-
Notifications
You must be signed in to change notification settings - Fork 20
/
sha2.c
949 lines (784 loc) · 30.8 KB
/
sha2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
This code implements sha256, sha384 and sha512 but the latter two
functions rely on efficient 64-bit integer operations that may not be
very efficient on 32-bit machines
The sha256 functions use a type 'sha256_ctx' to hold details of the
current hash state and uses the following three calls:
void sha256_begin( sha256_ctx ctx[1] )
void sha256_hash( const unsigned char data[],
unsigned long len, sha256_ctx ctx[1] )
void sha_end1( unsigned char hval[], sha256_ctx ctx[1] )
The first subroutine initialises a hash computation by setting up the
context in the sha256_ctx context. The second subroutine hashes 8-bit
bytes from array data[] into the hash state withinh sha256_ctx context,
the number of bytes to be hashed being given by the the unsigned long
integer len. The third subroutine completes the hash calculation and
places the resulting digest value in the array of 8-bit bytes hval[].
The sha384 and sha512 functions are similar and use the interfaces:
void sha384_begin( sha384_ctx ctx[1] );
void sha384_hash( const unsigned char data[],
unsigned long len, sha384_ctx ctx[1] );
void sha384_end( unsigned char hval[], sha384_ctx ctx[1] );
void sha512_begin( sha512_ctx ctx[1] );
void sha512_hash( const unsigned char data[],
unsigned long len, sha512_ctx ctx[1] );
void sha512_end( unsigned char hval[], sha512_ctx ctx[1] );
In addition there is a function sha2 that can be used to call all these
functions using a call with a hash length parameter as follows:
int sha2_begin( unsigned long len, sha2_ctx ctx[1] );
void sha2_hash( const unsigned char data[],
unsigned long len, sha2_ctx ctx[1] );
void sha2_end( unsigned char hval[], sha2_ctx ctx[1] );
The data block length in any one call to any of these hash functions must
be no more than 2^32 - 1 bits or 2^29 - 1 bytes.
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
on big-endian systems and for his assistance with corrections
*/
#if 1
#define UNROLL_SHA2 /* for SHA2 loop unroll */
#endif
#include <string.h> /* for memcpy() etc. */
#include "sha2.h"
#include "brg_endian.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
#pragma intrinsic(memcpy)
#pragma intrinsic(memset)
#endif
#if 0 && defined(_MSC_VER)
#define rotl32 _lrotl
#define rotr32 _lrotr
#else
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
#endif
#if !defined(bswap_32)
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
#endif
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef SWAP_BYTES
#endif
#if 0
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
#endif
/* round transforms for SHA256 and SHA512 compression functions */
#define vf(n,i) v[(n - i) & 7]
#define hf(i) (p[i & 15] += \
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
#define v_cycle(i,j) \
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
vf(3,i) += vf(7,i); \
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
#if defined(SHA_224) || defined(SHA_256)
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
#if defined(SWAP_BYTES)
#define bsw_32(p,n) \
{ int _i = (n); while(_i--) ((uint32_t*)p)[_i] = bswap_32(((uint32_t*)p)[_i]); }
#else
#define bsw_32(p,n)
#endif
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
#define k_0 k256
/* rotated SHA256 round definition. Rather than swapping variables as in */
/* FIPS-180, different variables are 'rotated' on each round, returning */
/* to their starting positions every eight rounds */
#define q(n) v##n
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
/* SHA256 mixing data */
const uint32_t k256[64] =
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
};
/* Compile 64 bytes of hash data into SHA256 digest value */
