXnoiI1D6qlJKLw9cX1q+Hn36q+lhQUPnjIlInnW6Gvi9//JKSEyXc1P4mWjdubVQbjF08lqKSIgIbBhJh/l+SKjE60fhS2bJRS25odwPv3/0+DqeDUR+OInZBLB98/QFdg7rW28qp6qacByos69uhL6t2rzrnBuXVVX3ERsWetgrqs+8/Y8akGRSVFPFSv5f4pfgXbHbbKRsy97u8HwDD3x/OsaJj+Pn4VXjcYrZUaIYunlPdOXfytXW2VXdz8ubQzNKMsrIy/r3130zoPwGL2ULSdUn8a+u/GDp3KMM6DTvja/h0zcbvef8ePv/hcx5c/CA3d7i5SjWmzW6rMivo5z98ftpZJPt26FtthZO7MrTMVUZba1uu/ee1FWYgPVU11bTbppH4cSIff/sxfWf3JXd/LvZiO/8c8k/ioqsfrneqmf4qz2Tq/iw4k2PjvkYLigpo7NuYOV/NAai3n6UiIlI3KCklF0/btuU/IlJvVZ6hb+w1Y2lqacozK5+hzettCAsI45DjELO3zGb6kOnsPrybtOw0I0kV1y2OjOwMrH5WHE4Hoc3Kv0RV/lK5oWBDjQ0F8rTTDSGqbhjUoh2LeGndS/ib/bm29bUszV/6u1+wKw/NcyegTq76cFdBrflhDRm5GWTvzyZ3fy4mTAwOG0wT3yb0ad/nrGcEa29tz1LHUhxOB2az2ViedyCPDXs20KFZB5JXJOuLcQ0434Sm+5w7eXbMyudk5fMtdmEs+5ruIywgzBgS5q6IBIykozvJYjKZKHQUkpadVm2SpfJ5cHJyproEWOXkUeVqzLuvurvKrKBtGrc57SySJ18jQf5BRoXT8M7DWZK/xEiMf2f+rsIMpNVdVw6ngy/2foEXXoyKGIW9xE58VDyX/3I5I68eecr30R3zycPuKs9kevJnQWDDwN89NhP6TzCOpzux5n4f6sNnqYiI1E21fvjetGnT6NChA35+fkRHR7N27drTrr969Wqio6Px8/Pj8ssvZ/r06VXWmTdvHldddRW+vr5cddVVfPjhhxUeX7NmDbfffjutWrXCZDLx0UcfVdmGy+UiJSWFVq1aYbFY6NOnD9u2bTuvfRURqQ9OnqFvQv8J/OWGvxhD/Do068CtobfiZfIieWUyn9o+NZJU026bRmhAKLsO78LX25dfS38lrltchS9oN7a7kZ5te9bYUKCLrfJwnN8bQlR5GNSMITMoPl5Mp8BOOJwO0m5PO6cG5e5+YJm5maz9YS3r96yn9aTWrNuzjpf6vcSY6DHGtPQ7HtnB4vsWn/OMYDERMRw9cZRxy8cZMzXO2DyDiOkRFJ8oxupn1fDMGlBdQ+tOb3biyqlXGsve+O8bDPjXAN747xvVDuusPDvmNz99U+WcrHy+uc+tl/u/XOF823JgizHs030Nj4wYSSNzI2Ijy5uH39D2BpJXJjP9y+nVNig/k2bjlYfHuV/bneg2mUxVZwX9nVkk3dfItNumse/IPqPCqfWk1sz/Zj4zh83k4/s+rjID6amuq8zcTDKGZTB9yHTm3jmXf9z8D1r6tjzle+mu9kodnGoMu6s8k2nlz4KuQV1/99i434fQgFBMmFg5cmWd/SwVEZH6o1Ynpd577z0ee+wxnnnmGXJycrjxxhsZPHgwP/zwQ7Xr7969m1tvvZUbb7yRnJwcnn76aZKSkpg3b56xzoYNGxg+fDgjRoxgy5YtjBgxgnvuuYdNmzYZ6xw9epSIiAjefPPNU8b2yiuvMGnSJN58802++OILWrRowS233MKvv/5acwdARKSeODlRtfj+xadMUvWd3ZdFOxax78g+I0nl/oJ28pfK2toXpXLSafmu5Wfc5+nmkJsJsAQwKmIUYxePZeehncYwKKuvlX9v/bdxLDbEbTC+UJ/JF2z3l9ONezfSulFroLzq447wO4CKfW3+0usvFZKK59sIOSwgjIfaPsTsLbNp83obeqT3YMziMQDMGDKDDXEb9MX4DJxudrsz6et0JgnNyv2YLD6WKudk5fOtul5L93W9j8OOw9hL7Nx/9f3GeetyuYxkc+UkS+WEmO0XW5WeSNUlwConjyonuu0l9iqzgp5J/7TKFU7uJO3JvZ8qz0AKp76uzqYKyZ1YPnnIa+WZTCt/FhQeK/zdY9P/nf6UucrIL8w3JqOorZ+lIiJy6ajVw/cmTZpEXFwc8fHxAEyePJlly5bx1ltvMWHChCrrT58+nXbt2jF58mQAwsPD2bx5M6+++ip33nmnsY1bbrmF5ORkAJKTk1m9ejWTJ09m7ty5AAwePJjBgwefMi6Xy8XkyZN55plnuOOO8v94zJ49m+DgYObMmUNiYmK1zyspKaGkpMS4X1RUBIDT6cTpdJ7Noak13HHX1fhFapquiTPTvnF7nu/9vHF/56GdZG7J5Hv79/y/rv+PzC2ZbCrYxJ/C/8R3h7+j82WdeSLrCYpKihjZdSROpxMffAgLCOOj7R/x3eHvaG9tT0xEDGEBFYeAeXl5MWfOHOP3mnpv8g/lM2vLLL63f097a3usvlb+b/X/YfWzcnXQ1RWG1nS+rDP//fG/mDDxQp8XiI+K5y8r/8K0zdNY+/1abIdsfHf4O64OupopA6awYMcC0jan8b39e64OuhqA7w5/B8DVQVfTyKcREcERxn5n7cqiy2Vd+O7wd/zfTf/HxPUTGfPxGHL25ZDQLYFgSzA92/Rk7Z61pOek8+W+L9lyYAtFJUX8c8g/Kwwjqulz1+l00i+wHwkDE3hn2zss+nYRfj5+bIjZQOegzsZ7+Vr/1/jPtv/w/+b9P9o3bX/K9/NScfL5VVRSxPLvlhvnVuVhnY3M/xvWNuDyAYy8eiTvbHmHpn5NcblcvJ37NgBWPytrRq7hyreuJG1zGj/Yf+Da1tfy1cGvSNucZqwzZcAUdh/eza7Du6qck20bt61wvoU0CWHGbTNIXJxYPiSsSVt6z+oNgMlkoves3viYfCgqKeKdre8w47YZtG/cnmc+fQarn5XOl3VmT9Eevj7wNQ8teYiRV49kwY4F3Nj2Rlo3as36gvU8uPhBerXpxYiuI5i4fiJPLn/SeP2iY0VsKtiEF178v67/j6KSIgL8Asj6Lovklck0MjdiT1H5rKBpQ9Jo37i9sZ2NezcytsVYQpqE8MagN3ho6UO4cPHp7k+Z8WV5/7S0IWlVhtm5r5GT933+9vlcHXT1GV1Xv/fvhPsYFx0rMiql3J+DeQfzuK71dcbnhfuzwOJjwV5sP+2xWbZrGW2btOWT+z4hNCDUeH0ffIzPE/3bJZ6i/z+JVFQfrokzjd3kcrlcFziWc1JaWkrDhg15//33+eMf/2gsf/TRR8nNzWX16tVVnnPTTTcRFRXFlClTjGUffvgh99xzD8eOHcNsNtOuXTvGjRvHuHHjjHVef/11Jk+ezPfff19lmyaTiQ8//JA//OEPxrLvvvuOjh07kp2dTVRUlLF82LBhNG3alNmzZ1e7TykpKTz33HNVls+ZM4eGDRue/oCIiFxCVhauZOqeqfh7++Pn5cdPzp8wYeLhtg/TL7C8gfYnP3/C9ILpNDA1oJN/J2wOG0dPHOWhtg8Z69SkH0t+ZGXhSg6WHuTYiWPk/JqDv7c/IZYQvjv2HUfLjtLZvzN/6/g3Cp2FPPzNw7T0bcmPJT8yIHAA635Zx7VNruWzw58xNXwqc/bN4ZDzEN8Xf8/AwIEAZBVmkd45nRe+e4GmPk0JahDEssJluFwuBjUfZKwzLXwaD37zIAMDB9IvsB8Pf/MwXiYvhjQfQkzrGJb9vIzpBdNx4eKKhlfwY8mPHDtxjPtb3M+xsmMcLD1IUIMg+gf2P+0wogvhNdtr/HL8F/4e+vcKy1cWruSNPW/gY/Ih3D/8gr+ftdnJ539L35Z8e+xbAB5s/SADLxuIzWFj3I5xuHAxpdMUPjjwAYech2jl24qVh1Ya59cvx38BoKlPUwDjuI/fOd44v7IKs2jn144Ac4CxzrOXP0vctjha+7bmx5IfK5yT97a8t8r5VlJWQur3qayzr6N7k+6092tP/8D+AKwoXMEm+yYOlh5k4hUTaW9pD5SfB9Wd/xmdM/j7d3+v9vwf0WqEcWzKKOMy82U4yhwcO3Gsynmyr2QfKwpX8L3je7789Ut6Nu1JUrskfL18KSkr4fldz7Pt6Db8vf253HI5ux27OXriKN0ad6Ohd8Ozuj7cr1VT19WPJT/y8DcP0y+gH/Ft4vH18iVzbyZLfl7CcddxpoVPY0XhiiqfBa18W5322Lzz4zvGZ4yv1/8mmCkpKyFuWxwDAwcyotWIc45bRETkZMeOHeO+++7DbrfTpEmTU65Xayulfv75Z06cOEFwcHCF5cHBwezfv7/a5+zfv7/a9Y8fP87PP/9My5YtT7nOqbZ5qtdxP6/ydqpLbLklJyfz+OOPG/eLiopo27YtAwYMOO2bVJs5nU6WL1/OLbfcUqGBrcilStdEzbiVW3nw0INkbsnkq4Nf8cmuT7jzyjt54fYXsJgtfHXwK2akz8CEiY1xG+kS1AWH00Hsx7G8+c2b7PLdRefLOp9zpc3pqqBCm4Xy5Y9fYsLEywNerlD19M3Rb+jasyuZWzJpamlK9phsrnzrSr7ne7q36c6H93xIyBshfNf0O3o07UFGbgZRraLwbuzN/930f3w04yMWs5g9zj0M6jqIezvfy/z08gbvzwx9Bl8fXz6a8RF///HvHDtxjL/f8XdaN27N3CNzWbtnLZ8WfcovDX9hy89bMGFiUMdBNPZtzDDrMB6IeOC8h+Kdi8rXxLpP15GRm8HNt9xsVIHkH8rnzhl30sC7AWOjx/JK/1dq9P2s7U4+35o0aEJmQSYPRD7ApFsm8cLnL5Cek87tV9xOWl4aj9z+COu2rDOqoAoCCugRUH4urRy5kvDp4cb5lZ6TXp7Q6Vqe0MzIzaBHnx4UbC9gUNdBxETE8NGMj8gvzmds57GYvc2k56SzmMU4yhy8PvR1bn/v9grn5P297q96vv1WHZQ+JL1KVVEcceQfyufqGVezxbKFmFtisJgtrF65mmmbp+E84eTvd/ydlDUpRFuiGThwIIlvJFaIL8g/CFeAi1tvvZWbnTez7+N9zPtmHte0v4bOl3U+5bkdR/nMdm9vfZvExYl8k/9NhWqmf9z8D34p/oXv7d8zyDrovK4R92udiTP5d6JBxwYkLk7kS8eXXB10Ndn2bJwuJze2vZH7htzHTb/eVO1nwemOTdihMD6a8RHLvJbx+i2vGw3Uxy0fh6PMwd/v+LtHPiNEQP9/EqmsPlwT7pFhv6fWJqXcTCZThfsul6vKst9bv/Lys91mTcXm6+uLr69vleVms7nOnmhu9WEfRGqSronzFx4czisDXgFgVu4s4hfGs+r7VUQER7BhzwZjKvao1uUVq//66l98tP0jAL766Ss27t3IpI2TmHHrDJrsLk/8//GPf8THp+o/faebAW/ZrmVVZrfbeXgnQ68YyiOfPMItobew7+g+Y3a7t/PeZs+ve4gIjiCoSRCRLSLZf2Q/Ww9uxWw2E9kikj2/7uH5Ps8zaeMkNv24iUeueYSrgq9i2m3TGPPxGFy4jKF2UP7vTf9/9yciOAJfb1++PfQt/mZ/HvrkIXL351JUUsRL/V7il+JfsNlt9GjT46xnybvQ3NdEQnQCkzZO4s8r/mw0cs7ckomPlw/OE04euu4hzGbzKd/P+jBL2OnOt4XfLuSE6wTXtbmOJg2bsOfXPUS2iGT6kOks+naRcX5FtogEqHAuPbv6WboGdWXPr3t4utfTvLrhVQBGRo7E19uXSRsn0fud3tiL7YzuPprWjVsbMy7O2jqLToGdOFx8mHe2vsP0IdMZ3GlwlXMy5I2Qsz7frgq+ivSh6cQvjOejHR8RERzBlz9+ScmJEm5qfxMhASFc3uxyVuxewaNZj1JUUsTo7qMJDQhl2m3TSPw4kSU7lzBwzkDjfJ85bOYZnwdx0XH07tDbmJ2vtlwfp/t3onLMY9v8bybTDm92OO1nwamOTXXvg/s5L/R9gbfz3j7lLIgiF4v+/yRSUV2+Js407lqblGrevDne3t5VKpgOHjxYpULJrUWLFtWu7+PjQ2Bg4GnXOdU2T/U6UF4x1bLl/8qzz3Y7IiJyZmIiY+jVrpfxBa1Dsw4VpmI/eYY+97TvM4fOJGlpEqM/Gk3ZP8oAOHLkCLvtu42EQIg1BKuvlWc/fRarn5WwgDA27d2ECRMT+k1gdPRonsx68nenjw+xhpC1K8tonOy+f+jYIWNa+oycDKOR8pjuY2jTpI2REMjIzSB7fza5+3MxYWJw2GCa+DahT/s+xHUrr8Bw73vSdUn0v7w/K75bgc1uIzE6sVZ8wT5T7hnK4hfGM3/7fCKCI/j8h89xljnJHJZJaEDoad/P+IXx9GrXq87sb2WZOZkkLEo45fl2z/v38PkPn/Pg4ge5ucPNxrkE/2tc715WVlbGmO5jKhzTMlcZba1V+zq5kxg7Cnfgb/Zn9KLR1SY0Ay2BLNu1jOSVybz71bunPCfPehbGStfw2Gv+l2Rp83obwgLCjAbl04dMJzQgtEqzcXuJ/ZzPd/dkC3VJdTHfGX7neX0WVH4fEqMTsfpZeXbVs0ZiNGtXFhPXT6wXCWAREan9am1SqkGDBkRHR7N8+fIKPaWWL1/OsGHDqn3O9ddfz6JFiyosy8rKonv37kaW7vrrr2f58uUVekplZWXRs2fPM46tQ4cOtGjRguXLlxs9pUpLS1m9ejUvv/zyGW9HRETO3Mlf0JJXJJOWnYbD6cBitlSYoa9jakd6tu1pzCr1Xs57/Er5zKh3vHsHK/euNL58Lc1fWqUKKv9QPkOvGMrYxWPp26GvMdvY1gNbKySg4H9Jguf7PG80Tn6k1SPERsUycf1Ees7sWd58+IYniW4VbVScfPb9Z8yYNKNKQuB0Xyorfzntd3nd7bNU+YtxdMtothduZ3jn4QCnfT//s+0/jJg/gpBmIedV0XFytVJNVoZU3m7fDn1ZtXsVNruNJg2akJFTPmPdlEFTqj3fOjbryMrdK2ncoLExu93E9RMrJDTv63ofL68r///G/VffD5TP+rYkfwkffP0BXYO60jWo6zknNHce2lkhaVFTSc/fS7JUlxArKikiY1iGkiO/qe4Ynu1nwcnbyC/MJ3xquHFOuof01YcEsIiI1A21NikF8PjjjzNixAi6d+/O9ddfT1paGj/88ANjxpRPJZ2cnMzevXt5++3yWWXGjBnDm2++yeOPP05CQgIbNmwgIyPDmFUPyhul33TTTbz88ssMGzaMBQsWsGLFCj7//HNjnSNHjrBz5/+mpN69eze5ubkEBATQrl07TCYTjz32GC+++CJhYWGEhYXx4osv0rBhQ+67776LdHRERC5d7i/qSUuTSB2cis1uqzLtO8C7X73Lr6W/Gs/L+i4LU4Pzq4JyJ6B+r+qpuqqUmqg4qS+q+2J8pu9n9v5sLGbLGVd0VE4UnVwd564MeWXdKwwKG0QT3yZGkgo4ZYKpuvuVt3vyDIzXtr6Wjwo+4oTrBNe0ugaL2VLt+eY+t4P8g9h5eCdhgWEVhtB99v1nzPhyBlCxCup0Q7fONolxMauKKr/WhUqISfXcCeDUwan4+fgBGAnged/MIyM7o85VmImISN1Sq5NSw4cPp7CwkOeff559+/bRpUsXlixZQvv25TO37Nu3jx9++MFYv0OHDixZsoRx48YxdepUWrVqRWpqKnfeeaexTs+ePXn33Xd59tlnGT9+PB07duS9997juuuuM9bZvHkzN998s3Hf3Zx81KhRzJo1C4CnnnoKh8PB2LFjOXz4MNdddx1ZWVk0btz4Qh4SERGh6hCwRg0ascdePu17xrCMCkPAzN5mnJRPSdvM0oxhXYadVxVUtUmCaqqe6vowu4