-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loading.py
548 lines (443 loc) · 21.2 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import numpy as np
import pandas as pd
import os
from config import *
from data_cleaning import *
import torch
from sklearn.model_selection import KFold
def read_lifespan_file(filename):
"""
Reads .csv data from a specific lifespan file and returns it as a 2D numpy array
Parameters:
filename (str)
The path of the .csv file
Returns:
x (numpy.Array)
C x D numpy array representing all features in a worm's .csv file
"""
# read the .csv file into a pandas dataframe
try:
# remove header row, convert all to float, replace missing values with -1
df = pd.read_csv(filename, header=0, skiprows=1, dtype = np.float64)
# df = df.fillna(-1.)
name = filename.rsplit("\\", 1)[-1]
#print(f"Shape of file {name}: {df.shape}")
return df.to_numpy()
except Exception as e:
print(f"Error reading {filename}: {e}")
def load_lifespan_data(data_path,mode="binary", drug_path=None, control_path=None, DEATH_THRESHOLD= DEATH_THRESHOLD, DEATH_LENGTH=DEATH_LENGTH, find_optimal_death_threshold=False, configList=None):
"""
Imports lifespan data from .csv files for use in a NN.
Parameters
----------
data_path (str) : The file path to the folder containing all lifespan data files.
mode (str) : The type of output y, "binary" for whether the worm is drugged, "lifespan" for lifespan of the worm
Returns
-------
x (list of numpy.Array)
N x C x D matrix containing N worms, C feature categories, and D features values
per category, taken as each worm data matrix. D varies by file, so needs further
processing before being usable as a 3D matrix.
y (numpy.Array)
N x 1 array of labels
"""
if drug_path is None:
drug_path = data_path + "\1_drug"
else:
drug_path = data_path + drug_path
if control_path is None:
control_path = data_path + "\1_control"
else:
control_path = data_path + control_path
# list all treated and control .csv files in the directory
# drug_path = data_path + "\1_drug"
drug_files = os.listdir(drug_path)
drug_files = [f for f in drug_files if f.endswith(".csv")]
# control_path = data_path + "\1_control"
control_files = os.listdir(control_path)
control_files = [f for f in control_files if f.endswith(".csv")]
# populate x matrices with file data
drug_x = []
control_x = []
for file in os.listdir(drug_path):
if file.endswith(".csv"):
filename = os.path.join(drug_path, file)
drug_x.append(read_lifespan_file(filename))
for file in os.listdir(control_path):
if file.endswith(".csv"):
filename = os.path.join(control_path, file)
control_x.append(read_lifespan_file(filename))
# combine drug and control x and y into one x and one y matrix
x = drug_x + control_x
num_drug = len(drug_x)
num_control = len(control_x)
if mode == 'lifespan':
if find_optimal_death_threshold:
thresholdList = [0.1,0.2,0.5,0.75,1,1.5,2,2.5,5,8,10,15]
deathLengthList = [50,100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1800,2100]
avg_drug_lifespan = []
avg_control_lifespan = []
diff = []
else:
thresholdList = [DEATH_THRESHOLD]
deathLengthList = [DEATH_LENGTH]
if not configList:
configList = [(threshold, deathLength) for threshold in thresholdList for deathLength in deathLengthList]
y = np.zeros(len(x))
for deathThreshold, deathLength in configList:
for i in range(len(x)):
worm_xy = x[i][:,[2,3]]
delta_xy = np.diff(worm_xy, axis=0)
speed = np.linalg.norm(delta_xy, axis=1)
inactive_frames = speed<deathThreshold
cum_inactive_frames = np.cumsum(inactive_frames, axis=0)
consecu_inactive = cum_inactive_frames-np.roll(cum_inactive_frames, deathLength, axis=0)
dead = consecu_inactive==(deathLength-1)
res = np.where(dead)[0]
if res.shape[0] == 0:
y[i] = worm_xy.shape[0]//900/4
else:
y[i] = res[0]//900/4
if find_optimal_death_threshold:
if np.isnan(y).sum() > 0 :
print("Threshold: ", deathThreshold, "Death Length: ", deathLength)
print(y)
continue
drug_avg = np.nanmean(y[:num_drug])
control_avg = np.nanmean(y[num_drug:])
avg_drug_lifespan.append(drug_avg)
avg_control_lifespan.append(control_avg)
diff.append(drug_avg-control_avg)
else:
# initialize y arrays with 1 for drug, 0 for control
drug_y = np.ones(len(drug_x))
control_y = np.zeros(len(control_x))
y = np.concatenate((drug_y, control_y), axis=0, dtype=np.float64)
if find_optimal_death_threshold:
return x, y,configList, avg_drug_lifespan, avg_control_lifespan, diff
return x, y
def test_train_split_categorical(x, y, split, equal_label_prop=False, seed=0, returnMask=False):
"""
Take values and binary categorical labels matrices and splits it into a test and training set randomly.