/* NOTE: this routine assumes that the byte order in the */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems */
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
{
#if !defined(UNROLL_SHA2)
uint32_t j, *p = ctx->wbuf, v[8];
memcpy(v, ctx->hash, sizeof(ctx->hash));
for(j = 0; j < 64; j += 16)
{
v_cycle( 0, j); v_cycle( 1, j);
v_cycle( 2, j); v_cycle( 3, j);
v_cycle( 4, j); v_cycle( 5, j);
v_cycle( 6, j); v_cycle( 7, j);
v_cycle( 8, j); v_cycle( 9, j);
v_cycle(10, j); v_cycle(11, j);
v_cycle(12, j); v_cycle(13, j);
v_cycle(14, j); v_cycle(15, j);
}
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
#else
uint32_t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
v0 = ctx->hash[0]; v1 = ctx->hash[1];
v2 = ctx->hash[2]; v3 = ctx->hash[3];
v4 = ctx->hash[4]; v5 = ctx->hash[5];
v6 = ctx->hash[6]; v7 = ctx->hash[7];
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
ctx->hash[0] += v0; ctx->hash[1] += v1;
ctx->hash[2] += v2; ctx->hash[3] += v3;
ctx->hash[4] += v4; ctx->hash[5] += v5;
ctx->hash[6] += v6; ctx->hash[7] += v7;
#endif
}
/* SHA256 hash data in an array of bytes into hash buffer */
/* and call the hash_compile function as required. */
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
{ uint32_t pos = (uint32_t)((ctx->count[0] >> 3) & SHA256_MASK);
const unsigned char *sp = data;
unsigned char *w = (unsigned char*)ctx->wbuf;
#if SHA2_BITS == 1
uint32_t ofs = (ctx->count[0] & 7);
#else
len <<= 3;
#endif
if((ctx->count[0] += len) < len)
++(ctx->count[1]);
#if SHA2_BITS == 1
if(ofs) /* if not on a byte boundary */
{
if(ofs + len < 8) /* if no added bytes are needed */
{
w[pos] |= (*sp >> ofs);
}
else /* otherwise and add bytes */
{ unsigned char part = w[pos];
while((int)(ofs + (len -= 8)) >= 0)
{
w[pos++] = part | (*sp >> ofs);
part = *sp++ << (8 - ofs);
if(pos == SHA256_BLOCK_SIZE)
{
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
sha256_compile(ctx); pos = 0;
}
}
w[pos] = part;
}
}
else /* data is byte aligned */
#endif
{ uint32_t space = SHA256_BLOCK_SIZE - pos;
while(len >= (space << 3))
{
memcpy(w + pos, sp, space);
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
sha256_compile(ctx);
sp += space; len -= (space << 3);
space = SHA256_BLOCK_SIZE; pos = 0;
}
memcpy(w + pos, sp, (len + 7 * SHA2_BITS) >> 3);
}
}
/* SHA256 Final padding and digest calculation */
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA256_MASK), m1;
/* put bytes in the buffer in an order in which references to */
/* 32-bit words will put bytes with lower addresses into the */
/* top of 32 bit words on BOTH big and little endian machines */
bsw_32(ctx->wbuf, (i + 3 + SHA2_BITS) >> 2)
/* we now need to mask valid bytes and add the padding which is */
/* a single 1 bit and as many zero bits as necessary. Note that */
/* we can always add the first padding byte here because the */
/* buffer always has at least one empty slot */
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
/* we need 9 or more empty positions, one for the padding byte */
/* (above) and eight for the length count. If there is not */
/* enough space pad and empty the buffer */
if(i > SHA256_BLOCK_SIZE - 9)
{
if(i < 60) ctx->wbuf[15] = 0;
sha256_compile(ctx);
i = 0;
}
else /* compute a word index for the empty buffer positions */
i = (i >> 2) + 1;
while(i < 14) /* and zero pad all but last two positions */
ctx->wbuf[i++] = 0;
/* the following 32-bit length fields are assembled in the */
/* wrong byte order on little endian machines but this is */
/* corrected later since they are only ever used as 32-bit */
/* word values. */
ctx->wbuf[14] = ctx->count[1];
ctx->wbuf[15] = ctx->count[0];
sha256_compile(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* misaligned for 32-bit words */
for(i = 0; i < hlen; ++i)
hval[i] = ((ctx->hash[i >> 2] >> (8 * (~i & 3))) & 0xff);
}
#endif
#if defined(SHA_224)