vpbN/PR655hFcHvnrKio7T9WyqXB1nMVuYsXkGDy5+kCX5S+jRpgdZu7J4ed3LmEwmmvo1rTbBVPl+5e0WFBUQPjWcToGdyC/MJ+32NJ5e+fTvDs1zn1+JHyfy8bcf03d23zMa1llfzq+6OMyuLnMnRt0JKTeL2WKckyIiIhdSrU5KAYwdO5axY8dW+5g7QXSy3r17k52dfdpt3nXXXdx1112nfLxPnz5Gg/RTMZlMpKSkkJKSctr1RETkwjh5CFjewTz22Pdw11V3GUPA0r5Mw8fLh9ITpcZzugZ1rZEqqLOpeqrLw+wupjN9P50nnIy5prxiurqKjt/r2VS5Os7lcvHQkoeIiYzhw28+pE/7PqQNSSNiegQul4vVMavx9fatkGB6+sanGfSvQRUSTjM2z6iwXXcFyoa4DXRM7UhGdsYZDc072z5KSuDI+XB/BrqHQrs5nA5y9+eSGJ3owehERORSUOuTUiIiIqdyclWFe4a+FbtXVGiePX3IdMa8WJ7EyDuYB5x/FVR9qUqpbc7k/XQ3Q3crKCqgsW9j5nw1h0OOQ7/bs6lydRyA1c/KtNumYfvFhs1uY07eHJpZmlFWVsa/t/7bWMedYBq/anyVhFPl7borUJpZmlU53047NO+38019lORiqDwU+uSeUicPnRUREblQlJQSEZF64VTNs+8Mv5MxlCel7MX2Gq2Ckgvn95qhw/9msnPPOPf21rd/t2dT5eo4gIjg8qood2WI+3lAhXXcCaZdh3dVSTj93gyMidGJZzU0T+ebXAzVzYbp7k+WPjRd56GIiFxwSkqJiEi9UV3z7L+s+gsz0mfQwLsBjnAHD33ykKqg6ojTNUMvKCogYVGC0W9q5ciVZ9SzqXJ1nNnbTNauLMYuHmtUhmRkZ5C1K4uysjLGdC9PaJ6cYOoU2IktB7ZUSDi5K05ONQNjXLe4sx6aJ3IxVE4AJ0Yn0u/yfqz8biX3zru3RmenFBERqUxJKRERqZdOrgD4yO+j8gqAz1SVUldV1wy9zFVGfmG+0Qz9THo2Va6O6xTYiUOOQ8zeMpvpQ6YTGhDKfV3v4+V1LwNw/9X34+vtWyHB9Pe+f2fQvwZVSDi1btz6jGZg1NA8qY1OTgBn5mQy6F+DKsxOeSazXIqIiJwLJaVERKTeqq4CQEmouuvk93POV3Noa23LypErjffTnYQ6k55NJ1fHBVoCWbZrGckrk3n3q3fJ3Z8LlE9q0ntWbyKCIyokmF5c++IpE06agVHqMvcsl+6+bCf3mKo8y6WIiEhNUFJKRETqtZAmIfQq6UUvv14M7DMQHx/901eXnVzRkZadRuvGrY3Hzqdn085DO6skLwFjWeUE09kknDQDo9QV7lkjUwen4ufjB1Q/y6WIiEhN0f/MRUSkXispKWHIkCEAHDlyREmpeuJUs4ada8+mk5NdJ6u8rHKCSQknqU/cTf7dCSk3i9li9GUTERGpSfqfuYiIiNQ5p5s1TD2bRM6Ne3IAh9OBxWwxljucDqOpv4iISE1SUkpERETqJPUME6lZp6pATFqahL3YzuHiw2c1I19+YT4zc2Zis9uM5wBVlmlmPxGRS5eSUiIiIlJnnWrYnYicvVNVIP5S/Asmk4n3v37/tDPynZyEKiouYtmuZRVm8Xt53cuYTCaa+jXVzH4iIgKAl6cDEBERERGR2iEmMobtD29ndLfRBDcK5u6r7sbL5EVcVBwF4wpYNWoVBeMKeCDyAeIXxrPz0E4AMnMyCZ8aTlp2GrsP72bJziWUucqY0G8Cq0at4rNRnwHgcrlYHbP6lNsREZFLi5JSUjutWAGRkeW3IiIiInLRuCsQ5945lwBLgDEjn7vPlMVsIem6JMxeZobOHUriokQSFiUQGxVLwbgCbg65mQBLAKMiRjF28Vh2HtrJnLw5NLM0w+pr5d9b/21sJ3VwKk18m5CRneHJXRYREQ9RUkpqH5cLxo+HLVvKb10uT0ckIiIickmqbka+zJxMomZEcdx1nEJHIW9vfZsTrhNc0+oaLGaL8Zxpt00zEk7uZVEtoyrM4qeZ/URELm1KSkntk5UFGzfCuHHlt1lZno5IROqwBg0a8Oabb/Lmm2/SoEEDT4cjIlKnhFhD2HJgCw6nAyjvG5WwKIGRESNpZG5EbGQst19xOy0bteTBxQ+y89BO4zmAkXByL8vZl0OINcTYvntmv5OXiYjIpUNJKaldXC5ISYEePeC118pvU1JULSUi58xsNvPQQw/x0EMPYTabPR2OiEidEhsVi73YTtLSJBxOBzNzZmL1s+Jyufi19FfiusXRsVlHSk6U0LhBYzKyM4znjF0y1khC3df1Pg47DmMvsXP/1fcDGDP7FZUUEdctzsN7KiIinqDZ96R2cVdJffIJmEzlCalBg8qXDxzo6ehERERELimVZ+Tz8fKhqKSId7a+Q/rQdEIDQomNimXi+okE+Qex8/BOwgLDmHbbNMZ8PAYXLj77/jNmfDkDAJPJRO9ZvY2Z/YpKioztiIjIpUdJKak93FVSHTtC8+aQnV1+27Fj+fIBA8oTVSIiZ+HEiROsXbsWgBtvvBFvb28PRyQiUrfERMbQq10vMrIzWLBjAUUlRXyR8AVdgroAGEmoxI8T+fjbj+k7uy+5+3MxYWJw2GCa+DahT/s+RjWUu8dUYnQicd3ilJASEbmEKSkltUdpKRQUlP907171sdJS8PX1TGwiUmcVFxdz8803A3DkyBH8/f09HJGISN3jnpEvNiqW8KnhTNk4xZiRz+F08MXeL/DCi1ERo7CX2E+bcJrQf4Lxe35hPskrko2+U7FRsYQFhl3MXRMREQ9SUkpqD19fWL8efvqp6mNBQUpIiYiIiHhY5eF8Jw/DyxiWQUxkzBlvKzMnk4RFCVj9rEQER5C1K4uJ6yeSPjT9rLYjIiJ1l5JSUru0bVv+IyIiIiK10snD+c51GJ57Fr/YqFimDJpiVFwlLU0ifmE8vdr10rA+EZFLgJJSIiIiIiJyVtzD+c6Vexa/1MGp+Pn4AWAxW0gdnMq8b+aRkZ1xXtsXEZG6wcvTAYicsRUrIDKy/FZERERE6iyb3UZEcISRkHKzmC1EtojEZrd5JjAREbmolJSSusHlgvHjYcuW8luXy9MRiYiIiMg5CrGGsOXAFhxOR4XlDqeD3P25hFhDPBOYiIhcVEpKSd2QlQUbN8K4ceW3WVmejkhEREREzlFsVCz2YjtJS5OMxJS7p1RRSRFx3eI8HKGIiFwM6ikltZ/LBSkp0KMHvPYabNhQfn/AADCZPB2diNRyZrOZV155xfhdREQ873Sz+KUPTVeTczlr+YX5zMyZic1uI8QaQmxULGGBYZ4OS0R+h5JSUvu5q6Q++aQ8CZWSAoMGlS8fONDT0YlILdegQQOefPJJT4chIiKV1MQsfiIAmTmZJCxKwOpnJSI4gqxdWUxcP5H0oenERMZclBiUFBM5N0pKSe3mrpLq2BGaN4fs7PLbjh1VLSUiIiJSx53vLH4i+YX5JCxKIDYqlimDpmAxW4yhoPEL4+nVrtcFT3TWhqSYSF2lpJTUbqWlUFBQ/tO9e9XHSkvB19czsYlInXDixAmys7MB6NatG97e3h6OSERETkcVJ3I2ZubMxOpnJXVwqjGbo8VsIXVwKvO+mUdGdsYFTXzWhqSYSF2mRudSu/n6wvr18OWXVX/Wr1dCSkR+V3FxMddeey3XXnstxcXFng5HREROIzMnk/Cp4aRlp3HgyAHSstMInxrOrNxZng5Naimb3UZEcISRkHKzmC1EtojEZrdd0Nc/OSlmMVuM104dnEoT3yZkZGdc0NcXqetUKSW1X9u25T8iIiIiUm+p4kTORYg1hKxdWTicDiMpBOWzOebuzyUxOvGCvr6nk2IidZ0qpURERERExONUcSLnIjYqFnuxnaSlSTicDgAjmVlUUkRct7gL+voh1hC2HNhivLabOykWYg25oK8vUtcpKSUiIiIiIh6nihM5F2GBYaQPTSczN5M2r7eh7+y+tJ7UmszcTNKHpl/w6jpPJ8VE6jolpaTuWrECIiPLb0VERESkTlPFiZyrmMgYtj+8ndHdRhPcKJjE6ES2P7z9osx85+mkmEhdp55SUje5XDB+PGzZUn7brx+YTJ6OSkRERETOUWxULBPXTyRpaZIxhE8VJ3KmQgNCL+gse6cTExlDr3a9yMjOwGa3kRidSFy3OCWkRM6AklJSN2VlwcaNMG4cvP56+f2BAz0dlYiIiIicI3fFSfzCeOZvn09EcAS5+3MpKilSxYnUiPzCfGbmzMRmtxFiDSE2KpawwLAa2bYnk2IidZmSUlL3uFyQkgI9esBrr8GGDeX3BwxQtZSIVGE2m/m///s/43cREam9VHEiF0pmTiYJixKw+lmJCI4ga1cWE9dPJH1o+kUZ5ici1VNSSuoed5XUJ5+UJ6FSUmDQIFVLiUi1GjRoQEpKiqfDEBGRM6SKE6lp+YX5JCxKIDYqlimDplQYGhq/MJ5e7Xop8SniIWp0LnWLu0qqY0do3hyys8tvO3YsX+5yeTpCERERERGpRWbmzMTqZzV6lUH5rI6pg1Np4tuEjOwMD0coculSpZTULaWlUFBQ/tO9e9XHSkvB19czsYlIrVRWVsY333wDQHh4OF5e+nuMiIjIpcRmtxERHIGfj1+F5RazhcgWkdjsNs8EJiJKSkkd4+sL69fDTz9VfSwoSAkpEanC4XDQpUsXAI4cOYK/v7+HIxIREZGLKcQaQtauLBxOh1EpBeBwOsjdn0tidKIHoxO5tOnPxVL3tG0L3bpV/WnTxtORiYiIiIhILRMbFYu92E7S0iQcTgeA0VOqqKSIuG5xHo5Q5NKlSikRERERERGpt8ICw0gfmk78wnjmb59PRHAEuftzKSopIn1oupqci3iQklIiIiIiIiJSr8VExtCrXS8ysjOw2W0kRicS1y1OCSkRD1NSSkREREREaq38wnxm5szEZrcRYg0hNiqWsMAwT4cldVBoQCgT+k/wdBgichL1lBIRERERkVopMyeT8KnhpGWnceDIAdKy0wifGs6s3FmeDk1ERGqAklJSv6xYAZGR5bciIiIiUmflF+aTsCiB2KhYCsYVsGrUKgrGFfBA5APEL4xn56Gdng5RRETOk5JSUn+4XDB+PGzZUn7rcnk6IhGpBcxmM0888QRPPPEEZrPZ0+GIiMgZmpkzE6ufldTBqVjMFgAsZgupg1Np4tuEjOwMD0coIiLnSz2lpP7IyoKNG2HcOHj99fL7Awd6OioR8bAGDRowceJET4chIiJnyWa3EREcgZ+PX4XlFrOFyBaR2Ow2zwQmIiI1RpVSUj+4XJCSAj16wGuvld+mpKhaSkRERKSOCrGGsOXAFhxOR4XlDqeD3P25hFhDPBOYiIjUGCWlpH5wV0mlpIDJVH67cWP5chG5pJWVlWGz2bDZbJSVlXk6HBEROUOxUbHYi+0kLU0yElMOp4OkpUkUlRQR1y3urLaXX5hP8opk7p13L8krkskvzL8QYYuIyFlQUkrqPneVVMeO0Lw5ZGeX33bsqGopEcHhcNChQwc6dOiAw+H4/SeIiEitEBYYRvrQdDJzM2nzehv6zu5L60mtyczNJH1oOqEBoWe8Lc3iJyJSO6mnlNR9paVQUFD+07171cdKS8HX1zOxiYiIiMg5i4mMoVe7XmRkZ2Cz20iMTqTf5f1Y+d1K7p13LyHWEGKjYoHyxug2u40Qawh9O/Rl1e5V2Ow2mjRoQkZOBrFRsUwZNAWL2WJUXMUvjKdXu15nleASEZGao6SU1H2+vrB+Pfz0U9XHgoKUkBIRERGpw0IDQpnQfwJQXvE06F+DsPpZiQiOIGtXFi+vexmTyURTv6ZEBEewaMciXlr3Ev5mf65tfS0fFXzECdcJrml1TYVZ/JKuS+JfW//F0LlDGdZpGLFRsYQFhnlyV0VELjlKSkn90LZt+Y+IiIiI1Ev5hfkkLEqoUPGUdyCPiOkRuFwuVsesxtfbl/Cp4XQK7ER+YT5pt6fx9Mqn+fyHz3lw8YPc3OFmQgNCyczJJGFRAiaTiUJHIWnZaUxcP5EX+r6AvdhuVFwpUSUicmGpp5SIiIiIiNR6M3NmYvWzkjo41ah4mpM3h2aWZlh9rfx767+NdTbEbcDqZyUjO4OOzTpScqKExg0ak5GdYSS3RkaMpJG5EbGRsRSMK+CGtjeQvDKZ6V9ON/pOXfnmldw25zY1RxcRuUBUKSUiIiIiIrWezW4jIjgCPx+/KsvcvwNEBEfQzNKMyBaR2Ow2nu/zPBPXTyTIP4idh3caiSuXy8Wvpb8S1y2OgqIC1u1ZRwPvBsRFxvHqwFeZsXkGDy5+kCX5S+jRpgdZu7LOuJoqvzC/Qo+rS7niSsdCRE5HlVIiIiIiIlLrhVhD2HJgCw6no8qynH05hFhDjPuHjh0id38uIdYQwgLDmHbbNPYd2cfH337MzNyZFJUU8c7Wd4xZ/NyJqh6te7D3yF7yC/N5aMlDxETG0NS3KX3a9zllNVXlWfw009//6FiIyO9RpZSIiNRrPj4+jB071vhdRETqptioWCaun0jS0iRjCN99Xe/j5XUvA3D/1ffj6+3LxPUT6TmzJ/ZiO3Hd4nA4HXyx9wu88GJUxCjWfL+GopIivkj4gi5BXYDyKquuQV3ZemArPdv2NJJU026bhu0XGza7rdpqKofTwagPRxG7IJYPvv6A1o1bX9SZ/mpzFVJ1PcA066GIVKZKKRERqdd8fX2ZOnUqU6dOxVezcYqI1FlhgWGkD00nMzeTNq+3oe/svvSe1RsAk8lE71m9Sfw4EV9vX3YU7sBitjB60WhaT2pNZm4mGcMymD5kOgv+tADnCSdTNk4xqq7aNG7DxoKNRiLLPSzQ5XIZFVeVq6kA3v3qXeZvnw9A3sE83t76drUz/aUOTqWJbxMysjNq7HjU9iqk6nqAXahjUWusWAGRkeW3InJG9CdjEREREZHaYMUKeOIJePVV6N/f09HUSjGRMfRq14uM7AxsdhuJ0YnEdYsDMJYlXZdE/8v7s+K7FRXWcVfluJNb8Qvjmb99PhHBEXz545eUnCjhpvY30bpxa0KsIWTtymLs4rEUlRQR1y2O8Z+Or1BNdXIl0I6fd9CqSStOlJ2oMtMfQEFRAY19GzPnqzkA51zR5K6MyjuYx5L8Jdx91d3M+sOsClVIcQviyhNsJXaPVk9V1wMMyhNT7n5f9YrLBePHw5Yt5bf9+oHJ5OmoRGo9VUpJ/aa/Vohc8lwuFz/99BM//fQTLpfL0+GIiFSv8hdafV6dUmhAKBP6T2DunXOZ0H8CoQGhVZb1u7xflXVOFhMZw/aHtzO622iCGwUz9pqxvNT/Jdb9sI42r7fhU9unHHIcYvaW2Uy7bRqhAaFVqqnclUAv93+ZvIN5hFhDqsz0B/+raNpj3wNwzhVNJ1dG5R3MA+CDrz/gvW3vAeXJnu6tulNGGbO3zPZ49VR1PcAAHE6HUX1Wr2RlwcaNMG5c+W1WlqcjEqkTVCkl9Zf+WiEiwLFjxwgKCgLgyJEj+Pv7ezgiEZFqnPyF9vXXy+8PHOjpqOo1dyLrZHeG32lUXAVaAlm2axnJK5N596t3q1RTuftQPbX8KaOayuVyVZjpz11NFRoQSn5hPitHrqR149Zn1Ffp5H5RTRo0qdCrKnZhLPua7iMsIMzYjsvl4qElD9GyUUtuaHcD79/9vkd7OFXXA8wdj/t41RsuF6SkQI8e8NprsGFD+f0BA/T9Q+R3KCkl9Zf+cyciIiJ1gb7Q1hqVE1U7D+00klRjrxlLU0tTnln5DG1eb0OjBo3YY9/D2u/XkjEsw0j4TLttGokfJ/Lxtx/z373/pcxVRn5hfoV1UgenMu+beWRkZ1RJjEF5VVTCogSsflYigiP4qOCjCr2q3MML598z39gOgNXPisPpILRZ+eu4ezhVfq3KDdL7dujLqt2rarRhenXDJHP351JUUmTMelhvuL93fPJJ+TWbkgKDBun7h8gZUFJK6if9505ERETqigv9hVa9qs7Z6aqp8g7msce+h7uuuovhnYcDVJnpb+nOpbS1tmXlyJUVkjAWs4UrAq9gwY4FVRJD1fWLuuf9eyr0qnJXIf1lxV/oGtQVm93GibIT+Hr7crD4YIUqpMo9nConvBbtWMRL617C3+zPta2vJWtXFhPXTyR9aDoxkTHndfxO1QOsXiWk3N87OnaE5s0hO7v8tmNHff8QOQNKSkn9pL9WiIiISC1mWrkS/vpXmDjxwn6hVTuDGndyompW7iziF8azYveKCpVAGcMyiImMIXlFMmnZabRu3LrCNmZsnsGmvZvw8/GjRaMWFRJDgQ0DgfJ+UYPDBhMTGUPHZh1ZuXul0atqQv8JRhVSmauMtta2HDxykOITxcwYMqNC0ifvQB4b9mygQ7MOJC5KrDAMsKCogPCp4XQK7ER+YT5pt6ed8fDCczleF5wnErClpVBQUP7TvXvVx0pLQbP/ipySGp1L/fN7f61Q41ARERHxJJcLr5SU8kTRs8+Wf5ndtav8C210dPntrl2wd2/5F9rzoebLF1TlhumJ0Ylsf3i7UWEUGxWLvdhO0tIko+F33oE8Hlz8ICZMfJHwBTOGzKD4eDGdAjvhcDroGtSVm9rfRGxULPEL49l5aKexHYvZws7DOwEY3nk4d4TfAUDXoK6MjBiJt8mbL/Z+YbzWjM0ziJgeQfGJYqx+Vt7e+naFYYDuZu0b4jZg9bOSkZ1hDPlr4tvEGBZYJ3hqsgBfX1i/Hr78surP+vVKSIn8DlVKSf2jv1aIiIhILXZZbi5emzb9r+/lO+/AVVdVXfH/t3fncVHV+//AX8MOoqQgiEKYW2K4YgKmue9L3qy0upq7fm9F2r11tTSXFqzc0qxrSdAtS39l18wQwdKuCnIFQUvFXKKk1JIUBBEQPr8/jmeWw8wwA7Pzej4e84AZzjCfWT5nPud93p/3JzjY/DGLdqbIkCH6yxm4uQHPPcfpfBZiLBNIX12lzAuZEBB4b+x7iAqOwqK9i9SBofbr26PoRhF+/PNHnXpRCUMTdGpVDf5wsDor64MHPlAHweLC49SP1bFFR2T9mgUVVNg0dhPmRM+pNQ2woLgA3UO6o7lvc50pfvqmF1qizpRV2bOebHi4dCEiszEoRa5HPlvxxx+1/1afwR0RERFRQ90OFqkSEtB561bUxMTATQ4UbdwojV0aOq1OmSly65b+cgbx8UB+Pqfz2YiyrtJdze9CgE8AZkfPBoBagSE/Tz8U/1asUy9KWauquKJYb30m7cf68vSX8PHwQfbsbNwTfA8A1JoGKBdM//PGn8i7lIe50XMB1J5eaMk6U1bBerJETotBKXJNPFtBRLd5eHjgiSeeUP9ORGRzWsEitwUL0OL0adzatQtulq57qcwUWbCgdjmD0FApIDV/PrBuHett2oh2NpVcZ6q8qlxnJT3twNBDXR7SqRfVZk0bnVpVpjxWQXEBWvm3UgekAKgLpAc3CcbZq2fx2uDX8GbGm+j7QV8U3yzGzF4za00vjAqOQnlVuUXrTFkc68kSOS3WlCIiIpfm7e2N5ORkJCcnw5uZkkRkD/IB8/z5cDt9GuXNm0OYUvdy716gRw/pp6Hb5Ovp6bqZIn36AOfP165VdfEi4OUFJCRI27Leps0p60zJ17UDQ8p6UcpaVaZoG9AWxy4fU9eXAqTphO+MeQcXSy9i14+7MHfXXHi7e+N00Wn4evpizldz0Of9PhAQ2DR2E6KCowDAsetMsZ4skVNjUIqIiIiIyFT6AkXGttGeVpSQAOHlBd+rV+EZG2u8qLm+os3K22pqNNfj46XA17JlUqbIihXS/9uwQVN0ecMG6X8nJgI+PtK2LH5uc3KdqaS8JIStDdMbGGqzpg2+OPUFPnjgA+x6bBcShiaYnZ2kr8i6chpgiH8I4mPisXfKXjzd52mE+IfgruZ3ITYsVj29UObr6atTd8phyPVkrbVYABFZFecxEBGRSxNC4MaNGwAAPz8/qFhbgojqSxkU0lePyVhdJx8fVG/aBI/p03Fr3Tp49O+vuZ+y7qW+os2A7m0JCeoMLKxbJ03NU2aKbNkCPPmkdN8nn5Rui4ysnU3C2js2pawzFR8Tj6HthmLv+b0oKC7QWy/KXPqKrMvF0fVNAxzSbgiA2tMLZeVV5Tp1pxwG68kSOTWVEMxntJeSkhIEBASguLgYzZo1s3dz6qWqqgopKSkYPXo0PD097d0cIrtjn3A8ZWVl8Pf3BwCUlpaiSZMmdm5R48I+QU5PezW76mqpTo0cFEpNlerVGNumc2egqgrYtg1QqVBVVYWKCRPgFxEBt8xM/YEgIYC+faXfMzKk34XQbJuRAcTFASdOAFFRwL59QECA/oyQ8HDgzBnp9w4dpIwSfdv861/ACy9wRT4XdPbPs+rgV9uAtnUGu84UnUHkxkhM7zEd60eth6+nr7qmVFJeEvKfyrd4TSmbfldo91d+1slBucL4ydR4BzOliIiIiIj00c56WrxYCgopV/caNszwNocOAXl5UrCod28AgOfti/D0lG7Xl8VhqGgzoLlt3DggKwsYO1aaipeYCEyZIk3RkwNagG6miKFskpYtgUceMZ4BRk5Lu8i6KQxlWBXfLMbIjiOxZN8StA1oixk9Z6BjYEcrttwKTMl2JCKbYk0pIiIiIiJ9tKfQZWXp1myS6zHJU+j0baOnrlNVVhb2r16NW999pz8gpa9oc2CgtK23t/R7To6UeeXhAWzdKl2PjNRM1+vZE+jVS7qEhWn+d3i45nbty8mTmufAGlMEaXph/lP5mNNrDkL8QxAXFgeVSoXDhYdxufQy3jv6HiI3RiI5L9neTTWPdp/mZ53IITBTioiIiIgI0J3WM2SIpkD5qlXA++9L0/ACAzX1mNq1A1auNL6Ndl0nlQqoqkLxxYu6wSJtctHmwkJ1dpWOe+/Vvf7DD7rbVVYazsDSR7sQu3YGGGtMNXpyhpU8nW9Gzxl4a+RbOtP5Zu2chX539rP4dD6rsOBn/UzRGXyQ+4F6SqRTZo0ROQgGpYiIiIiIjBUor6qSpsiVltYOCgHAiy8a38acQJGhos2XLkkHziEhmutXrwItWmhuA8wv7GxoqmBamlQvixq9D3I/QIBPANaPWg8fDx8A0kp860etx/ZT25F4NNGs6YF2Y6HPelJuEmZ/NRsBPgHoHtIdaefS8GbGm9g8fnOt4vFEVDcGpYiIiIiIlKvdLVigmUJ34gSQnAzMmwc0bw4kJUn3mT4dKCmRVr3Tt42cfWFuoCg8XLpYm76pglyRjxQKigvQPaS7OiAl8/X0RafATvjy9JeOnzFkoc/6maIzmP3VbOfPGiNyIKwpRURERETOb+9eoEcP6ae+68buk56uO62nTx/g/Hng3Dlpalx0tFRQvLAQuHZNWvEuKkrKVPr5Z8Pb6Kvr5EjkqYLaz7N3b+n6r7/qX82PGp22AW1x7PIxlFeV69y+KXsTsn7Nwk/XfnL8OlMW+qxrZ435evoC0GSNNfNuhsSjidZ8FkQuiZlSRETk0tzd3fHQQw+pfyciF6Scejd4cN0rbGnfJz4eyM/XTOtZsUKa1qNcyQ4wbTU7czOj7MXQVEEAOH0aiImRamUNHWr7tpHDmNFzBt7MeBPxu+PVwZjvL3+P//v6/6CCCkdmH0FUcJRjZwwZ+6yb0V+NZY31aNUDBcUFFmgsUePCoBQREbk0Hx8ffPbZZ/ZuBhFZk3LqnfaKeGvXSn93d9cUMR86VHOf+fOBdeukKXjKaT3aBcr1sdU0O2vS9xyEkJ63saBeQ2gXlGfAy+F1DOyIzeM3Y9bOWfgi/wt0D+mOzAuZEBB4b+x7iAqOAuAEdaYM9NczRWfwwd5FRqcgyoXNj106hp+u/YTvL3+PriFd1X8vrypH3qU8zI2ea/WnQeRqOH2PiIiIiJyL9tQ85YpaMTGaFfFWr5Z+Ll2qmzlVU6O5T0IC4OUFXLzIKWwy7SDf4cPS9fpSTqNUZrUJYZEmk3VN6zEN+U/lY06vOQjxD8Fdze9CbFgsZkfP1tmusKQQTb2b4pMfPsGivYtwpuiMnVpsmqTcJERujMR7R99TT0Hs/HZnjPlkDB7d/igW7V2ElQdWqrdp5t0MN2/dRPd/dcd7Oe8BgDpDrKSiBDN7zbTzMyJyPg4flHrnnXdw1113wcfHB9HR0Thw4IDR7b/77jtER0fDx8cH7dq1w7/+9a9a22zfvh1dunSBt7c3unTpgv/85z9mP+60adOgUql0LrGxsQ17smQbptSYICIiIsekDGrs2SMFTpYtk7J5xo2TVsAbO1azwlZWlm6QRc6kWrZMWjEv8XYdmA0bgJwczSUjwzmm4VmSMsgXGytdr0/wSF8AypIBL7KpDi06IGFoAj6d+CkeuPsB/Fj0o06dKTnAc6H4AgAYrDF1pugMFu1dpA762CtwpV20vHBBIb594lu8Nvg1CAiknElBwbUCvJv9LhZ9uwj97uyHwgWFODzrMDaN3QQAmLtrLuIS49BmTRsk5SVh8/jNjjVlkchJOHRQatu2bZg/fz5efPFF5Obmon///hg1ahR++eUXvdv/9NNPGD16NPr374/c3Fy88MILiI+Px/bt29XbZGZmYtKkSZgyZQqOHTuGKVOm4JFHHkFWVpbZjzty5EhcvHhRfUlJSbHOC0GWw7NzRI1OWVmZ+uRBWVmZvZtDRA2lDGpor5KXkwNs2wZ4eABbt0rXAwOlwJK/vzRdTM6k0l6FKzJSM12vZ0/HL1BuTfLrKwf5li0zL3ikffJP+V7t2WO5gBfZ1YyeM1B8sxjxu+NRXlWuDvB0aNEBKqjwzdRvULigENN7TMesnbNw9s+zAPRnJkVujMS/j//bKu00FgBTFi0/U3QGT6Y8iWk9puEO7zswMGIgZveaDW93bxz4+QB+vf4rAGBO9Bwcn3ccPu4+KL5ZjLnRc5H/VD6m9ZhmledA5PKEA+vTp4+YN2+ezm2dO3cWCxcu1Lv9888/Lzp37qxz29y5c0VsbKz6+iOPPCJGjhyps82IESPE5MmTzXrcJ554QjzwwANmPR+l4uJiAUAUFxc36P/YU2VlpdixY4eorKy0d1NMk5oqBCDEggXSz9RUe7eIXIzT9YlGoLS0VAAQAERpaam9m9PosE+QRaSnC9G9uxBpaULExkqXmhoh+vQRwstL+k6v6xIUJMTNm0Ls3Gl4m/BwaRsrcug+UVMjvbbt2wuRnS1ETo70s317zWtuyv0BIWJidN+r2FghOnfWHX/J4zKOx5xSUm6ScF/uLlq83kLcufZOoVqmEm7L3ERSbpJ6mxuVN0Tzlc3FwvSF4scrPwr35e5i9s7Z4kblDfXfZ305S7gvdxfvbnvXov3ig6MfqNs3KHmQaPF6C+G+3F3dvsmfTxaDkgept1+YvlC0eL2FKK8qF4OSB4nJn08Wkz+fLAYkDVA/B23yNkTW4NDfFSYyNd7hsIXOKysrkZOTg4ULF+rcPnz4cGRkZOi9T2ZmJoYPH65z24gRI5CYmIiqqip4enoiMzMTCxYsqLXNunXrzH7c/fv3Izg4GHfccQcGDBiAV199FcHBwQafU0VFBSoqKtTXS0pKAABVVVWoqqoyeD9HJrfbKdovBNyXLgViYlC9ciXcMzKApUtRPWiQZYt3UqPmVH2ikdB+L5x5f+us2CcaN9U338D9n/9E9euvQwwZUr9/IgTcFy+G27FjqHn6abidPo1bu3ZB3LoF1UsvwWPsWNxatw4iLk7a/vJl4OpVoHlzIDgY7rNmQXXtGm5t3ChlSgcHwyMiAqJpU1Rv3qw7BmjZEnBzA6z4eXXoPlFRAY/CQqgKC6W6WlpEZSWqd+2C++LFBt9PVVoaPA4fRvUzz8D9rbcAQPNevfgiPMaNgwgNxa077gD+9z/gjjvg0b49BMdjTunxex5HTGgMko4lYeuJrQhvFo7Ux1LRoUUH9efbAx7oHtId56+ex/s57yPAJwCrh66GBzxQVVUFD3hg9dDV2H5qO/YW7cXUqqkWaduZP6XMrWndp2HNsDXw9fRFeVU5FqQvwKydsxATGoPwpuFIO5eGkhsl8PX0xfmr59EtuBsqKyuRdykPs3rOAgCknUtDVMsonL96Xv285MLms3rOcsy+TE7Pob8rTGRq2x02KHXlyhVUV1cjJCRE5/aQkBBcunRJ730uXbqkd/tbt27hypUrCA0NNbiN/D9NfdxRo0bh4YcfRkREBH766ScsWbIEgwcPRk5ODrwN1B5ISEjA8uXLa92elpYGPz8/A6+Ec0hPT7d3E+rUMjcXfbOykLF0Kf7YvRstR45E3+XLcfi11/BHz572bh65GGfoE43FzZs31b/v2bMHPj4+RrYma2GfcH0tjx3DPUlJODF9Ov7o3h0QAv0XLkSL06dRMn8+DqxcWa+gg/z9fXbcOHT46iuUN2+OrPx84PRpQAj0btUKle++iwMREZr/HxAA1NTA7cIFDL14Eb5FRfB84AGd/1seFIRvLlxAjaen5saLF4HjxxvyMpjMUfuEz9Kl8L594lRbRbNmuPe553Tez5bHj2ve827d0H/hQuDuu3FgwACM2bQJqupqHLz9XqmqqtDfzQ1uFy/CU1GHtby4GN/s3Kn7XpDTuA/34bzPeaQVpeH7jO/xo9uP6r9V1FQguzAbIwJH4PBvh9HGvQ2+Tfu21v8I8wjD75W/m9Uvfqv4Dd8UfYPfK39HsFcwhgQOQWvv1gCAj377CH5ufhhRMwL70vep7zOiZgT+n9v/w5IvlmBI4BBcK7+GhxIfwqywWai+Uo3somz8ZfNfUHyzGO2utYOAwLXya8gszMTYoLFISUlBRU0FNhduVm/DEi5kTY76XWGKGzdumLSdwwalZCrF4EUIUeu2urZX3m7K/6xrm0mTJql/j4qKQu/evREREYGvv/4aDz74oN62LVq0CM8++6z6eklJCcLDwzF8+HA0a9bM4HNyZFVVVUhPT8ewYcPg6cgDCSHgnpAA0b497h01Shq0tmoF8fHHiE1NRfULL/DsHFmE0/SJRkS7jtSIESPQpEkTO7am8WGfaCRuf8+6FRQgNiUF1QsXQpWeDo/Tp1H9zDNo8dZbGOPpCbi718qcUmZT6VwfPBjuCQmoiYlBxJYtEEFB8L16FQP/8Q/dh/f0xOihQ/UXJe/VC1VXrtS62bNlS4y0Q80oZ+0TqrQ03ffTwwNuKSnq97ymVy943M5iGz1gANz9/aG6cqX2exUSgluffy6teHibvd4LspyOf3bEjk07sMdtD9YOW6uTmVReU46XH3wZSceSkJiXiEHDBsHX01d93/KqchTmF6KTXyeT+8WHxz7E0ylPI8AnAN2Cu2Hf7/uw448d2DRmE6Z2m4pPdnyCaN9oTBg7odZ93y1+F+5N3DFrwix4tffC3K/nIqc8Bx2ad0BpdSn2Xd2HjaM2YmbPmSivKsenpZ/iwIUD2FeyD9f8ruHY5WMoqSjBe2Pfw9RulsnsIlJy1u8KbSV6TnDo47BBqaCgILi7u9fKivr9999rZTHJWrVqpXd7Dw8PBAYGGt1G/p/1eVwACA0NRUREBM6cMbx6hLe3t94sKk9PT6f9oMkc/jlUVEjLOhcW1jo7p6qshJsQOoMjooZy+D7RiGi/D3xf7IevvYvbs0da4W7BAritXQu3b78FXnkFiI2F+9q1QFYWPF5+WToBdPw4PJYvB0aMkO67fLnmtuHDda8D0v9NTYVb06bSKnlTpkir5PXtq354VXAwPP399betXTvp4mCcqk8IUfv9fO45ID9f854/9xzQvj08WrUCfvwRSE4G5s2TplEmJalP/qmCg+HJAJTL6RLSBZvHb8asnbOw4/QOdA/pjrxLeSipKMHm8ZsRGRKJ2dGzsebwGvx979/VxcXLq8rx971/R0lFCYYGDjWpX5wpOoN5KfMwo+cMvDXyLfX/id8dj7lfz8WAuwagXfN22PvTXtzCrVoBsGOXj2Fu9Fx4enpiZvRMDLhrABKPJqKguABBfkHYc24PFu9fjM9OfaZ+DiuHrMS1m9dQUFyA2LBYzOw1kyvtkU041XeFgqntdtiglJeXF6Kjo5Geno6//OUv6tvT09PxgCL9WhYXF4evvvpK57a0tDT07t1b/YLExcUhPT1dp65UWloa+t4e2NTncQGgqKgIFy5cQGhoqPlPlqzP21ta1vmPP2r/LTi48S33TERE1FB79wL/+Afw5pu6K6plZkqrreXnA6mpmhXcRo6U7rdgAbB2rWY1N3l1trVrgYQE3evaK+spV8l78klmOduKvIqe/H4uXQqMGgV07iy954cOAXl5QGVlrVpUUKmAqCjjYy35s7RqFTB0qFWfClnPtB7T0O/OfuoAz9zouTrBm46BHdWBqy/yv9AJXG0aswlBhUEG//eZojP4IPcDFBQXoOBqAZp6NcX6Uevh4yFNyff19MX6Ueux/dR2JB5NxIyeM/BmxpuI3x2vEwCL3x2PkooSzOw1U/2/O7TogIShCerrZ/88a/A5EJHlOWxQCgCeffZZTJkyBb1790ZcXBzee+89/PLLL5g3bx4AaTrcr7/+in//W1pCdN68eXj77bfx7LPPYvbs2cjMzERiYiI+/fRT9f985plncP/99+P111/HAw88gC+//BJ79+7FwYMHTX7c0tJSLFu2DBMnTkRoaCgKCgrwwgsvICgoSCeQRQ4mPFy6EFGj4u7ujtGjR6t/JyILEAJYskQqHB4frxuAkgMWoaGaYFJgoBSU8PSUAg+ZmdJ2KpUmmJWRAaxcqbluLNBRWSldeFLJ+oSQgorawcGzZ3W3WbFCCjoqMtgA1H3yT/uztGQJMGQIg41OTBngUdIXuBrSbgjSzqbhw4IPcWjfIcyOng0A6iBUyc0S7Dm3BwE+Aege0h1HLx1FZXUltv6wFdN6TFP/b19PX/Ro1QMFxQVGA2Cbx282GmSq6zkQkWU5dFBq0qRJKCoqwooVK3Dx4kVERUUhJSUFERERAICLFy/il19+UW9/1113ISUlBQsWLMDGjRvRunVrrF+/HhMnTlRv07dvX2zduhWLFy/GkiVL0L59e2zbtg0xMTEmP667uzu+//57/Pvf/8a1a9cQGhqKQYMGYdu2bWjatKmNXh0iIjKFj48Pvv76a3s3g8i5KTNZ5MyZ+fOBdet0A1ABAYC7u1Q0XBlMatpUWtlOO3NKDmaNGydN1Rs7VrrekEAHWU5lJVBYKF2U7+fVq9J7FhRU/ww2+bOknUEnT+0kl6Qd9EnKTcLIj0ciwCcAbdzbIDEvEasyV0GlUuEOnzvQsUVHZP2aBRVUSBiSgDnRc/Bc2nPY8L8NmPnlTPS7s586wCSviDc3ei6AujO3iMgxqIRcCZxsrqSkBAEBASguLnbqQucpKSkYPXq00851JbIk9gkiXewTLkAIKSh0+LCUxXToEHDffdLf9u2TglCVlbXvFxIC7NghZUdNny4FMDZtAlq1AmpqgH79pO0OHpSCGNOnA6dOSVPCkpOlv02aBLRsKWVRuUj2jFP2iQsXNCUQKiuBCROAy5drbxceDpw5Y3rAUP5sAdJ7rP27i7zfZNiZojOI3BiJGT1nYNWQVdiXvg939r4T0ZujAQDH/+84thzfgveOvofxncbjo+MfIf+pfAghELkxEu5u7nj63qexasQq9dS8pLwk5D+Vz8ATOT2n/K5QMDXe4dCZUkRERERkA8pMKO3r1dX66z6lpgI+PgaLjyM4GAgLkxYbuXpVyrQZM6b2Y997r+71H37QzcjhVD37U5ZAOHLEMnU6lbWq5Aw6Zks1Ch/kfoAAnwCsH7Ue7kKaXv/piU/R3Lc5ampqsOX4FhQUF6B7SHe8M+YdfHn6SyQeTUTC0ARsHr8ZM76cgQ1HNuDopaMmT80jIsfDoBQREbm0srIyBAcHA5BWUm3SpImdW0RkZ8oAlLKmz+DBmuuLF+uv+2RO8XFDi41cuiRtK69ufOmSFLxq0UJzG8Cpeo7IEnU69dWqkqcBLlsmrcTIbCmXJgecfDx8UFVVBQD4ufhndA/prv5724C2SDsnLYog14sCgEn3TMIzu59Bl5ZdEOIfwql5RE6MQSkiInJ5N27csHcTiByDvqLSypo+yhXwAE0my4svAuPHA6Wl5hUf52IjpGSsVhWz4xoFOeBUXlUOj9uHpREBEdj7017U1NRgXu956lX0/pbyN+RezMW83vPUU/XKqsrw0YMfMRBF5OTc7N0AIiIiIrKivXuBHj2kn9oBqMOHgT17pKwUORMqJkazAt6qVYC/vxQYCAyUMllatwYiIoCuXYHsbCAnR3PJyGAQgUwnZ9Bpf4b4WWpUZvScgeKbxYjfHY/yqnIAwKP3PIqr5VdRXFGMx7s9jo6BHfHOmHfwYd6HuFZxDft/3o82a9ogKS+JU/WIXAQzpYiIiIhchbGpecqpeJmZUnAqP1//CnhVVVLNqNLS2nWfwsOBqCgGDqhhjGXQKT/L5HI6BnbE5vGbMWvnLHyR/wXauLdBYX4hAEClUmFA8gB0D+mOvEt5UEGFUR1HoZl3MwyMGMipekQuhEEpIg56iIjIFZgyNQ/QBKCWLgVGjQJCQ6VaPjk5wLZtgIcHsHWrVHA6ORmYNw9o3hxIStLU+GGdJ7ImfZ9l1pdySdN6TEO/O/vhvez3cPjUYYzsOhJzes8BACQeTURBcQHrRRG5OAalqHHjoIeIiJyZsVXy9uwBli/XTMV7/30p+0meihcQALi7Axcv1q7po1wBT6ViZhTZjjKYytX4XFqHFh3w6qBXkVKegtGDRsPT0xMAkDA0wc4tIyJbYFCKGjcOeoiIyFmZMzXP2FS8kBBgxw7Ay4sr4JH9yavyaX+WuRqf8+PMBCIygEEparw46CFqFNzc3DBgwAD170ROS3lQZ87UvBMnjE/FCwuz29Mi0iF/ruXP8rJl0lRSnjh0XpyZQERGMChFjRcHPUSNgq+vL/bv32/vZhA1jPKgbvBgzYkVc6fmcSoeOSr5hGH79lIw9ehR6Wf79jxx6Mw4M4GIjGBQihonDnqIiMjRGasXlZCgObFi6tQ8GafikaOqrAQKC6WLMphaWSld+Nl1LpyZQER1YFCKGicOeoiIyJEZqxeVkQGsXKk5scKpeeQqvL2lz/cff9T+G4OpzokzE4ioDgxKUePEQQ9Ro1FWVoa2bdsCAAoKCtCkSRP7NohIH3PqRb34IjB+vJQZxal55GrCw6ULOT/OTCAiEzAoRY0XBz1EjcaVK1fs3QQiw8ytF9W6NRARATRrppsVBfDEChE5Ds5MICITMChFpMQla4mIGu72vlS1cqW9W+L4lFlRptaLCg9nVhQROS7OTCAiE3BtbCJtyrPVQti7RUREzmHvXqBHD+mn1r7Ubdky7kv1kV+v9HTdIsAxMfrrRYWFAV27AtnZQE6OdMnI4EEdETm28HCgV6/aF1eodaf9vUdE9cZMKSJtXLKWiMh8yoD+rVvqfanb2rVomZcHjBlj71Y6Du3XKz4eyM9nvSgiImei/N4bMoT1sYjqiZlSRDLlkrWxsdJ1nuEnIqpN+wyxdkBf/nl7X1oTE4POW7c27n2p8my6/HrNny8FpEJDNUWA5XpRyqwoZkYRETkO5fdeWpq9W0TktBiUIpLJXy7LlmmWrHXmLxmmFBORtWifIV68WDeg37mzFGhZuhRQqVCzZAlanD4NVXp649wvKc+m19RoXq+EBMDLC7h4UcqKio6Wfv78M3DtmpQV5WrTXYjI8hrjvtWeeCKbyKIYlCIC6l6y1tm+ZPTVxuKAhRopNzc39O7dG71794abG7/26sVQps+CBUBWliagr+3sWeDoUYigIJS2agW3FSsaT80+Y1lkchHzZcukAuaJidJ9NmxgVhSRMRzH6GfJeqh8jU3jaieyieyMo3MiQLNk7blzumerz50Dfv1V+rsjM3bAePgwsGcPg1TUaPn6+uLIkSM4cuQIfH197d0c52Ms02fVKsDfXwqeBAZKAaqrV6X7Pf00EB0Nz9hY+F+6BNX586451UG5LzWWRaYsYn70KBAZKV3fsgXo2ZNZUUT6cCEawwxNIzNlnGdggQq+xka42olsIkcgyG6Ki4sFAFFcXGzvptRbZWWl2LFjh6isrLR3Uxrul1+EyMmpfblwwb7tSk8Xont36ae+22pqhIiNFQKQflZXSz9jYzV/69xZ+vuCBdLP3bt171NTY69n53Jcqk9Q46W9j0lN1d1/vPKK9DM1VYibN4UICpKuKy8hIUJkZorKrCyxb9UqUd2zp+5+yVn3Pcb2vzU1tV8v+bUSQoidO/W/VoAQ4eHS60kuj98T9aDsV3Kfaqzk/VBaWu0xn/ZY0Ng4T7n/2r3brq+x0/SLmzeFCAvjfpyszmn6hBGmxjsYlLIjBqWciL7AkC0eS98BT12DCO0DRiE0f+/c2XCQqrEP7iyo0fQJcl3a+5iYGN0DnpgYIfz9hWjfXojsbClwv2uXNEDv2lVzm1ZAv7KyUhxaulR3XyMfYL72mu32rfVlbJ+s3P/KAX/5oNDfXwhvbyGOHJFek+xsISIiar9WjnAChGyG3xNmUgayGxrUtteYzlK090PyeE65b5XHgsbGecpAX+fO+l9jG71eTtEv5NdiyxbHPJFNLsUp+kQdGJRyAgxKOQl9gSFLUX7Rm3LWytggQt8B44YNukEpfUEqZ81YcECNok84mbKyMhERESEiIiJEWVmZvZvjeJT7IQtn+lRWVIiiu+8WNdr7pexsIdq1k/ZX9szYrOtgq659svIgTvsA0VgWGc+mN2r8njCTvE9SBl7qc0JN35iuvkEXc/cfltrHyc9//nzpZ2io/n2rMsCUllY7wC5vI++7du/WfQwbZtY7fL+w5vEAkR4O3ydMwKCUE2BQyknoSxm3xFkjU6Z9KA94lFkLykGEsQPG21NpagWptAd3tjx76KIaRZ9wMqWlpQKAACBKS0vt3RzHYmz6r4UyfSqvXxc3AgMN75vi43UPMG21HzLl4NTYPlm5/5UDVtoHiHVkkVHjxO8JM8j9VBnUbt++foEBZZ82FHRR7gvqOomorx2WmnKoL1szNlaI8nIhvLwM71u/+kq3HfI+SzvAnpqquz/bsEH3NbZhZr3d+0Vd7zmnkJKN2b1PWACDUk6AQSknoC9lXA4MmTuAUd5maGBU11mrugYR2geMmZlSMMpYkEoeeOh7XgxSmc3l+4QTYlBKwRL1oszI9KmsrBSp778vKrOyNEGZ7GxpP9WrV911UCy1H6rrAEN5cKqsz6e9T9a3/83IEMLdnZlRVCd+T5ihofV7DAV0jJUzMBSsN3YSUXliz9CUQ+1sJVMYytaUAyIffVR7HNi1qzQW1A7ihYbqZld17qwJ9BkbK3p5SeNDG2TW27Vf1PWe66vXymwpsjJX+K5gUMoJMCjlBAyljNdnAGOsToty2oe+A54jR6SMBTlrwdggQnugpl3A3dh95INPFkNvEJfvE06IQSktFq4XZQq9fcLQvlVZB8VS+6H6LAihHaBT7pNNCfizzggZwO8JM5mzEI0pNeCM1dw0VqvT0ElEfScslY+lL1vJlP2ZvmxNY1ljxoJ4Xl5SdlWfPoYzrLT3X3JmvSWmTZrArv3C0AkaQ/VarfxaEAnhGt8VDEo5AQalHJy+lHE5MOTvr3tQU9cARl8tKH0DI3nah7EDHlMOgowdAOkb3GVnSxkLdZ09FILZU3Vw6T7hpBiU0mKHleFq9QlD03H01UFpyNQRUzPChKh9cKoM0JkThGIAiurA7wkLMbcupzKgY6icgb5anYZOIgqh/4SlvuCRMlvJ0P7M0Mp6xoJJhk5Gaj/Pjz7Sba980lNfoM/S0yZNYLd+ocx8Ur7n+k7YWPm1IBLCNb4rGJRyAgxKOThjZ5uCgqS/mzqA0c5I0Fenxdi0D+0Dnq+/FiIlxfKrfSjP+Bg6e2jKEsONnEP1CQYQhRCNPChlaDqJDVeGq9UnjO1bAU0dFGOLMphTYNiUjDDlwakp9fkYhKJ6cqjvCWdlbl1OU7KDtANHcukEOYD9yivSdX2145QnLI09lpytZGh/ZsrKesaCSYZeJ3MDKg2dNlkPdusXyjGw8j230gkborq4wncFg1JOgEEpJ6B9tkmepx8WJgWHlGe+DA1glLWgjNVpsce0D30DFkNnD/VlgDHwocNmfaI+RVgb6XvVqIJSpk5dseHKcHr7hPJMvr46KIb2Q6ZM6atvRpj2wakVAnREQjSCsZMt1LcupxzQMZb96OEhnSyU90seHkJERUnXjZ1EVJ6w1A4eGcpWUu7P5P20oZX1zM3OaUhwydC0yU8+scpYwqr9wtD4RzkG1vee8/uA7MQVvisYlHICDEo5GWNf7MYGMMpaUI62IpOx56V9gKZvao2pRd8bEZv0ifoUYW3ENcLKyspEly5dRJcuXURZWZm9m2M95k5dsdF+yKQ+Yep+yNBqUA3JCDO1Ph+RhTSqsZM1GCtYXtdqctrff8qgizmlE7T3S/pOWGo/lrFsJeX+TM7uMraynrn7JXNqcpn62lthLGG1fmGszXVl7vL7gOzIFb4rGJRyAgxKOaGGDGAc+QvO1GLoQO0lhpUHh1YcsDgDq/SJulYNM6UIqw2XdSYbqetzYerUFSvvh0zuE6buh5SrQRkrMGxqRpglD9qI6tDoxk6WZqjkgCl1Oc3NDvr6ayE+/rh26QR532BKJlJdxcfl/Zkyu0u5sp4j7Jf0rToohEVORlqtXxhqs8zc95zIRlzhu8LUeIdKCCFAdlFSUoKAgAAUFxejWbNm9m5OvVRVVSElJQWjR4+Gp6envZtjHxcuAH/8obl+6RJw9SrQogUQEqK5TaXSXJcFBwNhYbZrq6mUz0kIYPp0oKQE2L5dei41NUC/foCnJ1BcDNx3n7Tt0qXAqFHAggXA2rVAaiowYoR9nocdWLxPCAH07QscPgzExgKHDmle64wMIC4OOHECiIqSrvftC1y7BuTna1771FTpPencGTh5UtpGvv833wD/+AewahUwdGjD20u2UdfnoksX6TOwezcwciSwZ4/0c8MGzfsvs/J+qN59QrkfAqTn9vTTms+2/LwAzT6nc2egqgrYtk3aV128CMybBzRvDiQlSbcBjrv/JZfHsVMDyPu+P/7Q9PGKCqB/f6C6uvb2ISHAjh2Al5d03Rr9Xt++SvlYde3Phg/X7Lfl/bQQwKRJQMuW0rbyvste5Ndebrv8u/z9I38f1bOtVukXhtrsCK8nUR1c4bvC1HiHhw3bROSawsOliytRPqeKCinQVlgI9O6tu23TptIB4LJl0sHhggXSoGT1aiAzU7p9+HB++Ztj715NoKi6WhroyQfcCQnS9dRU6TUdNw7IygLGjpWuy0HB0FAgKAg4ehQ4e1b3/8vv1Z49wPLlwLFjwJIlwJAhfJ8cmamfC21nz0qfgaAgoH17YMsW4MknneN9Vu6HhJDa3r695rMdGAh4e0vB8VWrpIOjvDygsrL2vkqlkoK33t42fRpEZEGVldJYRN94RBmAAmwTfDZlHFjX/iwrSxpnAVKgSltlpXSx974rLU13/CGPJeTvH/n7KC3Nticjtb8blSfXDLXZ1m0kIqMYlCKiunl7S2eV5LN8cubU1avApk1Spk5QkBQIkbMztL/8V66UzmgyG6duQkgBomPHgMWLpddRDvJlZEivpTyIzcmRXlcPD2DrVum1DggA3