-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_erfnet.py
297 lines (238 loc) · 12.2 KB
/
test_erfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import print_function, division
import logging
import os
import sys
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import time
import cv2
import PIL.Image as pil
import numpy as np
from openvino.inference_engine import IENetwork, IECore
selected_lines = 2
logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()
def build_argparser():
parser = ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
required=True, type=str)
args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
"camera)", required=True, type=str)
args.add_argument("-l", "--cpu_extension",
help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
"the kernels implementations.", type=str, default=None)
args.add_argument("-d", "--device",
help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
" acceptable. The sample will look for a suitable plugin for device specified. "
"Default value is CPU", default="CPU", type=str)
args.add_argument("--labels", help="Optional. Labels mapping file", default=None, type=str)
args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
default=0.5, type=float)
args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
"detections filtering", default=0.4, type=float)
args.add_argument("-ni", "--number_iter", help="Optional. Number of inference iterations", default=1, type=int)
args.add_argument("-pc", "--perf_counts", help="Optional. Report performance counters", default=False,
action="store_true")
args.add_argument("-r", "--raw_output_message", help="Optional. Output inference results raw values showing",
default=False, action="store_true")
return parser
def softmax(X, theta = 1.0, axis = None):
"""
Compute the softmax of each element along an axis of X.
Parameters
----------
X: ND-Array. Probably should be floats.
theta (optional): float parameter, used as a multiplier
prior to exponentiation. Default = 1.0
axis (optional): axis to compute values along. Default is the
first non-singleton axis.
Returns an array the same size as X. The result will sum to 1
along the specified axis.
----------
https://nolanbconaway.github.io/blog/2017/softmax-numpy.html
"""
# make X at least 2d
y = np.atleast_2d(X)
# find axis
if axis is None:
axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)
# multiply y against the theta parameter,
y = y * float(theta)
# subtract the max for numerical stability
y = y - np.expand_dims(np.max(y, axis = axis), axis)
# exponentiate y
y = np.exp(y)
# take the sum along the specified axis
ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)
# finally: divide elementwise
p = y / ax_sum
# flatten if X was 1D
if len(X.shape) == 1: p = p.flatten()
return p
def _thresh_coord(coord):
pts_x = coord[:, 0]
mean_x = np.mean(pts_x)
idx = np.where(np.abs(pts_x - mean_x) < mean_x)
return coord[idx[0]]
def get_lane_mask(instance_seg):
mask_list = []
for i in range(selected_lines):
f = instance_seg[:, :, i]
mask_img = []
mask_img = cv2.cvtColor(np.asarray(pil.new(mode = 'RGBA', size = (f.shape[1], f.shape[0]))), cv2.COLOR_RGBA2RGB)
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_RGB2GRAY)
mask_img = mask_img.astype(np.uint8)
frame = (f * 255).astype(np.uint8)
idx = np.where(frame >= 60)
if len(idx[0]) > 0 and len(idx[1]) > 0:
row = idx[0]
column = idx[1]
max_X = max(column) if len(column > 0) else f.shape[1]
min_X = min(column) if len(column > 0) else 0
max_Y = max(row) if len(row > 0) else f.shape[0]
min_Y = min(row) if len(row > 0) else f.shape[0] / 2
coord = np.concatenate(([idx[0]], [idx[1]]), axis = 0).transpose((1, 0))
coord = np.flip(coord, axis=1)
coord = _thresh_coord(coord)
############# Recieve lane line
X = []
Y = np.unique(coord[:, 1])
for y in Y:
idx_x = np.where(coord[:, 1] == y)
X.append(np.mean(coord[idx_x, 0]))
X = np.array(X)
line = np.concatenate(([X], [Y]), axis = 0).transpose((1, 0))
############# Recieve 1st order polynomial line
if len(X) > 5 and len(Y) > 5:
C = np.polyfit(Y, X, 1)
poly_Y = np.arange(min_Y, max_Y, 1)
poly_X = (C[0] * poly_Y + C[1])
poly_line = np.concatenate(([poly_X], [poly_Y]), axis = 0).transpose((1, 0))
poly_line = poly_line.astype(int)
############# Delete those points which are far from polynomial line
D = np.abs(C[0] * line[:, 1] - line[:, 0] + C[1]) / np.sqrt(C[0] ** 2 + 1)