const uint32_t i224[8] =
{
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
};
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha224_ctx));
memcpy(ctx->hash, i224, sizeof(ctx->hash));
}
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
{
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
}
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha224_ctx cx[1];
sha224_begin(cx);
sha224_hash(data, len, cx);
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
}
#endif
#if defined(SHA_256)
const uint32_t i256[8] =
{
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
};
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha256_ctx));
memcpy(ctx->hash, i256, sizeof(ctx->hash));
}
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
{
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
}
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha256_ctx cx[1];
sha256_begin(cx);
sha256_hash(data, len, cx);
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
}
#endif
#if defined(SHA_384) || defined(SHA_512)
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
#if !defined(bswap_64)
#define bswap_64(x) (((uint64_t)(bswap_32((uint32_t)(x)))) << 32 | bswap_32((uint32_t)((x) >> 32)))
#endif
#if defined(SWAP_BYTES)
#define bsw_64(p,n) \
{ int _i = (n); while(_i--) ((uint64_t*)p)[_i] = bswap_64(((uint64_t*)p)[_i]); }
#else
#define bsw_64(p,n)
#endif
/* SHA512 mixing function definitions */
#ifdef s_0
# undef s_0
# undef s_1
# undef g_0
# undef g_1
# undef k_0
#endif
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
#define k_0 k512
/* SHA384/SHA512 mixing data */
const uint64_t k512[80] =
{
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
li_64(d192e819d6ef5218), li_64(d69906245565a910),
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
li_64(28db77f523047d84), li_64(32caab7b40c72493),
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
};
/* Compile 128 bytes of hash data into SHA384/512 digest */
/* NOTE: this routine assumes that the byte order in the */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems */
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
{ uint64_t v[8], *p = ctx->wbuf;
uint32_t j;
memcpy(v, ctx->hash, sizeof(ctx->hash));
for(j = 0; j < 80; j += 16)
{
v_cycle( 0, j); v_cycle( 1, j);
v_cycle( 2, j); v_cycle( 3, j);
v_cycle( 4, j); v_cycle( 5, j);
v_cycle( 6, j); v_cycle( 7, j);
v_cycle( 8, j); v_cycle( 9, j);
v_cycle(10, j); v_cycle(11, j);
v_cycle(12, j); v_cycle(13, j);
v_cycle(14, j); v_cycle(15, j);
}
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}
/* Compile 128 bytes of hash data into SHA256 digest value */
/* NOTE: this routine assumes that the byte order in the */
/* ctx->wbuf[] at this point is in such an order that low */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big */
/* and little endian systems */
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
{ uint32_t pos = (uint32_t)(ctx->count[0] >> 3) & SHA512_MASK;
const unsigned char *sp = data;
unsigned char *w = (unsigned char*)ctx->wbuf;
#if SHA2_BITS == 1
uint32_t ofs = (ctx->count[0] & 7);
#else
len <<= 3;
#endif
if((ctx->count[0] += len) < len)
++(ctx->count[1]);
#if SHA2_BITS == 1
if(ofs) /* if not on a byte boundary */
{
if(ofs + len < 8) /* if no added bytes are needed */
{
w[pos] |= (*sp >> ofs);
}
else /* otherwise and add bytes */
{ unsigned char part = w[pos];
while((int)(ofs + (len -= 8)) >= 0)
{
w[pos++] = part | (*sp >> ofs);
part = *sp++ << (8 - ofs);
if(pos == SHA512_BLOCK_SIZE)
{
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
sha512_compile(ctx); pos = 0;
}
}
w[pos] = part;
}
}
else /* data is byte aligned */
#endif
{ uint32_t space = SHA512_BLOCK_SIZE - pos;
while(len >= (space << 3))
{
memcpy(w + pos, sp, space);
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
sha512_compile(ctx);
sp += space; len -= (space << 3);