N2l7BDlgP3qVWngKwcoFiyQ3i97DSRt5MaNG7j33nsBAEeOHIGfn5+dW2QC5SDbnM+FMxzc1Iexg1E5OL5ihfGMMGd83kSkoRyPaHOm7EdzgmuOsO8SQhrTaZ8UCAoC2rWTvn+UJyPd3IDnnjM+7jMWTDKnXfJ3o/LkmqE2t2/PE6ZEDoZBKSIyjfZZPu3MqTFjdLfz8JACI9oDltdeA0pLmY1jiLEMGEBzhu/FF4Hx46XXUjmI/eEH3dvkQS0ATJgAXL4sXeLiNNt4eQExMS6f1SaEwMmTJ9W/OyTtz8CQIbUH2fLZXnM/F454cFNfpgbHnS0jjIjM4woZ6s4WXDMWRAOk7yHtk5Hx8dJJL0PjPn3BpPpQfjdqn1wz1mZnPkFD5IIYlCLHYImzJWQ7+gZTlZWa4IcyQwGQBijr12sGDHzPJYYyYFatAt5/X8r+CAyUgnytWwMREUCzZpraOPpqmAG6g9ojRwzXsli+nFlt9qYcnN+6pTvIlqdZmvO5kDniwU1DmBoc5wEHETk6Zwqu6Rv3adcbDQ3VnIyUs+bnzwfWrdOfha0vmDR4sHltkjOhDJWMqCvwx+8HIofBoBTZn7HUW3Jc+gZTyuCHPGDx9JQGJv/7nzRgGDas9nveWApuK4NxhjJgqqoAHx8p++X21DO18HDzauOYUpuHWW22U9dnQFmXTZ5maenPhbPjAQcRke2YU2/Uy0tTa0qZhW0omDRokHntMaVelDMF/ogaMTd7N4BI54Ds8GHpOjmn8HCgVy/N5coV4PvvpUCHPGA4fFi3KObhw1ImiHaQSp5itXcv0KOH9NMVKAOwNTWagdmqVYC/v3QgHRgoTUVKTpayXLp2BbKzpRpSOTnSgXhDDrjllPZz56SBZHS09PP8eSnYER+v2xdd7X2wJ2OfgdWrpZXj8vOlgvVy4fr8fE3hemt+LpyRcp8jX1wpO4yIyBHJJwbk76CcHKmeHwAkJkonUORxn/bYXh73L1umMzZUpafX/ZjyeCQ93Xi9KEedqk9EejFTiuyrrtRbcl7mFMXUV3B7+HDXyKYydcU0Yxkwll41zFgavilZbeyb5mnIqnnGCtdzNTkiIrIn7Uwk7SzsyEj9hcUBg8Ekt5dfBhYuNPxYynIHv/3GelFELoJBKbIvLtXqukwtirl0KTBqlJQhoh2YFEJ/XR1nCo6Ys2KanAEzbx7QvLlubSBrTEVSprTv2SNltZmy1LO7u/MFB23JUNHyhqyaZ2ipcw66iYjIEZhSWBwwuI2qpAQD58+HysdHGn8Axk/qfPQR0KVL7Xbwu5HI6TAoRfbDpVpdm6lFMc+e1b2fHAwxVFfHkYMje/fC4+9/R8uJE4HRo+u/YpqtM2DMyWqTp5U5UXBQpVIhIiJC/btV1VW0HKj/qnmckkZERI7K1Dp/+rYRAmL2bATk5qJm2TLNiWlDJ3UyM4GNG6X/5eBjECKqG4NSZD9cqtX1mVMU8+pVKVNEe+WW3bsNZ1M5WnDkdjBCdfw4OldUAP/8p269KHNXTLPlZ9/cpZ4B/csvOyg/Pz8UFBRY55+bWrS8sa+aR0RErs+UwuL6ttmzB265uTg7fjw67NypqUFl6KQOZ1YQuRQGpch+uHJS46N8zysrgQkTgMuXpUtcnGZbDw+pno6xbCrAvsERPWnl1c88gxZvvYXq1183rV6UI6yYZmpWW2CgtK2np/SctWvAOWO9r4ZSZkUNHqxbI2/3bk1w1dE/A0RERPZwO1u7JiYGJ6ZPR7vLl+Emn3g0dFKHMyuIXAqDUmRfXKq18VG+50eO6AZDtANVffvq3lfOpjIWHLHVwMRAvaiaN95A8e7daP7mm/arF1Uf5mS1NW0qDQ7l4KC+el/6glTKrKK6rjui+hYtDw52/M8AERGRrd3OMK7ZtQu4dQs1S5bAbexY6W91ndjjzAoil8CgFBHZl77ApHagylg2lTI4Ys1sqbqmaQHqtPLTDz+MuFdfdYx6UfWlzJ6SM6euXgU2bZICbfKZSmW9L31BKqB2VpGx6/J0TAsEqsrLy3H//fcDAP773//C19e3fq+JOYXrjRUtd5bPABERkTVp1bQUQUEIOHQIom9fzfdjYKBznNgjogZhUIqIHI+xbCpjwZFlywA3N+C55yybbWNsmpYyrTw3FxXNm0NEREDlCPWiGkL7fdDOnBozRnc7Ly8gJsZ4UXpAf1aRoetpaVLmmzJQVY9pgjU1NcjOzlb/bjIzApFmFy13ls8AERGRtWjVtPSMjcVA5d+VmVE8qUPkklRCCGHvRjRWJSUlCAgIQHFxMZo1a2bv5tRLVVUVUlJSMHr0aHh6etq7OdQYVFQAHTpIgxilsDCgTRspSyU2tmGrsiinackrAq5dC7zyipQpk5oKDBwoPe6VK7X/R3g4cOaM6wyeLlyoXQMuI0PKBEpNlbLUUlM1RelPnpSmYAqheR8yMqRstxMnpIGlvuvytE25wL38uu/eLWVgHT5s1vtbVlYGf39/AEBpaSmaNGlS93MVQmqH/FiHDgH33Sf97dAhqd5ZVRVw8KAUCBUCmDiRRcv14PcEkS72CSItt8cWVbdu4dDBg7ivXz94XrkifY+GhOhu28i/T6lxcYXvClPjHcyUIiLnYqxA/smTwJQpDS9+bs40LUVaedX77+PQoUPSoKp1a9cJSAG1M9iEAJ58UvNa1FWUXs4qGjdOChyOHav/unwfeeU6YxlYlpyuaWq9KBYtJyIisgx5bFFVheKLF4GePaWaoUTUaDAoRUTOR18dKjlAoh3EMHU6n6WmaalUwD33oPjSpcYxqNJKu6/1WiiL0gPS7zk5wLZt0uqKW7dKQSXt6yNHSgGu0FDNynUqlSZrqnNn3ffXUiv/NSAQyfoWRERERET1w6AUEbkGOZAkB4/kbJv4eCm4Yah49pAhpteLOnoUaN0aiIgwPE2rMQUklFlrxorSA7Wzin74Qfe2H37QDW55eEjT5IxlYJm68p+SJQORzIwiIiIiIqoXBqWIyPlprd6inkamnW0zfz6wbp3+4tm3bll2mlZVlY2etIMwVpRedumSbm2IS5ekTKoWLaTblNe1g1tyfSmZnIFl7sp/2swpXM9AJBERERGR1TAoRUTOz9g0Mi8vTaBp2TIpIKEdhNKuW8RpWg2nb2plfWgHt4xlYJmy8l+/fggKCJCCi99+K92H9aKIiIiIiOyOQSkicn76ip/Lq8IlJkpBBn3Fs3fv1q1bxGlajsOUDCz5PV6+3GjdqSaHDuGPyEgp8PTqq6wXRURERETkIBiUIiLXoB3E0F4VLjKy9nS+3bt173v2LKdpObqGrPwnZ0KxXhQRERERkUNhUIqIXI+x6Xxy8eysLKk+ESBl22jjNC3HZ8rKf0FBQLt2UiYU60URERERETkcBqWIyPXom85nrHh2SAiwY4dUawhgMMIZmLHyXzmAUaWlwMCB2O3tDV/WiyIiIiIicggMShGRa9JXcFtfXSJACkKFhdmmXWQ5ddWdEgKYPh01167hux9+AADUfP65tBoj60UREREREdkdg1JE1HhYamU4ckzK97eiQprKV1ioue2hh6SfrBdFRERERGR3DEoREZFrkqf4/fIL0K+fdNvBg4CvLzOjiIiIiIgcAINSRETkusLDgRYtNNd79ACaNLFbc4iIiIiISMPN3g0gIiIiIiIiIqLGh0EpIiIiIiIiIiKyOU7fIyIil+fn52fvJhARERERkQKDUkRE5NKaNGmCsrIyezeDiIiIiIgUOH2PiIiIiIiIiIhsjkEpIiIiIiIiIiKyOQaliIjIpd28eRNjxozBmDFjcPPmTXs3h4iIiIiIbmNNKSIicmnV1dVISUlR/05ERERERI6BmVJERERERERERGRzDEoREREREREREZHNMShFREREREREREQ2x6AUERERERERERHZHINSRERERERERERkc1x9z46EEACAkpISO7ek/qqqqnDjxg2UlJTA09PT3s0hsjv2CcdTVlam/r2kpIQr8NkY+wSRLvYJotrYL4h0uUKfkOMcctzDEAal7Oj69esAgPDwcDu3hIiocWjdurW9m0BERERE1Ghcv34dAQEBBv+uEnWFrchqampq8Ntvv6Fp06ZQqVT2bk69lJSUIDw8HBcuXECzZs3s3Rwiu2OfINLFPkGki32CqDb2CyJdrtAnhBC4fv06WrduDTc3w5WjmCllR25ubggLC7N3MyyiWbNmTttZiKyBfYJIF/sEkS72CaLa2C+IdDl7nzCWISVjoXMiIiIiIiIiIrI5BqWIiIiIiIiIiMjmGJSiBvH29sbSpUvh7e1t76YQOQT2CSJd7BNEutgniGpjvyDS1Zj6BAudExERERERERGRzTFTioiIiIiIiIiIbI5BKSIiIiIiIiIisjkGpYiIiIiIiIiIyOYYlCIiIiIiIiIiIptjUIrq9M477+Cuu+6Cj48PoqOjceDAAaPbf/fdd4iOjoaPjw/atWuHf/3rXzZqKZFtmNMnvvjiCwwbNgwtW7ZEs2bNEBcXhz179tiwtUTWZ+73hOzQoUPw8PBAjx49rNtAIhszt09UVFTgxRdfREREBLy9vdG+fXt88MEHNmotkfWZ2ye2bNmC7t27w8/PD6GhoZg+fTqKiops1Foi6/rvf/+LcePGoXXr1lCpVNixY0ed93HlY2wGpciobdu2Yf78+XjxxReRm5uL/v37Y9SoUfjll1/0bv/TTz9h9OjR6N+/P3Jzc/HCCy8gPj4e27dvt3HLiazD3D7x3//+F8OGDUNKSgpycnIwaNAgjBs3Drm5uTZuOZF1mNsnZMXFxZg6dSqGDBlio5YS2UZ9+sQjjzyCb775BomJiTh9+jQ+/fRTdO7c2YatJrIec/vEwYMHMXXqVMycORMnTpzAZ599hiNHjmDWrFk2bjmRdZSVlaF79+54++23Tdre1Y+xVUIIYe9GkOOKiYlBr1698O6776pvi4yMxIQJE5CQkFBr+3/+85/YuXMnTp06pb5t3rx5OHbsGDIzM23SZiJrMrdP6HPPPfdg0qRJeOmll6zVTCKbqW+fmDx5Mjp27Ah3d3fs2LEDeXl5NmgtkfWZ2ydSU1MxefJknD9/Hi1atLBlU4lswtw+sWrVKrz77rs4d+6c+rYNGzbgjTfewIULF2zSZiJbUalU+M9//oMJEyYY3MbVj7GZKUUGVVZWIicnB8OHD9e5ffjw4cjIyNB7n8zMzFrbjxgxAtnZ2aiqqrJaW4lsoT59QqmmpgbXr1/ngQe5hPr2iaSkJJw7dw5Lly61dhOJbKo+fWLnzp3o3bs33njjDbRp0wadOnXCP/7xD5SXl9uiyURWVZ8+0bdvXxQWFiIlJQVCCFy+fBmff/45xowZY4smEzkcVz/G9rB3A8hxXblyBdXV1QgJCdG5PSQkBJcuXdJ7n0uXLund/tatW7hy5QpCQ0Ot1l4ia6tPn1BavXo1ysrK8Mgjj1ijiUQ2VZ8+cebMGSxcuBAHDhyAhweHIeRa6tMnzp8/j4MHD8LHxwf/+c9/cOXKFfztb3/Dn3/+ybpS5PTq0yf69u2LLVu2YNKkSbh58yZu3bqF8ePHY8OGDbZoMpHDcfVjbGZKUZ1UKpXOdSFErdvq2l7f7UTOytw+Ifv000+xbNkybNu2DcHBwdZqHpHNmdonqqur8dhjj2H58uXo1KmTrZpHZHPmfE/U1NRApVJhy5Yt6NOnD0aPHo01a9YgOTmZ2VLkMszpEydPnkR8fDxeeukl5OTkIDU1FT/99BPmzZtni6YSOSRXPsbmKUoyKCgoCO7u7rXOYvz++++1IrWyVq1a6d3ew8MDgYGBVmsrkS3Up0/Itm3bhpkzZ+Kzzz7D0KFDrdlMIpsxt09cv34d2dnZyM3NxVNPPQVAOiAXQsDDwwNpaWkYPHiwTdpOZA31+Z4IDQ1FmzZtEBAQoL4tMjISQggUFhaiY8eOVm0zkTXVp08kJCTgvvvuw3PPPQcA6NatG5o0aYL+/fvjlVdecfqsECJzufoxNjOlyCAvLy9ER0cjPT1d5/b09HT07dtX733i4uJqbZ+WlobevXvD09PTam0lsoX69AlAypCaNm0aPvnkE9ZDIJdibp9o1qwZvv/+e+Tl5akv8+bNw9133428vDzExMTYqulEVlGf74n77rsPv/32G0pLS9W3/fjjj3Bzc0NYWJhV20tkbfXpEzdu3ICbm+5hqru7OwBNdghRY+Lyx9iCyIitW7cKT09PkZiYKE6ePCnmz58vmjRpIgoKCoQQQixcuFBMmTJFvf358+eFn5+fWLBggTh58qRITEwUnp6e4vPPP7fXUyCyKHP7xCeffCI8PDzExo0bxcWLF9WXa9eu2espEFmUuX1CaenSpaJ79+42ai2R9ZnbJ65fvy7CwsLEQw89JE6cOCG+++470bFjRzFr1ix7PQUiizK3TyQlJQkPDw/xzjvviHPnzomDBw+K3r17iz59+tjrKRBZ1PXr10Vubq7Izc0VAMSaNWtEbm6u+Pnnn4UQje8Ym0EpqtPGjRtFRESE8PLyEr169RLfffed+m9PPPGEGDBggM72+/fvFz179hReXl6ibdu24t1337Vxi4msy5w+MWDAAAGg1uWJJ56wfcOJrMTc7wltDEqRKzK3T5w6dUoMHTpU+Pr6irCwMPHss8+KGzdu2LjVRNZjbp9Yv3696NKli/D19RWhoaHi8ccfF4WFhTZuNZF17Nu3z+jxQWM7xlYJwRxIIiIiIiIiIiKyLdaUIiIiIiIiIiIim2NQioiIiIiIiIiIbI5BKSIiIiIiIiIisjkGpYiIiIiIiIiIyOYYlCIiIiIiIiIiIptjUIqIiIiIiIiIiGyOQSkiIiIiIiIiIrI5BqWIiIiIiIiIiMjmGJQiIiIicgIDBw7E/PnzG/Q/kpOTcccddzTof7Rt2xbr1q1r0P8gIiIiAhiUIiIiImqw33//HXPnzsWdd94Jb29vtGrVCiNGjEBmZqa9m2ay5ORkqFQqo5f9+/fjyJEjmDNnjr2bS0RERC7Aw94NICIiInJ2EydORFVVFT788EO0a9cOly9fxjfffIM///zT3k0z2aRJkzBy5Ej19QcffBBRUVFYsWKF+rYWLVrAy8vLHs0jIiIiF8RMKSIiIqIGuHbtGg4ePIjXX38dgwYNQkREBPr06YNFixZhzJgxOtvNmTMHISEh8PHxQVRUFHbt2gUAKCoqwqOPPoqwsDD4+fmha9eu+PTTT40+bmVlJZ5//nm0adMGTZo0QUxMDPbv36+zTXJyMu688074+fnhL3/5C4qKigz+P19fX7Rq1Up98fLygp+fX63blNP3VCoVNm3ahLFjx8LPzw+RkZHIzMzE2bNnMXDgQDRp0gRxcXE4d+6czuN99dVXiI6Oho+PD9q1a4fly5fj1q1bJr7qRERE5AoYlCIiIiJqAH9/f/j7+2PHjh2oqKjQu01NTQ1GjRqFjIwMfPzxxzh58iRWrlwJd3d3AMDNmzcRHR2NXbt24YcffsCcOXMwZcoUZGVlGXzc6dOn49ChQ9i6dSuOHz+Ohx9+GCNHjsSZM2cAAFlZWZgxYwb+9re/IS8vD4MGDcIrr7xi+RcAwMsvv4ypU6ciLy8PnTt3xmOPPYa5c+di0aJFyM7OBgA89dRT6u337NmDv/71r4iPj8fJkyexadMmJCcn49VXX7VK+4iIiMgxqYQQwt6NICIiInJm27dvx+zZs1FeXo5evXphwIABmDx5Mrp16wYASEtLw6hRo3Dq1Cl06tTJpP85ZswYREZGYtWqVQCkQuc9evTAunXrcO7cOXTs2BGFhYVo3bq1+j5Dhw5Fnz598Nprr+Gxxx7D1atXsXv3bvXfJ0+ejNTUVFy7dq3Ox9d+PG1t27bF/Pnz1UXXVSoVFi9ejJdffhkAcPjwYcTFxSExMREzZswAAGzduhXTp09HeXk5AOD+++/HqFGjsGjRIvX//fjjj/H888/jt99+M+n1ISIiIufHTCkiIiKiBpo4cSJ+++037Ny5EyNGjMD+/fvRq1cvJCcnAwDy8vIQFhZmMCBVXV2NV199Fd26dUNgYCD8/f2RlpaGX375Re/2R48ehRACnTp1Umdq+fv747vvvlNPkzt16hTi4uJ07qe8bily8A0AQkJCAABdu3bVue3mzZsoKSkBAOTk5GDFihU6bZ89ezYuXryIGzduWKWNRERE5HhY6JyIiIjIAnx8fDBs2DAMGzYML730EmbNmoWlS5di2rRp8PX1NXrf1atXY+3atVi3bh26du2KJk2aYP78+aisrNS7fU1NDdzd3ZGTk6OeAijz9/cHANgyGd7T01P9u0qlMnhbTU2N+ufy5cvx4IMP1vpfPj4+1mwqERERORAGpYiIiIisoEuXLtixYwcAKZOosLAQP/74o95sqQMHDuCBBx7AX//6VwBS0ObMmTOIjIzU+7979uyJ6upq/P777+jfv7/Bxz98+LDObcrr9tKrVy+cPn0aHTp0sHdTiIiIyI4YlCIiIiJqgKKiIjz88MOYMWMGunXrhqZNmyI7OxtvvPEGHnjgAQDAgAEDcP/992PixIlYs2YNOnTogPz8fKhUKowcORIdOnTA9u3bkZGRgebNm2PNmjW4dOmSwaBUp06d8Pjjj2Pq1KlYvXo1evbsiStXruDbb79F165dMXr0aMTHx6Nv37544403MGHCBKSlpSE1NdWWL41BL730EsaOHYvw8HA8/PDDcHNzw/Hjx/H9999brRg7EREROR7WlCIiIiJqAH9/f8TExGDt2rW4//77ERUVhSVLlmD27Nl4++231dtt374d9957Lx599FF06dIFzz//PKqrqwEAS5YsQa9evTBixAgMHDgQrVq1woQJE4w+blJSEqZOnYq///3vuPvuuzF+/HhkZWUhPDwcABAbG4vNmzdjw4YN6NGjB9LS0rB48WKrvQ7mGDFiBHbt2oX09HTce++9iI2NxZo1axAREWHvphEREZENcfU9IiIiIiIiIiKyOWZKERERERERERGRzTEoRURERERERERENsegFBERERERERER2RyDUkREREREREREZHMMShERERERERERkc0xKEVERERERERERDbHoBQREREREREREdkcg1JERERERERERGRzDEoREREREREREZHNMShFREREREREREQ2x6AUERERERERERHZ3P8HljvfdtjcBjwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from lppls import lppls_lm\n", + "import yfinance as yf\n", + "import os\n", + "\n", + "FILE_NAME = 'sp500.csv'\n", + "\n", + "if not os.path.exists(FILE_NAME):\n", + " ticker_symbol = \"^GSPC\" # S&P 500\n", + " start_date = \"1984-11-25\" # Start date from the paper\n", + " end_date = \"1987-07-15\" # End date from the paper\n", + "\n", + " data = yf.download(ticker_symbol, start=start_date, end=end_date)\n", + " data.to_csv(FILE_NAME, index=False)\n", + "else:\n", + " data = pd.read_csv(FILE_NAME)\n", + "\n", + "time = np.arange(len(data))\n", + "time_scaled = (time - time.min()) / (time.max() - time.min())\n", + "price = np.log(data['Adj Close'].values)\n", + "price_scaled = (price - price.min()) / (price.max() - price.min())\n", + "observations = np.array([time_scaled, price_scaled])\n", + "lppls_model = lppls_lm.LPPLS(observations)\n", + "\n", + "# detect bubble start time via Lagrange regularization\n", + "# https://arxiv.org/pdf/1707.07162\n", + "result = lppls_model.detect_bubble_start_time_via_lagrange(\n", + " max_window_size=len(time),\n", + " min_window_size=100,\n", + " step_size=3,\n", + " max_searches=25\n", + ")\n", + "\n", + "if result:\n", + " tau = result['tau']\n", + " print(f\"Estimated bubble start time (tau): {tau}\")\n", + " tc = result['tc']\n", + " m = result['m']\n", + " w = result['w']\n", + " a = result['a']\n", + " b = result['b']\n", + " c1 = result['c1']\n", + " c2 = result['c2']\n", + "\n", + " window_sizes = result['window_sizes']\n", + " sse_list = result['sse_list']\n", + " ssen_list = result['ssen_list']\n", + " lagrange_sse_list = result['lagrange_sse_list']\n", + " start_times = result['start_times']\n", + "\n", + " window_sizes_np = np.array(window_sizes)\n", + " sse_np = np.array(sse_list)\n", + " ssen_np = np.array(ssen_list)\n", + " lagrange_sse_np = np.array(lagrange_sse_list)\n", + " start_times_np = np.array(start_times)\n", + "\n", + " # extract the optimal window data\n", + " optimal_window_size = result['optimal_window_size']\n", + " start_idx = len(time_scaled) - optimal_window_size\n", + " end_idx = len(time_scaled)\n", + " time_fit = time_scaled[start_idx:end_idx]\n", + " price_fit = price_scaled[start_idx:end_idx]\n", + "\n", + " # compute the LPPLS fit over the optimal window\n", + " predictions = lppls_model.lppls(time_fit, tc, m, w, a, b, c1, c2)\n", + "\n", + " fig, axs = plt.subplots(2, 1, figsize=(12, 10), sharex=True)\n", + "\n", + " # top subplot: plot the data and the LPPLS fit\n", + " axs[0].plot(time_scaled, price_scaled, label='Actual Price', color='black')\n", + " axs[0].plot(time_fit, predictions, label='LPPLS Fit', color='blue')\n", + "\n", + " tau_time = time_scaled[start_idx]\n", + " axs[0].axvline(x=tau_time, color='black', linestyle='--', label='Optimal Start Time')\n", + " if time_scaled.min() <= tc <= time_scaled.max():\n", + " axs[0].axvline(x=tc, color='green', linestyle='--', label='Critical Time (tc)')\n", + "\n", + " axs[0].set_title('LPPLS Fit to the S&P 500 Dataset (Scaled Data)')\n", + " axs[0].set_ylabel('Scaled Log Price')\n", + " axs[0].legend()\n", + " axs[0].grid(True)\n", + "\n", + " # bottom subplot: plot χ²_np(Φ) and χ²_λ(Φ) against start times\n", + " axs[1].plot(start_times_np, ssen_np, 'o', label=r'$\\chi^2_{np}(\\Phi)$', color='green', markersize=5, markerfacecolor='none')\n", + " axs[1].plot(start_times_np, lagrange_sse_np, '^', label=r'$\\chi^2_{\\lambda}(\\Phi)$', color='red', markersize=5, markerfacecolor='none')\n", + "\n", + " # optimal start time\n", + " axs[1].axvline(x=tau_time, color='black', linestyle='--', label='Optimal Start Time')\n", + "\n", + " axs[1].set_xlabel('Scaled Time')\n", + " axs[1].set_ylabel(r'$\\chi^2$')\n", + " axs[1].legend()\n", + " axs[1].grid(True)\n", + "\n", + " plt.tight_layout()\n", + " plt.show()\n", + "else:\n", + " print(\"Could not estimate the bubble start time.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'tau': 0.3031674208144796, 'optimal_window_size': 463, 'tc': 1.093783326857828, 'm': 0.6795605217680599, 'w': 6.909571313976674, 'a': 1.22773696010819, 'b': -1.0996918043446704, 'c1': -0.06937040681764274, 'c2': 0.14586194730771954, 'window_sizes': [664, 661, 658, 655, 652, 649, 646, 643, 640, 637, 634, 631, 628, 625, 622, 619, 616, 613, 610, 607, 604, 601, 598, 595, 592, 589, 586, 583, 580, 577, 574, 571, 568, 565, 562, 559, 556, 553, 550, 547, 544, 541, 538, 535, 532, 529, 526, 523, 520, 517, 514, 511, 508, 505, 502, 499, 496, 493, 490, 487, 484, 481, 478, 475, 472, 469, 466, 463, 460, 457, 454, 451, 448, 445, 442, 439, 436, 433, 430, 427, 424, 421, 418, 415, 412, 409, 406, 403, 400, 397, 394, 391, 388, 385, 382, 379, 376, 373, 370, 367, 364, 361, 358, 355, 352, 349, 346, 343, 340, 337, 334, 331, 328, 325, 322, 319, 316, 313, 310, 307, 304, 301, 298, 295, 292, 289, 286, 283, 280, 277, 274, 271, 268, 265, 262, 259, 256, 253, 250, 247, 244, 241, 238, 235, 232, 229, 226, 223, 220, 217, 214, 211, 208, 205, 202, 199, 196, 193, 190, 187, 184, 181, 178, 175, 172, 169, 166, 163, 160, 157, 154, 151, 148, 145, 142, 139, 136, 133, 130, 127, 124, 121, 118, 115, 112, 109, 106, 103, 100], 'sse_list': [1.52685667374719, 1.500674218324816, 1.4579425054722677, 1.4053942672058835, 0.8819559740092737, 1.2799697058797654, 1.2361871803400504, 1.1887642726004448, 1.1365723892859285, 1.0758987952101708, 0.9945313960382489, 0.9337519640172762, 0.895374038830867, 0.8626043246146302, 0.8477326447891178, 0.8370367199924579, 0.8294881011528157, 0.8245789767723203, 0.821362212022375, 0.8188004522150591, 0.815331525568238, 0.8078058882715706, 0.8032649225088101, 0.8010680145817755, 0.7932396081023161, 0.782396719402721, 0.764212549114353, 0.7531195175306266, 0.7383211477477296, 0.7274608949541688, 0.7170659368803459, 0.6993891129567508, 0.6865959243872821, 0.6769466451276702, 0.665568247033754, 0.6581901505917924, 0.6454546848227052, 0.6252043921941011, 0.608954642905636, 0.6014767338415106, 0.5964143804662709, 0.5960815558002157, 0.5957354041101302, 0.5952787565275616, 0.5951985265701089, 0.5947114523203965, 0.5945931190888972, 0.5935515378469468, 0.5930768474081582, 0.592758803496628, 0.5907618719936417, 0.5869075924765448, 0.5824144854072373, 0.5746192702561173, 0.5604658672251164, 0.5429712449280932, 0.531447453123241, 0.5219925945798398, 0.5085340689018382, 0.5010121875328309, 0.4939637412636194, 0.48850944723646905, 0.4834878412957041, 0.4755401578295646, 0.46650957248606756, 0.4553376658778025, 0.44577288381825697, 0.4375836228782284, 0.4363136214886364, 0.43608589622155597, 0.43573658880450716, 0.43508112935950727, 