-
Notifications
You must be signed in to change notification settings - Fork 88
/
aes_x86_v1.asm
643 lines (528 loc) · 14.9 KB
/
aes_x86_v1.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
; ---------------------------------------------------------------------------
; Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
;
; The redistribution and use of this software (with or without changes)
; is allowed without the payment of fees or royalties provided that:
;
; source code distributions include the above copyright notice, this
; list of conditions and the following disclaimer;
;
; binary distributions include the above copyright notice, this list
; of conditions and the following disclaimer in their documentation.
;
; This software is provided 'as is' with no explicit or implied warranties
; in respect of its operation, including, but not limited to, correctness
; and fitness for purpose.
; ---------------------------------------------------------------------------
; Issue 13/08/2008
;
; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
; aeskey.c and aestab.c for support.
; An AES implementation for x86 processors using the YASM (or NASM) assembler.
; This is an assembler implementation that covers encryption and decryption
; only and is intended as a replacement of the C file aescrypt.c. It hence
; requires the file aeskey.c for keying and aestab.c for the AES tables. It
; employs full tables rather than compressed tables.
; This code provides the standard AES block size (128 bits, 16 bytes) and the
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
; interface as my C implementation. The ebx, esi, edi and ebp registers are
; preserved across calls but eax, ecx and edx and the artihmetic status flags
; are not. It is also important that the defines below match those used in the
; C code. This code uses the VC++ register saving conentions; if it is used
; with another compiler, conventions for using and saving registers may need to
; be checked (and calling conventions). The YASM command line for the VC++
; custom build step is:
;
; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
;
; The calling intefaces are:
;
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
; const aes_encrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
; const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_encrypt_key(const unsigned char key[],
; unsigned int len, const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt_key(const unsigned char key[],
; unsigned int len, const aes_decrypt_ctx cx[1]);
;
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
; either bits or bytes.
; Use of this assembler code in Windows kernel mode requires memory paging
; to be disabled
%ifdef NO_PAGING
%define set_page nopage
%else
%define set_page
%endif
; Comment in/out the following lines to obtain the desired subroutines. These
; selections MUST match those in the C header file aes.h
%define AES_128 ; define if AES with 128 bit keys is needed
%define AES_192 ; define if AES with 192 bit keys is needed
%define AES_256 ; define if AES with 256 bit keys is needed
%define AES_VAR ; define if a variable key size is needed
%define ENCRYPTION ; define if encryption is needed
%define DECRYPTION ; define if decryption is needed
%define AES_REV_DKS ; define if key decryption schedule is reversed
%define LAST_ROUND_TABLES ; define if tables are to be used for last round
; offsets to parameters
in_blk equ 4 ; input byte array address parameter
out_blk equ 8 ; output byte array address parameter
ctx equ 12 ; AES context structure
stk_spc equ 20 ; stack space
%define parms 12 ; parameter space on stack
; The encryption key schedule has the following in memory layout where N is the
; number of rounds (10, 12 or 14):
;
; lo: | input key (round 0) | ; each round is four 32-bit words
; | encryption round 1 |
; | encryption round 2 |
; ....
; | encryption round N-1 |
; hi: | encryption round N |
;
; The decryption key schedule is normally set up so that it has the same
; layout as above by actually reversing the order of the encryption key
; schedule in memory (this happens when AES_REV_DKS is set):
;
; lo: | decryption round 0 | = | encryption round N |
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
; .... ....
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
; hi: | decryption round N | = | input key (round 0) |
;
; with rounds except the first and last modified using inv_mix_column()
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
; encryption so that it has to be accessed in reverse when used for
; decryption (although the inverse mix column modifications are done)
;
; lo: | decryption round 0 | = | input key (round 0) |
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
; .... ....
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
; hi: | decryption round N | = | encryption round N |
;
; This layout is faster when the assembler key scheduling provided here
; is used.
;
; The DLL interface must use the _stdcall convention in which the number
; of bytes of parameter space is added after an @ to the sutine's name.
