comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0 Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3 Output: false
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
is guaranteed to be rotated at some pivot.-104 <= target <= 104
Follow up: This problem is similar to Search in Rotated Sorted Array, but nums
may contain duplicates. Would this affect the runtime complexity? How and why?
We define the left boundary
During each binary search process, we get the current midpoint
- If
$nums[mid] \gt nums[r]$ , it means that$[l,mid]$ is ordered. At this time, if$nums[l] \le target \le nums[mid]$ , it means that$target$ is in$[l,mid]$ , otherwise$target$ is in$[mid+1,r]$ . - If
$nums[mid] \lt nums[r]$ , it means that$[mid+1,r]$ is ordered. At this time, if$nums[mid] \lt target \le nums[r]$ , it means that$target$ is in$[mid+1,r]$ , otherwise$target$ is in$[l,mid]$ . - If
$nums[mid] = nums[r]$ , it means that the elements$nums[mid]$ and$nums[r]$ are equal. At this time, we cannot determine which interval$target$ is in, so we can only decrease$r$ by$1$ .
After the binary search ends, if
The time complexity is approximately
class Solution:
def search(self, nums: List[int], target: int) -> bool:
n = len(nums)
l, r = 0, n - 1
while l < r:
mid = (l + r) >> 1
if nums[mid] > nums[r]:
if nums[l] <= target <= nums[mid]:
r = mid
else:
l = mid + 1
elif nums[mid] < nums[r]:
if nums[mid] < target <= nums[r]:
l = mid + 1
else:
r = mid
else:
r -= 1
return nums[l] == target
class Solution {
public boolean search(int[] nums, int target) {
int l = 0, r = nums.length - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] > nums[r]) {
if (nums[l] <= target && target <= nums[mid]) {
r = mid;
} else {
l = mid + 1;
}
} else if (nums[mid] < nums[r]) {
if (nums[mid] < target && target <= nums[r]) {
l = mid + 1;
} else {
r = mid;
}
} else {
--r;
}
}
return nums[l] == target;
}
}
class Solution {
public:
bool search(vector<int>& nums, int target) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] > nums[r]) {
if (nums[l] <= target && target <= nums[mid]) {
r = mid;
} else {
l = mid + 1;
}
} else if (nums[mid] < nums[r]) {
if (nums[mid] < target && target <= nums[r]) {
l = mid + 1;
} else {
r = mid;
}
} else {
--r;
}
}
return nums[l] == target;
}
};
func search(nums []int, target int) bool {
l, r := 0, len(nums)-1
for l < r {
mid := (l + r) >> 1
if nums[mid] > nums[r] {
if nums[l] <= target && target <= nums[mid] {
r = mid
} else {
l = mid + 1
}
} else if nums[mid] < nums[r] {
if nums[mid] < target && target <= nums[r] {
l = mid + 1
} else {
r = mid
}
} else {
r--
}
}
return nums[l] == target
}
function search(nums: number[], target: number): boolean {
let [l, r] = [0, nums.length - 1];
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] > nums[r]) {
if (nums[l] <= target && target <= nums[mid]) {
r = mid;
} else {
l = mid + 1;
}
} else if (nums[mid] < nums[r]) {
if (nums[mid] < target && target <= nums[r]) {
l = mid + 1;
} else {
r = mid;
}
} else {
--r;
}
}
return nums[l] === target;
}