Accepts either numpy arrays or pytorch tensors, but must have consistent data type.
Parameters
----------
x (numpy.Array or pytorch.Tensor)
The array of data points, after trimming.
y (numpy.Array or pytorch.Tensor)
The array of labels.
split (float)
The split fraction of all data points taken for training.
Takes values between 0 and 1.
equal_label_prop (bool)
If true, forces the selection of random data points for training to be equally distributed
between both label categories. Default = False.
seed (float)
Seed for random selection. Default = 0.
Returns
-------
x_train (numpy.Array or pytorch.Tensor): Training data points.
x_test (numpy.Array or pytorch.Tensor): Testing data points.
y_train (numpy.Array or pytorch.Tensor): Training labels.
y_test (numpy.Array or pytorch.Tensor): Testing labels.
"""
if seed is not None:
np.random.seed(seed)
return_tensor = False
if type(x) == torch.Tensor and type(y) == torch.Tensor:
return_tensor = True
x = x.numpy()
y = y.numpy()
if equal_label_prop:
# Separate data by labels
data_0 = x[y == 0]
data_1 = x[y == 1]
# Shuffle each group
np.random.shuffle(data_0)
np.random.shuffle(data_1)
# Calculate the balanced training size for each group
train_size = int(split * len(x) / 2)
train_data_0 = data_0[:train_size]
train_data_1 = data_1[:train_size]
# Concatenate balanced training data and shuffle
x_train = np.concatenate([train_data_0, train_data_1])
y_train = np.concatenate([np.zeros(len(train_data_0)), np.ones(len(train_data_1))])
shuffled_indices = np.random.permutation(len(x_train))
x_train = x_train[shuffled_indices]
y_train = y_train[shuffled_indices]
# Use the remaining data for testing
x_test = np.concatenate([data_0[train_size:], data_1[train_size:]])
y_test = np.concatenate([np.zeros(len(data_0[train_size:])),np.ones(len(data_1[train_size:]))])
indices = np.arange(len(x_test))
np.random.shuffle(indices)
x_test = x_test[indices]
y_test = y_test[indices]
else:
# Shuffle the entire dataset
indices = np.arange(len(x))
np.random.shuffle(indices)
x = x[indices]
y = y[indices]
# Split based on the split fraction
train_size = int(split * len(x))
x_train = x[:train_size]
x_test = x[train_size:]
y_train = y[:train_size]
y_test = y[train_size:]
if return_tensor:
x_train = torch.tensor(x_train)
x_test = torch.tensor(x_test)
y_train = torch.tensor(y_train)
y_test = torch.tensor(y_test)
if returnMask:
return x_train, x_test, y_train, y_test, indices, train_size
return x_train, x_test, y_train, y_test
def test_train_split_regression(x, y, split, seed=0):
"""
Take values and regression labels matrices and splits it into a test and training set randomly.
Parameters
----------
x (numpy.Array or pytorch.Tensor)
The array of data points, after trimming.
y (numpy.Array or pytorch.Tensor)
The array of labels.
split (float)
The split fraction of all data points taken for training.