0.4349682693523803, 0.433007325117511, 0.430312715215583, 0.42988661510212556, 0.42895073311249515, 0.42809406336790534, 0.4251454576002786, 0.42331772849027827, 0.4218493531765956, 0.4207943112216953, 0.4205322924946674, 0.42046440822377495, 0.41960958024597234, 0.41890944156130716, 0.41855068847745497, 0.4170072745151217, 0.4145237984576008, 0.4010709488204697, 0.38748344705150506, 0.3782437316147038, 0.37024925166325406, 0.3609898240774977, 0.3520443228683814, 0.3517846387519451, 0.35140975433461497, 0.3508102499863318, 0.3450906992056226, 0.3426983262482142, 0.3405703155513559, 0.33798168148080765, 0.3359012999582065, 0.33383741251226534, 0.3332356821468322, 0.33315178933548295, 0.3330075891913642, 0.3319019510167813, 0.33032418241818395, 0.3297682283478602, 0.3268687126784152, 0.32478087451900517, 0.3227901130936081, 0.31855184689557486, 0.31715723986168287, 0.3157726552082541, 0.3156418286089806, 0.3121030636178703, 0.30526590230950523, 0.29986633500285265, 0.2960686107792779, 0.295918815290946, 0.2958538809176072, 0.29561417043237215, 0.2917197633794989, 0.28442450470549263, 0.2832129859118696, 0.2824881620135472, 0.2824142626173324, 0.28138131594535676, 0.2734024284259272, 0.27262952347196295, 0.2718465839247865, 0.2715322242703222, 0.2744975944126429, 0.2554339418844007, 0.25097563065732076, 0.24727668136448297, 0.24667251202030713, 0.24612876652570492, 0.23853883914811555, 0.22693205290381005, 0.21400673748347757, 0.20309256090168065, 0.19715196523555267, 0.1970725417676062, 0.196084242526163, 0.19296293562251318, 0.17974667591105634, 0.16677285663091784, 0.14607853865750295, 0.1351094281101179, 0.13319606277775947, 0.13123606496043666, 0.13113154088081888, 0.12679581307548865, 0.12304576789496308, 0.11996472949982939, 0.11786918989769829, 0.11316449030579556, 0.11335192192152607, 0.10755640869952837, 0.10224692739498939, 0.10052041959099078, 0.10049031037625625, 0.10048192039184584, 0.10011923352801212, 0.09639075940552883, 0.09060021269160823, 0.09044156215068848, 0.08911340802112888, 0.08380875634477664, 0.07658454056816609, 0.07235939418638948, 0.06807398358404317, 0.08488156764727768, 0.06399475607125019, 0.057615896259235286, 0.05594126106369077, 0.05521225154740917, 0.05579512800889809, 0.09182340733605962, 0.05461818365265418, 0.08151319230519063, 0.05351036749314886, 0.05132645114198752, 0.05044315349126722, 0.051602881384467364, 0.07467454383677942], 'ssen_list': [0.002323982760650213, 0.0022946088965211256, 0.002239543019158629, 0.0021688183135893263, 0.0013673736031151532, 0.0019937222833018155, 0.0019345652274492182, 0.0018691262147805736, 0.0017955330004517038, 0.0017077758654129695, 0.0015861744753401098, 0.0014963973782328144, 0.0014418261494860982, 0.001395799878017201, 0.0013784270646977526, 0.0013677070588112056, 0.0013620494271803212, 0.0013606913808124096, 0.0013621263880968077, 0.0013646674203584318, 0.0013657144481880033, 0.001359942572847762, 0.0013591623054294588, 0.001362360569016625, 0.0013559651420552413, 0.0013443242601421323, 0.0013198835045152902, 0.00130749916237956, 0.0012885185824567707, 0.0012762471841301205, 0.0012646665553445254, 0.0012400516187176431, 0.0012238786530967595, 0.0012131660306947496, 0.0011992220667274847, 0.0011923734612170154, 0.0011756915934839803, 0.0011450629893664855, 0.0011214634307654438, 0.0011138458034102047, 0.0011106413044064635, 0.0011162575951314902, 0.0011219122487949721, 0.001127421887362806, 0.0011337114791811597, 0.0011392939699624454, 0.001145651481866854, 0.001150293677997959, 0.001156095219119217, 0.0011622721637188785, 0.0011652107928868673, 0.0011644991914217158, 0.0011625039628886972, 0.001153853956337585, 0.0011322542772224573, 0.0011036000913172627, 0.00108680460761399, 0.0010740588365840326, 0.001052865567084551, 0.0010437753906933978, 0.0010355633988755125, 0.0010306106481782048, 0.0010265134634728325, 0.0010161114483537704, 0.001003246392443156, 0.000985579363371867, 0.0009711827534166818, 0.0009596132080662903, 0.0009631647273479832, 0.0009690797693812354, 0.00097480221209062, 0.0009799124535124037, 0.0009863226062412252, 0.000988601198898427, 0.0009892246326795012, 0.0009951079053289943, 0.000999885158770385, 0.001004915641708698, 0.0010050720037831646, 0.0010078993535482816, 0.0010116291443083827, 0.0010164113797625491, 0.0010231929257777795, 0.0010305500201563112, 0.001036073037644376, 0.0010420632874659382, 0.0010489992192417418, 0.001053048673017984, 0.0010547679350066178, 0.0010283870482576144, 0.0010012492171873515, 0.0009850097177466245, 0.0009717828127644464, 0.0009549995345965547, 0.0009387848609823503, 0.0009456576310536159, 0.000952329957546382, 0.0009584979507823273, 0.0009506630832110815, 0.0009519397951339284, 0.0009539784749337701, 0.0009547505126576487, 0.0009569837605646909, 0.0009593029095180039, 0.0009659005279618325, 0.0009741280389926402, 0.0009823232719509268, 0.0009878034256451825, 0.0009919645117663183, 0.0009992976616601823, 0.0009995985097199242, 0.0010024101065401394, 0.001005576676304075, 0.0010017353675961474, 0.001006848380513279, 0.001012091843616199, 0.0010214945909675748, 0.0010199446523459815, 0.0010074782254439116, 0.0009995544500095088, 0.000996864009357838, 0.0010065265826222653, 0.0010166800031532895, 0.00102643809177907, 0.0010235781171210488, 0.0010085975344166405, 0.001015100307927848, 0.0010235078333824174, 0.001034484478451767, 0.0010421530220198398, 0.0010239791326813754, 0.0010326875889089505, 0.001041557792815274, 0.0010524504816679155, 0.0010764611545593839, 0.0010136267535095266, 0.001007934259667955, 0.0010051897616442397, 0.0010151132181905644, 0.0010255365271904372, 0.0010064929921861415, 0.0009697950978795301, 0.0009264360930020674, 0.0008907568460600029, 0.0008762309566024563, 0.0008877141521063342, 0.0008953618380190091, 0.0008933469241783018, 0.0008438811075636447, 0.0007941564601472278, 0.0007056934234661978, 0.0006623011181868524, 0.0006626669789938282, 0.0006628084088910942, 0.0006724694404144557, 0.0006603948597681701, 0.0006510358089680586, 0.0006449716639775774, 0.0006440939338672038, 0.0006286916128099753, 0.0006404063385396953, 0.000618140279882347, 0.0005979352479239145, 0.0005983358308987547, 0.0006090321840985227, 0.0006202587678509002, 0.0006296807140126549, 0.0006178894833687745, 0.0005921582528863283, 0.0006029437476712565, 0.0006062136600076795, 0.0005820052523942821, 0.0005431527699869935, 0.0005243434361332571, 0.0005042517302521716, 0.0006430421791460431, 0.0004960833803972882, 0.00045726901793043877, 0.0004548070005178111, 0.00046010209622840973, 0.00047688143597348796, 0.0008054684854040318, 0.0004920557085824701, 0.000754751780603617, 0.0005096225475537987, 0.0005032005013920345, 0.0005095268029420931, 0.0005375300144215351, 0.0008029520842664454], 'lagrange_sse_list': [0.0011888158844971083, 0.0011645707863747368, 0.0011146336750189564, 0.0010490377354563693, 0.000252721790988912, 0.0008841992371822901, 0.0008301709473364086, 0.0007698607006744798, 0.0007013962523523258, 0.0006187678833203074, 0.0005022952592541635, 0.00041764692815358397, 0.00036820446541358355, 0.0003273069599514021, 0.00031506291263866957, 0.0003094716727588386, 0.00030894280713467006, 0.0003127135267734743, 0.00031927730006458817, 0.00032694709833292813, 0.0003331228921692154, 0.0003324797828356898, 0.0003368282814241025, 0.00034515531101798457, 0.00034388865006331664, 0.00033737653415692346, 0.00031806454453679723, 0.0003108089684077829, 0.0002969571544917096, 0.0002898145221717752, 0.00028336265939289586, 0.00026387648877272945, 0.0002528322891585616, 0.00024724843276326754, 0.00023843323480271842, 0.00023671339529896494, 0.00022516029357264565, 0.00019966045546186684, 0.00018118966286754092, 0.00017870080151901767, 0.00018062506852199224, 0.00019137012525373474, 0.00020215354492393253, 0.00021279194949848227, 0.00022421030732355188, 0.0002349215641115534, 0.00024640784202267785, 0.0002561788041604985, 