D_idx = np.where(D > 5)
line = np.delete(line, D_idx, axis = 0)
line = line.astype(int)
cv2.polylines(img = mask_img, pts = [line], isClosed = False, color = (255, 255, 255), thickness = 5)
mask_list.append(mask_img)
else:
mask_list.append(mask_img)
continue
return mask_list
def main():
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
mean = ([103.939, 116.779, 123.68], (0, ))
std = ([1, 1, 1], (1, ))
# ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
log.info("Creating Inference Engine...")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model = model_xml, weights = model_bin)
# ---------------------------------- 3. Load CPU extension for support specific layer ------------------------------
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
assert len(net.inputs.keys()) == 1, "Sample supports only YOLO V3 based single input topologies"
# ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
log.info("Preparing inputs")
input_blob = next(iter(net.inputs))
# Defaulf batch_size is 1
net.batch_size = 1
# Read and pre-process input images
n, c, h, w = net.inputs[input_blob].shape
if args.labels:
with open(args.labels, 'r') as f:
labels_map = [x.strip() for x in f]
else:
labels_map = None
input_stream = 0 if args.input == "cam" else args.input
cap = cv2.VideoCapture(input_stream)
# ----------------------------------------- 5. Loading model to the plugin -----------------------------------------
log.info("Loading model to the plugin")
exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)
cur_request_id = 0
next_request_id = 1
render_time = 0
parsing_time = 0
# ----------------------------------------------- 6. Doing inference -----------------------------------------------
if(cap.isOpened() == False):
print('Error opening video stream or file')
else:
log.info("Starting inference...")
print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_vis = frame
h = frame_vis.shape[0]
w = frame_vis.shape[1]
frame = frame[240:, :, :]
o_h = frame.shape[0]
o_w = frame.shape[1]
frame = cv2.resize(frame, (976, 208), interpolation = cv2.INTER_LINEAR)
# ----------------------------------------------- Group Normalize -----------------------------------------------
img_group = [frame]
out_images = list()
for img, m, s in zip(img_group, mean, std):
if len(m) == 1: # single channel image
img = img - np.array(m)
img = img / np.array(s)
else:
img = img - np.array(m)[np.newaxis, np.newaxis, ...]
img = img / np.array(s)[np.newaxis, np.newaxis, ...]
out_images.append(img)
pred_input = []
frame = out_images[0]
frame_show = frame
frame = frame.transpose((2, 0, 1)).astype(np.float32).reshape(1, 3, 208, 976)
# ----------------------------------------------- Run the net -----------------------------------------------
inf_start = time()
outputs = exec_net.infer({'input.1': frame})
det_time = time() - inf_start
print('FPS: {}'.format(1 / det_time))
# ----------------------------------------------- Fetch detected center lane -----------------------------------------------
outputs = outputs['ConvTranspose_208'].reshape(5, 208, 976)
outputs = softmax(outputs, axis = 0)
pred_input.append(outputs[2])
pred_input.append(outputs[3])
pred_input = np.array(pred_input)
pred_input = cv2.resize(pred_input.transpose((1, 2, 0)), (448, 208), interpolation = cv2.INTER_LINEAR) # (208, 976, 3) -> (208, 448, 3)
mask_list = get_lane_mask(pred_input[:, :, :])
# ----------------------------------------------- Post processing -----------------------------------------------
for m in range(selected_lines):
tmp = mask_list[m]
mask_list[m] = []
mask_list[m] = cv2.resize(tmp, (o_w, o_h), interpolation = cv2.INTER_LINEAR) # (208, 448) -> (o_h, o_w)
mask_output = np.zeros([o_h, o_w, 3]).astype(np.uint8)
mask_output[:, :, 0] = np.zeros([o_h, o_w]).astype(np.uint8) # B
mask_output[:, :, 1] = mask_list[0].astype(np.uint8) # G
mask_output[:, :, 2] = mask_list[1].astype(np.uint8) # R
mask_frame = np.zeros([h, w, 3]).astype(np.uint8)
for i in range(0, 3):
compensate_zero = np.zeros([240, o_w]).astype(np.uint8)
mask_frame[:, :, i] = np.concatenate((compensate_zero, mask_output[:, :, i]), axis = 0)
output_frame = (cv2.addWeighted(frame_vis, 1, mask_frame, 1, 0))
cv2.imshow("DetectionResults", output_frame)
key = cv2.waitKey(1)
# ESC key
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
sys.exit(main() or 0)