; We must also remove our parameters from the stack before return (see
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
;%define DLL_EXPORT
; End of user defines
section .text align=32 set_page
%ifdef AES_VAR
%ifndef AES_128
%define AES_128
%endif
%ifndef AES_192
%define AES_192
%endif
%ifndef AES_256
%define AES_256
%endif
%endif
%ifdef AES_VAR
%define KS_LENGTH 60
%elifdef AES_256
%define KS_LENGTH 60
%elifdef AES_192
%define KS_LENGTH 52
%else
%define KS_LENGTH 44
%endif
; These macros implement stack based local variables
%macro save 2
mov [esp+4*%1],%2
%endmacro
%macro restore 2
mov %1,[esp+4*%2]
%endmacro
; the DLL has to implement the _stdcall calling interface on return
; In this case we have to take our parameters (3 4-byte pointers)
; off the stack
%macro do_name 1-2 parms
%ifndef DLL_EXPORT
global %1
%1:
%else
global %1@%2
export %1@%2
%1@%2:
%endif
%endmacro
%macro do_call 1-2 parms
%ifndef DLL_EXPORT
call %1
add esp,%2
%else
call %1@%2
%endif
%endmacro
%macro do_exit 0-1 parms
%ifdef DLL_EXPORT
ret %1
%else
ret
%endif
%endmacro
%ifdef ENCRYPTION
extern _t_fn
%define etab_0(x) [_t_fn+4*x]
%define etab_1(x) [_t_fn+1024+4*x]
%define etab_2(x) [_t_fn+2048+4*x]
%define etab_3(x) [_t_fn+3072+4*x]
%ifdef LAST_ROUND_TABLES
extern _t_fl
%define eltab_0(x) [_t_fl+4*x]
%define eltab_1(x) [_t_fl+1024+4*x]
%define eltab_2(x) [_t_fl+2048+4*x]
%define eltab_3(x) [_t_fl+3072+4*x]
%else
%define etab_b(x) byte [_t_fn+3072+4*x]
%endif
; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
;
; Input:
;
; EAX column[0]
; EBX column[1]
; ECX column[2]
; EDX column[3]
; ESI column key[round][2]
; EDI column key[round][3]
; EBP scratch
;
; Output:
;
; EBP column[0] unkeyed
; EBX column[1] unkeyed
; ESI column[2] keyed
; EDI column[3] keyed
; EAX scratch
; ECX scratch
; EDX scratch
%macro rnd_fun 2
rol ebx,16
%1 esi, cl, 0, ebp
%1 esi, dh, 1, ebp
%1 esi, bh, 3, ebp
%1 edi, dl, 0, ebp
%1 edi, ah, 1, ebp
%1 edi, bl, 2, ebp
%2 ebp, al, 0, ebp
shr ebx,16
and eax,0xffff0000
or eax,ebx
shr edx,16
%1 ebp, ah, 1, ebx
%1 ebp, dh, 3, ebx
%2 ebx, dl, 2, ebx
%1 ebx, ch, 1, edx
%1 ebx, al, 0, edx
shr eax,16
shr ecx,16
%1 ebp, cl, 2, edx
%1 edi, ch, 3, edx
%1 esi, al, 2, edx
%1 ebx, ah, 3, edx
%endmacro
; Basic MOV and XOR Operations for normal rounds
%macro nr_xor 4
movzx %4,%2
xor %1,etab_%3(%4)
%endmacro
%macro nr_mov 4
movzx %4,%2
mov %1,etab_%3(%4)
%endmacro
; Basic MOV and XOR Operations for last round
%ifdef LAST_ROUND_TABLES
%macro lr_xor 4
movzx %4,%2
xor %1,eltab_%3(%4)
%endmacro
%macro lr_mov 4
movzx %4,%2
mov %1,eltab_%3(%4)
%endmacro
%else
%macro lr_xor 4
movzx %4,%2
movzx %4,etab_b(%4)
%if %3 != 0
shl %4,8*%3
%endif
xor %1,%4
%endmacro
%macro lr_mov 4
movzx %4,%2
movzx %1,etab_b(%4)
%if %3 != 0
shl %1,8*%3
%endif
%endmacro
%endif
%macro enc_round 0
add ebp,16
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
rnd_fun nr_xor, nr_mov
mov eax,ebp
mov ecx,esi
mov edx,edi
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
%macro enc_last_round 0
add ebp,16
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
rnd_fun lr_xor, lr_mov
mov eax,ebp
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
; AES Encryption Subroutine
align 32
do_name _aes_encrypt
sub esp,stk_spc
mov [esp+16],ebp
mov [esp+12],ebx
mov [esp+ 8],esi
mov [esp+ 4],edi
mov esi,[esp+in_blk+stk_spc] ; input pointer
mov eax,[esi ]
mov ebx,[esi+ 4]
mov ecx,[esi+ 8]
mov edx,[esi+12]
mov ebp,[esp+ctx+stk_spc] ; key pointer
movzx edi,byte [ebp+4*KS_LENGTH]