space = SHA512_BLOCK_SIZE; pos = 0;
}
memcpy(w + pos, sp, (len + 7 * SHA2_BITS) >> 3);
}
}
/* SHA384/512 Final padding and digest calculation */
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA512_MASK);
uint64_t m1;
/* put bytes in the buffer in an order in which references to */
/* 32-bit words will put bytes with lower addresses into the */
/* top of 32 bit words on BOTH big and little endian machines */
bsw_64(ctx->wbuf, (i + 7 + SHA2_BITS) >> 3);
/* we now need to mask valid bytes and add the padding which is */
/* a single 1 bit and as many zero bits as necessary. Note that */
/* we can always add the first padding byte here because the */
/* buffer always has at least one empty slot */
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7));
ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7));
/* we need 17 or more empty byte positions, one for the padding */
/* byte (above) and sixteen for the length count. If there is */
/* not enough space pad and empty the buffer */
if(i > SHA512_BLOCK_SIZE - 17)
{
if(i < 120) ctx->wbuf[15] = 0;
sha512_compile(ctx);
i = 0;
}
else
i = (i >> 3) + 1;
while(i < 14)
ctx->wbuf[i++] = 0;
/* the following 64-bit length fields are assembled in the */
/* wrong byte order on little endian machines but this is */
/* corrected later since they are only ever used as 64-bit */
/* word values. */
ctx->wbuf[14] = ctx->count[1];
ctx->wbuf[15] = ctx->count[0];
sha512_compile(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* misaligned for 32-bit words */
for(i = 0; i < hlen; ++i)
hval[i] = ((ctx->hash[i >> 3] >> (8 * (~i & 7))) & 0xff);
}
#endif
#if defined(SHA_384)
/* SHA384 initialisation data */
const uint64_t i384[80] =
{
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
};
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha384_ctx));
memcpy(ctx->hash, i384, sizeof(ctx->hash));
}
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
{
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
}
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha384_ctx cx[1];
sha384_begin(cx);
sha384_hash(data, len, cx);
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
}
#endif
#if defined(SHA_512)
/* SHA512 initialisation data */
static const uint64_t i512[SHA512_DIGEST_SIZE >> 3] =
{
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
};
/* FIPS PUB 180-4: SHA-512/256 */
static const uint64_t i512_256[SHA512_DIGEST_SIZE >> 3] =
{
li_64(22312194fc2bf72c), li_64(9f555fa3c84c64c2),
li_64(2393b86b6f53b151), li_64(963877195940eabd),
li_64(96283ee2a88effe3), li_64(be5e1e2553863992),
li_64(2b0199fc2c85b8aa), li_64(0eb72ddc81c52ca2),
};
/* FIPS PUB 180-4: SHA-512/224 */
static const uint64_t i512_224[SHA512_DIGEST_SIZE >> 3] =
{
li_64(8c3d37c819544da2), li_64(73e1996689dcd4d6),
li_64(1dfab7ae32ff9c82), li_64(679dd514582f9fcf),
li_64(0f6d2b697bd44da8), li_64(77e36f7304c48942),
li_64(3f9d85a86a1d36c8), li_64(1112e6ad91d692a1),
};
/* FIPS PUB 180-4: SHA-512/192 (unsanctioned; facilitates using AES-192) */
static const uint64_t i512_192[SHA512_DIGEST_SIZE >> 3] =
{
li_64(010176140648b233), li_64(db92aeb1eebadd6f),
li_64(83a9e27aa1d5ea62), li_64(ec95f77eb609b4e1),
li_64(71a99185c75caefa), li_64(006e8f08baf32e3c),
li_64(6a2b21abd2db2aec), li_64(24926cdbd918a27f),
};
/* FIPS PUB 180-4: SHA-512/128 (unsanctioned; facilitates using AES-128) */
static const uint64_t i512_128[SHA512_DIGEST_SIZE >> 3] =
{
li_64(c953a21464c3e8cc), li_64(06cc9cfd166a34b5),
li_64(647e88dabf8b24ab), li_64(8513e4dc05a078ac),
li_64(7266fcfb7cba0534), li_64(854a78e2ecd19b93),
li_64(8618061711cec2dd), li_64(b20d8506efb929b1),
};
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha512_ctx));
memcpy(ctx->hash, i512, sizeof(ctx->hash));
}
VOID_RETURN sha512_256_begin(sha512_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha512_ctx));