Takes values between 0 and 1.
equal_label_prop (bool)
seed (float)
Seed for random selection. Default = 0.
Returns
-------
x_train (numpy.Array or pytorch.Tensor): Training data points.
x_test (numpy.Array or pytorch.Tensor): Testing data points.
y_train (numpy.Array or pytorch.Tensor): Training labels.
y_test (numpy.Array or pytorch.Tensor): Testing labels.
"""
if seed is not None:
np.random.seed(seed)
return_tensor = False
if type(x) == torch.Tensor and type(y) == torch.Tensor:
return_tensor = True
x = x.numpy()
y = y.numpy()
# Shuffle the entire dataset
indices = np.arange(len(x))
np.random.shuffle(indices)
x = x[indices]
y = y[indices]
# Split based on the split fraction
train_size = int(split * len(x))
x_train = x[:train_size]
x_test = x[train_size:]
y_train = y[:train_size]
y_test = y[train_size:]
if return_tensor:
x_train = torch.tensor(x_train)
x_test = torch.tensor(x_test)
y_train = torch.tensor(y_train)
y_test = torch.tensor(y_test)
return x_train, x_test, y_train, y_test
def lifespan_time_window_split(x, y, window_length):
"""
Takes lifespan data and reorganizes it such that data points are time windows of a specified
length with less features per data point. Labels are changed from the total lifespan to
the estimated time until death (TUD), given the worm behaviour, treatment, and time since
birth.
Requires data which was imported with "load_lifespan_data" using mode='lifespan'.
Parameters
----------
x (list of numpy.Array)
N x C x D matrix containing N worms, C feature categories, and D features values
per category, taken as each worm data matrix.
y (numpy.Array)
N x 1 array of labels indicating a worm's lifespan in hours.
window_length (int)
An integer indicating the number of frames to use within a window.
Returns
-------
x_window (numpy.Array)
Array of data points and features, with added label for time since birth.
x_timealive_window (numpy.Array)
N x 1 Array containing the total alive time of the worm by that window's reference frame, to be added
to the labels tensor during flattening
y_window (numpy.Array)
N x 1 array of data labels adjusted to compute time until death (days) starting
from the start of the time window captured in a data point.
"""
# For each worm, split into array of np.Array by video
# split each video by window
# for each window, calculate time since birth from first frame
# and time until death
assert window_length <= 900, "Error: window_length exceeds length of a video (900 frames)"
x_window = []
x_extralabels_window = []
y_window = []
# split into individual videos
for i, worm in enumerate(x):
N_videos = int(np.shape(worm)[0]/900) # number of complete videos
split_indices = range(900, 900*(N_videos+1), 900)
worm_split = np.split(worm, split_indices)
# Calculate time until death for each video
time_alive = np.arange(0, 0.25*(N_videos+1), 0.25)
worm_lifespan = y[i]
time_until_death = worm_lifespan * np.ones(np.shape(time_alive)) - time_alive
# split each video into windows
for j, video in enumerate(worm_split):
trimmed = False
N_windows = int(np.shape(video)[0]/window_length) # number of complete windows
window_indices = range(window_length, window_length*(N_windows+1), window_length)
windows = np.split(video, window_indices, axis=0)
if len(windows[-1]) < window_length:
windows = windows[:-1]
trimmed=True
for window in windows: x_window.append(window)
# Determine whether to trim a window from the labels array
if trimmed==True: N_windows -= 1
# Calculate time alive and time until death for each window
window_duration = 2*window_length/60/60/24
time_alive_window = window_duration * np.arange(0, window_duration*(N_windows+1), window_duration)
time_alive_window = time_alive[j] * np.ones(np.shape(time_alive_window)) + time_alive_window
for window in time_alive_window: x_extralabels_window.append(window)
time_until_death_window = time_until_death[j] * np.ones(np.shape(time_alive_window)) - time_alive_window
for window in time_until_death_window: y_window.append(window)
# Convert to numpy arrays
x_window = np.array(x_window)
x_extralabels_window = np.array(x_extralabels_window)
y_window = np.array(y_window)
return x_window, x_extralabels_window, y_window
def load_data(death_threshold=DEATH_THRESHOLD, death_length=DEATH_LENGTH,periods=8, drug=1, same_group=True, mode = "lifespan"):
"""
Load data.