xor eax,[ebp ]
xor ebx,[ebp+ 4]
xor ecx,[ebp+ 8]
xor edx,[ebp+12]
; determine the number of rounds
cmp edi,10*16
je .3
cmp edi,12*16
je .2
cmp edi,14*16
je .1
mov eax,-1
jmp .5
.1: enc_round
enc_round
.2: enc_round
enc_round
.3: enc_round
enc_round
enc_round
enc_round
enc_round
enc_round
enc_round
enc_round
enc_round
enc_last_round
mov edx,[esp+out_blk+stk_spc]
mov [edx],eax
mov [edx+4],ebx
mov [edx+8],esi
mov [edx+12],edi
xor eax,eax
.5: mov ebp,[esp+16]
mov ebx,[esp+12]
mov esi,[esp+ 8]
mov edi,[esp+ 4]
add esp,stk_spc
do_exit
%endif
%ifdef DECRYPTION
extern _t_in
%define dtab_0(x) [_t_in+4*x]
%define dtab_1(x) [_t_in+1024+4*x]
%define dtab_2(x) [_t_in+2048+4*x]
%define dtab_3(x) [_t_in+3072+4*x]
%ifdef LAST_ROUND_TABLES
extern _t_il
%define dltab_0(x) [_t_il+4*x]
%define dltab_1(x) [_t_il+1024+4*x]
%define dltab_2(x) [_t_il+2048+4*x]
%define dltab_3(x) [_t_il+3072+4*x]
%else
extern _t_ibox
%define dtab_x(x) byte [_t_ibox+x]
%endif
%macro irn_fun 2
rol eax,16
%1 esi, cl, 0, ebp
%1 esi, bh, 1, ebp
%1 esi, al, 2, ebp
%1 edi, dl, 0, ebp
%1 edi, ch, 1, ebp
%1 edi, ah, 3, ebp
%2 ebp, bl, 0, ebp
shr eax,16
and ebx,0xffff0000
or ebx,eax
shr ecx,16
%1 ebp, bh, 1, eax
%1 ebp, ch, 3, eax
%2 eax, cl, 2, ecx
%1 eax, bl, 0, ecx
%1 eax, dh, 1, ecx
shr ebx,16
shr edx,16
%1 esi, dh, 3, ecx
%1 ebp, dl, 2, ecx
%1 eax, bh, 3, ecx
%1 edi, bl, 2, ecx
%endmacro
; Basic MOV and XOR Operations for normal rounds
%macro ni_xor 4
movzx %4,%2
xor %1,dtab_%3(%4)
%endmacro
%macro ni_mov 4
movzx %4,%2
mov %1,dtab_%3(%4)
%endmacro
; Basic MOV and XOR Operations for last round
%ifdef LAST_ROUND_TABLES
%macro li_xor 4
movzx %4,%2
xor %1,dltab_%3(%4)
%endmacro
%macro li_mov 4
movzx %4,%2
mov %1,dltab_%3(%4)
%endmacro
%else
%macro li_xor 4
movzx %4,%2
movzx %4,dtab_x(%4)
%if %3 != 0
shl %4,8*%3
%endif
xor %1,%4
%endmacro
%macro li_mov 4
movzx %4,%2
movzx %1,dtab_x(%4)
%if %3 != 0
shl %1,8*%3
%endif
%endmacro
%endif
%macro dec_round 0
%ifdef AES_REV_DKS
add ebp,16
%else
sub ebp,16
%endif
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
irn_fun ni_xor, ni_mov
mov ebx,ebp
mov ecx,esi
mov edx,edi
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
%macro dec_last_round 0
%ifdef AES_REV_DKS
add ebp,16
%else
sub ebp,16
%endif
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
irn_fun li_xor, li_mov
mov ebx,ebp
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
; AES Decryption Subroutine
align 32
do_name _aes_decrypt
sub esp,stk_spc
mov [esp+16],ebp
mov [esp+12],ebx
mov [esp+ 8],esi
mov [esp+ 4],edi
; input four columns and xor in first round key
mov esi,[esp+in_blk+stk_spc] ; input pointer
mov eax,[esi ]
mov ebx,[esi+ 4]
mov ecx,[esi+ 8]
mov edx,[esi+12]
lea esi,[esi+16]
mov ebp,[esp+ctx+stk_spc] ; key pointer
movzx edi,byte[ebp+4*KS_LENGTH]
%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
lea ebp,[ebp+edi] ; we have to access it from the top down
%endif
xor eax,[ebp ] ; key schedule
xor ebx,[ebp+ 4]
xor ecx,[ebp+ 8]
xor edx,[ebp+12]
; determine the number of rounds
cmp edi,10*16
je .3
cmp edi,12*16
je .2
cmp edi,14*16
je .1
mov eax,-1
jmp .5
.1: dec_round
dec_round
.2: dec_round
dec_round
.3: dec_round
dec_round
dec_round
dec_round
dec_round
dec_round
dec_round
dec_round
dec_round
dec_last_round
; move final values to the output array.
mov ebp,[esp+out_blk+stk_spc]
mov [ebp],eax
mov [ebp+4],ebx
mov [ebp+8],esi
mov [ebp+12],edi
xor eax,eax
.5: mov ebp,[esp+16]
mov ebx,[esp+12]
mov esi,[esp+ 8]
mov edi,[esp+ 4]
add esp,stk_spc
do_exit
%endif
end