-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg_agent.py
168 lines (143 loc) · 7.26 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python
import numpy as np
import random
from ddpg_model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
from ounoise import OUNoise
# Hyperparameters
BUFFER_SIZE = int(1e6) # replay buffer size
BATCH_SIZE = 300 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-4 # learning rate of the actor
LR_CRITIC = 5e-4 # learning rate of the critic
WEIGHT_DECAY = 0 # L2 weight decay
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size=8, action_size=2, num_agents=2, noise_theta=0, noise_sigma=0, noise_decay_rate=1, random_seed=10):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
num_agents (int): The number of agents sharing the common replay buffer
noise_theta (float): The parameter theta in the Ornstein–Uhlenbeck process
noise_sigma (float): The parameter sigma in the Ornstein–Uhlenbeck process
noise_decay_rate (float): The decay rate in the Ornstein–Uhlenbeck process
cuda (bool): If True, try to use the GPU
"""
self.state_size = state_size
self.action_size = action_size
# self.seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size * num_agents, action_size * num_agents, random_seed).to(device)
self.critic_target = Critic(state_size * num_agents, action_size * num_agents, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
# Noise process
self.ounoise = OUNoise(action_size, True, 0., noise_theta, noise_sigma, noise_decay_rate)
def decide(self, states, use_target=False, as_tensor=False, add_noise=True, autograd=False):
"""Returns actions for given states as per current policy.
Parameters
==========
states (np.Ndarray or torch.Tensor): The states that the actor will evaluate
use_target (bool): Use the target actor network if True, else use the local actor network
as_tensor (bool): Return actions as a tensor if True, else return as numpy array
add_noise (bool): Add noise from the OU process to the actor's output
autograd (bool): Activate autograd when evaluating the states
"""
# Check input type
if isinstance(states, np.ndarray):
states = torch.from_numpy(states).float().to(device)
# Select appropiate network
if use_target:
network = self.actor_target
else:
network = self.actor_local
# To autograd or not to autograd, that is the question
if autograd:
actions = network(states)
else:
network.eval()
with torch.no_grad():
actions = network(states)
network.train()
# Noise
if add_noise:
actions = actions + self.ounoise.sample()
# Clipping & casting
if as_tensor:
actions = torch.clamp(actions, -1, 1)
else:
actions = np.clip(actions.cpu().data.numpy(), -1, 1)
return actions
def learn(self, experiences, next_actions, current_actions, agent_number):
"""Update actor and critics using the sampled experiences and the updated actions.
Params
======
experiences (Tuple of (states, actions, rewards, next_states, dones)):
The experiences sampled from the replay buffer. Each tuple element
is a list of tensors, where the ith tensor corresponds to the ith
agent.
next_actions (list of tensors):
The target actors' output, for all next_states in experiences.
The ith tensor corresponds to the output from the ith agent.
current_actions (list of tensors):
The local actors' output, for all states in experiences.
The ith tensor corresponds to the output from the ith agent.
agent_number (int):
The index of the current agent, to extract the correct tensors
from experiences.
"""
# Extract and pre-process data
states, actions, rewards, next_states, dones = experiences
states = torch.cat(states, dim=1)
actions = torch.cat(actions, dim=1)
next_states = torch.cat(next_states, dim=1)
rewards = rewards[agent_number]
dones = dones[agent_number]
next_actions = torch.cat(next_actions, dim=1)
current_actions = torch.cat([ca if i == agent_number else ca.detach()
for i, ca in enumerate(current_actions)], dim=1)
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
with torch.no_grad():
Q_targets_next = self.critic_target(next_states, next_actions)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (GAMMA * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets.detach())
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
#torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) # Clip gradient
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actor_loss = -self.critic_local(states, current_actions).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)