-
Notifications
You must be signed in to change notification settings - Fork 0
/
vision.html
142 lines (120 loc) · 5.58 KB
/
vision.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="">
<meta name="author" content="">
<title>Metadata Automation</title>
<!-- Bootstrap core CSS -->
<link href="vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<!-- Custom fonts for this template -->
<link href="vendor/fontawesome-free/css/all.min.css" rel="stylesheet" type="text/css">
<link href='https://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
<!-- Custom styles for this template -->
<link href="css/clean-blog.min.css" rel="stylesheet">
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-expand-lg navbar-light fixed-top" id="mainNav">
<div class="container">
<a class="navbar-brand" href="index.html"></a>
<button class="navbar-toggler navbar-toggler-right" type="button" data-toggle="collapse" data-target="#navbarResponsive" aria-controls="navbarResponsive" aria-expanded="false" aria-label="Toggle navigation">
Menu
<i class="fas fa-bars"></i>
</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item">
<a class="nav-link" href="index.html">Home</a>
</li>
<li class="nav-item">
<a class="nav-link" href="vision.html">Vision</a>
</li>
<li class="nav-item">
<a class="nav-link" href="projects.html">Projects</a>
</li>
<li class="nav-item">
<a class="nav-link" href="publications.html">Outputs</a>
</li>
<li class="nav-item">
<a class="nav-link" href="about.html">About</a>
</li>
</ul>
</div>
</div>
</nav>
<!-- Page Header -->
<header class="masthead" style="background-image: url('img/vision.jpg')">
<div class="overlay"></div>
<div class="container">
<div class="row">
<div class="col-lg-8 col-md-10 mx-auto">
<div class="page-heading">
<h1>Our Vision</h1>
<span class="subheading"></span>
</div>
</div>
</div>
</div>
</header>
<!-- Main Content -->
<div class="container">
<div class="row">
<div class="col-lg-8 col-md-10 mx-auto">
<h4>The demands on research are changing</h4>
<p>Policy is increasingly demanding that analysis is provided in a more timely and comprehensible manner.
At the same time, data is coming from more diverse sources, and needs to be combined across disciplines and organisations.
COVID-19 has thrown that into stark relief.</p>
<p>To meet the challenges, all parts of the research process will need to be scaled and connected so that analysis can be assured of the provenance
and meaning of the underlying data. Just throwing people or compute at the problem is not a solution.</p>
<h4>Structured Metadata</h4>
<p>Structured metadata allows description of the data lifecycle, that can be actioned by machines and made available for analysts to be assured that
they are looking at data that is trustworthy and can be combined in a meaningful way.</p>
<p>However, we don't live in a world where data providers or data collectors are well versed in or incentivised to produce good quality structured metadata.</p>
<h4>Machine Learning</h4>
<p>We believe a new approach can assist data providers, collectors and managers in enhancing data with this vital information.</p>
<p>We are in the enviable position of having a large resource of questionnaires which can be used as a training dataset for a range of machine
learning approaches. Our initial work will focus on understanding the strengths and weaknesses of both the different approaches and of our underlying datasets
to inform a discussion of how we can move towards higher levels of automation of metadata capture.</p>
<hr>
</div>
</div>
</div>
<hr>
<!-- Footer -->
<footer>
<div class="container">
<div class="row">
<div class="col-lg-8 col-md-10 mx-auto">
<ul class="list-inline text-center">
<li class="list-inline-item">
<a href="https://twitter.com/MetadataUplift">
<span class="fa-stack fa-lg">
<i class="fas fa-circle fa-stack-2x"></i>
<i class="fab fa-twitter fa-stack-1x fa-inverse"></i>
</span>
</a>
</li>
<li class="list-inline-item">
<a href="https://github.com/CLOSER-Cohorts">
<span class="fa-stack fa-lg">
<i class="fas fa-circle fa-stack-2x"></i>
<i class="fab fa-github fa-stack-1x fa-inverse"></i>
</span>
</a>
</li>
</ul>
<p class="copyright text-muted">Copyright © CLOSER 2021</p>
</div>
</div>
</div>
</footer>
<!-- Bootstrap core JavaScript -->
<script src="vendor/jquery/jquery.min.js"></script>
<script src="vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<!-- Custom scripts for this template -->
<script src="js/clean-blog.min.js"></script>
</body>
</html>