0.00026710911128847233, 0.00027841482189484975, 0.0002864822170695545, 0.00029089938161111874, 0.000294032919084816, 0.0002905116785404195, 0.00027404076543200773, 0.00025051534553352896, 0.00023884862783697214, 0.00023123162281373064, 0.00021516711932096483, 0.00021120570893652744, 0.0002081224831253579, 0.0002082984984347661, 0.00020933007973610962, 0.00020405683062376344, 0.00019632054071986487, 0.00018378227765529162, 0.00017451443370682226, 0.0001680736543631466, 0.00017675393965155533, 0.00018779774769152346, 0.00019864895640762383, 0.00020888796383612337, 0.00022042688257166063, 0.00022783424123557828, 0.00023358644102336825, 0.00024459847967957726, 0.00025450449912768375, 0.00026466374807271266, 0.0002699488761538951, 0.0002779049919257279, 0.00028676354869254484, 0.00029667455015342707, 0.0003085848621753734, 0.00032107072256062083, 0.0003317225060554016, 0.0003428415218836795, 0.00035490621966619896, 0.00036408443944915695, 0.00037093246744450653, 0.0003496803467022191, 0.000327671281638672, 0.00031656054820466083, 0.0003084624092291985, 0.0002968078970680227, 0.0002857219894605341, 0.00029772352553851555, 0.00030952461803799756, 0.00032082137728065864, 0.00031811527571612864, 0.00032452075364569133, 0.0003316881994522489, 0.00033758900318284343, 0.0003449510170966014, 0.0003523989320566302, 0.0003641253165071746, 0.00037748159354469813, 0.00039080559250970063, 0.0004014145122106721, 0.0004107043643385238, 0.0004231662802391036, 0.0004285958943055614, 0.00043653625713249234, 0.0004448315929031438, 0.00044611905020193205, 0.0004563608291257795, 0.0004667330582354153, 0.0004812645715935069, 0.00048484339897862953, 0.0004775057380832754, 0.0004747107286555884, 0.0004771490540106335, 0.0004919403932817767, 0.0005072225798195167, 0.000522109434452013, 0.0005243782258007076, 0.0005145264091030151, 0.0005261579486209385, 0.0005396942400822237, 0.0005557996511582891, 0.0005685969607330778, 0.0005555518374013292, 0.0005693890596356201, 0.0005833880295486595, 0.0005994094844080169, 0.0006285489233062011, 0.0005708432882630596, 0.0005702795604282038, 0.0005726638284112044, 0.0005877160509642448, 0.0006032681259708335, 0.0005893533569732536, 0.0005577842286733581, 0.0005195539898026113, 0.0004890035088672626, 0.0004796063854164318, 0.0004962183469270256, 0.0005089947988464163, 0.0005121086510124248, 0.0004677716004044836, 0.00042317571899478247, 0.00033984144832046833, 0.0003015779090478387, 0.00030707253586153036, 0.00031234273176551224, 0.0003271325292955896, 0.0003201867146560198, 0.00031595642986262406, 0.00031502105087885876, 0.000319272086775201, 0.0003089985317246883, 0.0003258420234611242, 0.0003087047308104917, 0.00029362846485877505, 0.00029915781384033105, 0.0003149829330468149, 0.0003313382828059082, 0.0003458889949743787, 0.00033922653033721423, 0.0003186240658614838, 0.00033453832665312783, 0.00034293700499626667, 0.0003238573633895852, 0.00029013364698901237, 0.00027645307914199186, 0.00026149013926762214, 0.00040540935416820943, 0.0002635793214261704, 0.0002298937249660368, 0.00023256047356012496, 0.00024298433527743943, 0.0002648924410292335, 0.0005986082564664932, 0.00029032424565164725, 0.00055814908367951, 0.00031814861663640755, 0.00031685533648135927, 0.00032831040403813363, 0.00036144238152429145, 0.0006319932173759176], 'start_times': [0.0, 0.004524886877828055, 0.00904977375565611, 0.013574660633484163, 0.01809954751131222, 0.02262443438914027, 0.027149321266968326, 0.03167420814479638, 0.03619909502262444, 0.04072398190045249, 0.04524886877828054, 0.049773755656108594, 0.05429864253393665, 0.058823529411764705, 0.06334841628959276, 0.06787330316742081, 0.07239819004524888, 0.07692307692307693, 0.08144796380090498, 0.08597285067873303, 0.09049773755656108, 0.09502262443438914, 0.09954751131221719, 0.10407239819004525, 0.1085972850678733, 0.11312217194570136, 0.11764705882352941, 0.12217194570135746, 0.12669683257918551, 0.13122171945701358, 0.13574660633484162, 0.14027149321266968, 0.14479638009049775, 0.1493212669683258, 0.15384615384615385, 0.1583710407239819, 0.16289592760180996, 0.167420814479638, 0.17194570135746606, 0.17647058823529413, 0.18099547511312217, 0.18552036199095023, 0.19004524886877827, 0.19457013574660634, 0.19909502262443438, 0.20361990950226244, 0.2081447963800905, 0.21266968325791855, 0.2171945701357466, 0.22171945701357465, 0.22624434389140272, 0.23076923076923078, 0.23529411764705882, 0.2398190045248869, 0.24434389140271492, 0.248868778280543, 0.25339366515837103, 0.2579185520361991, 0.26244343891402716, 0.2669683257918552, 0.27149321266968324, 0.27601809954751133, 0.28054298642533937, 0.2850678733031674, 0.2895927601809955, 0.29411764705882354, 0.2986425339366516, 0.3031674208144796, 0.3076923076923077, 0.31221719457013575, 0.3167420814479638, 0.3212669683257919, 0.3257918552036199, 0.33031674208144796, 0.334841628959276, 0.3393665158371041, 0.3438914027149321, 0.34841628959276016, 0.35294117647058826, 0.3574660633484163, 0.36199095022624433, 0.3665158371040724, 0.37104072398190047, 0.3755656108597285, 0.38009049773755654, 0.38461538461538464, 0.3891402714932127, 0.3936651583710407, 0.39819004524886875, 0.40271493212669685, 0.4072398190045249, 0.4117647058823529, 0.416289592760181, 0.42081447963800905, 0.4253393665158371, 0.4298642533936652, 0.4343891402714932, 0.43891402714932126, 0.4434389140271493, 0.4479638009049774, 0.45248868778280543, 0.45701357466063347, 0.46153846153846156, 0.4660633484162896, 0.47058823529411764, 0.4751131221719457, 0.4796380090497738, 0.4841628959276018, 0.48868778280542985, 0.49321266968325794, 0.497737556561086, 0.502262443438914, 0.5067873303167421, 0.5113122171945701, 0.5158371040723982, 0.5203619909502263, 0.5248868778280543, 0.5294117647058824, 0.5339366515837104, 0.5384615384615384, 0.5429864253393665, 0.5475113122171946, 0.5520361990950227, 0.5565610859728507, 0.5610859728506787, 0.5656108597285068, 0.5701357466063348, 0.5746606334841629, 0.579185520361991, 0.583710407239819, 0.5882352941176471, 0.5927601809954751, 0.5972850678733032, 0.6018099547511312, 0.6063348416289592, 0.6108597285067874, 0.6153846153846154, 0.6199095022624435, 0.6244343891402715, 0.6289592760180995, 0.6334841628959276, 0.6380090497737556, 0.6425339366515838, 0.6470588235294118, 0.6515837104072398, 0.6561085972850679, 0.6606334841628959, 0.665158371040724, 0.669683257918552, 0.6742081447963801, 0.6787330316742082, 0.6832579185520362, 0.6877828054298643, 0.6923076923076923, 0.6968325791855203, 0.7013574660633484, 0.7058823529411765, 0.7104072398190046, 0.7149321266968326, 0.7194570135746606, 0.7239819004524887, 0.7285067873303167, 0.7330316742081447, 0.7375565610859729, 0.7420814479638009, 0.746606334841629, 0.751131221719457, 0.755656108597285, 0.7601809954751131, 0.7647058823529411, 0.7692307692307693, 0.7737556561085973, 0.7782805429864253, 0.7828054298642534, 0.7873303167420814, 0.7918552036199095, 0.7963800904977375, 0.8009049773755657, 0.8054298642533937, 0.8099547511312217, 0.8144796380090498, 0.8190045248868778, 0.8235294117647058, 0.8280542986425339, 0.832579185520362, 0.8371040723981901, 0.8416289592760181, 0.8461538461538461, 0.8506787330316742]}\n" + ] + } + ], + "source": [ + "print(result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "linn", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/requirements.txt b/requirements.txt index 86637db..ce63ee3 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,4 +5,5 @@ numpy>=1.17.0 pandas>=0.25.0 scipy>=1.3.0 tqdm>=4.62.3 -xarray==0.19.0 \ No newline at end of file +xarray==0.19.0 +scikit-learn>=1.2.2 \ No newline at end of file diff --git a/setup.py b/setup.py index 76cffb6..04d5e72 100644 --- a/setup.py +++ b/setup.py @@ -4,7 +4,7 @@ long_description = fh.read() setuptools.setup(name='lppls', - version='0.6.19', + version='0.6.20', description='A Python module for fitting the LPPLS model to data.', packages=['lppls'], author='Josh Nielsen',