memcpy(ctx->hash, i512_256, sizeof(ctx->hash));
}
VOID_RETURN sha512_224_begin(sha512_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha512_ctx));
memcpy(ctx->hash, i512_224, sizeof(ctx->hash));
}
VOID_RETURN sha512_192_begin(sha512_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha512_ctx));
memcpy(ctx->hash, i512_192, sizeof(ctx->hash));
}
VOID_RETURN sha512_128_begin(sha512_ctx ctx[1])
{
memset(ctx, 0, sizeof(sha512_ctx));
memcpy(ctx->hash, i512_128, sizeof(ctx->hash));
}
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
}
VOID_RETURN sha512_256_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end2(hval, ctx, SHA512_256_DIGEST_SIZE);
}
VOID_RETURN sha512_224_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end2(hval, ctx, SHA512_224_DIGEST_SIZE);
}
VOID_RETURN sha512_192_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end2(hval, ctx, SHA512_192_DIGEST_SIZE);
}
VOID_RETURN sha512_128_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end2(hval, ctx, SHA512_128_DIGEST_SIZE);
}
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_begin(cx);
sha512_hash(data, len, cx);
sha512_end(hval, cx);
}
VOID_RETURN sha512_256(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_256_begin(cx);
sha512_256_hash(data, len, cx);
sha512_256_end(hval, cx);
}
VOID_RETURN sha512_224(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_224_begin(cx);
sha512_224_hash(data, len, cx);
sha512_224_end(hval, cx);
}
VOID_RETURN sha512_192(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_192_begin(cx);
sha512_192_hash(data, len, cx);
sha512_192_end(hval, cx);
}
VOID_RETURN sha512_128(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_128_begin(cx);
sha512_128_hash(data, len, cx);
sha512_128_end(hval, cx);
}
#endif
#if defined(SHA_2)
#define CTX_224(x) ((x)->uu->ctx256)
#define CTX_256(x) ((x)->uu->ctx256)
#define CTX_384(x) ((x)->uu->ctx512)
#define CTX_512(x) ((x)->uu->ctx512)
/* SHA2 initialisation */
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
{
switch(len)
{
#if defined(SHA_224)
case 224:
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
memcpy(CTX_256(ctx)->hash, i224, 32);
ctx->sha2_len = 28; return EXIT_SUCCESS;
#endif
#if defined(SHA_256)
case 256:
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
memcpy(CTX_256(ctx)->hash, i256, 32);
ctx->sha2_len = 32; return EXIT_SUCCESS;
#endif
#if defined(SHA_384)
case 384:
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
memcpy(CTX_384(ctx)->hash, i384, 64);
ctx->sha2_len = 48; return EXIT_SUCCESS;
#endif
#if defined(SHA_512)
case 512:
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
memcpy(CTX_512(ctx)->hash, i512, 64);
ctx->sha2_len = 64; return EXIT_SUCCESS;
#endif
default: return EXIT_FAILURE;
}
}
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
{
switch(ctx->sha2_len)
{
#if defined(SHA_224)
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
#endif
#if defined(SHA_256)
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
#endif
#if defined(SHA_384)
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
#endif
#if defined(SHA_512)
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
#endif
}
}
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
{
switch(ctx->sha2_len)
{
#if defined(SHA_224)
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
#endif
#if defined(SHA_256)
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
#endif
#if defined(SHA_384)
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
#endif
#if defined(SHA_512)
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
#endif
}
}
INT_RETURN sha2(unsigned char hval[], unsigned long size,
const unsigned char data[], unsigned long len)
{ sha2_ctx cx[1];
if(sha2_begin(size, cx) == EXIT_SUCCESS)
{
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
}
else
return EXIT_FAILURE;
}
#endif
#if defined(__cplusplus)
}
#endif