Parameters
----------
death_threshold (float) : The threshold speed below which a worm is considered dead.
death_length (int) : The number of frames a worm must be below the death threshold to be considered dead.
periods (int) : The number of periods to return
drug (int) : Choose which drug data to load.
same_group (bool) : Choose whether to set the test data as a split from the same drug's data, or to set it
as the data for the other drug.
Returns
-------
x_train_tensor (torch.Tensor) : Training data points.
y_train_tensor (torch.Tensor) : Training labels.
x_val_tensor (torch.Tensor) : Validation data points.
y_val_tensor (torch.Tensor) : Validation labels.
x_test_tensor (torch.Tensor) : Testing data points.
y_test_tensor (torch.Tensor) : Testing labels.
y_test_drug_binary (numpy.Array) : Testing labels for drug worms of whether they are drugged.
"""
pwd = os.getcwd()
# choosing between drug data
if drug == 1:
drug_path = "\\1_drug"
control_path = "\\1_control"
elif drug == 2:
drug_path = "\\2_drug"
control_path = "\\2_control"
# loading data
x_init, y = load_lifespan_data(pwd + "\\data\\Lifespan", mode = mode,drug_path = drug_path, control_path = control_path, DEATH_LENGTH=death_length, DEATH_THRESHOLD=death_threshold)
#data cleaning
x_trimmed = get_first_n_periods(x_init, periods)
x_trimmed, y, mask1 = remove_na(0.2, x_trimmed, y)
if mode == "lifespan":
x_trimmed, y, mask2 = remove_outliers(5, x_trimmed, y)
x_trimmed_filled = fill_na_interpolation(x_trimmed)
x_trimmed_filled, y, mask3 = remove_na(0.01, x_trimmed_filled, y)
#print(f"Shape of x_trimmed matrix: {np.shape(x_trimmed)}")
# Get train and test sets
split = 0.7
if mode == "lifespan":
equal_label_prop = False
else:
equal_label_prop = True
x_train, x_val, y_train, y_val,indices,train_size = test_train_split_categorical(x_trimmed_filled, y, split, equal_label_prop=equal_label_prop, returnMask=True)
if same_group:
# train_test_split = 0.7
# x_train, x_test, y_train, y_test, indices,train_size = test_train_split_categorical(x_test_trimmed_filled, y_test, train_test_split, returnMask=True)
x_test, y_test = x_val,y_val
if mode == "lifespan":
_,y_test_drug_binary = load_lifespan_data(pwd + "\\data\\Lifespan", drug_path = drug_path, control_path = control_path)
y_test_drug_binary = y_test_drug_binary[mask1][mask2][mask3].astype(bool)
y_test_drug_binary = y_test_drug_binary[indices][train_size:]
train_val_split = 0.8
if mode == "lifespan":
equal_label_prop = False
else:
equal_label_prop = True
x_train, x_val, y_train, y_val = test_train_split_categorical(x_train, y_train, train_val_split, equal_label_prop = equal_label_prop)
x_train_tensor = torch.from_numpy(x_train).float()
x_val_tensor = torch.from_numpy(x_val).float()
x_test_tensor = torch.from_numpy(x_test).float()
# x_train_tensor = x_train_tensor.requires_grad_()
# x_val_tensor = x_val_tensor.requires_grad_()
# x_test_tensor = x_test_tensor.requires_grad_()
y_train_tensor = torch.from_numpy(y_train).float()
y_val_tensor = torch.from_numpy(y_val).float()
y_test_tensor = torch.from_numpy(y_test).float()
if mode=="lifespan":
return x_train_tensor, y_train_tensor, x_val_tensor, y_val_tensor, x_test_tensor, y_test_tensor, y_test_drug_binary
else:
return x_train_tensor, y_train_tensor, x_val_tensor, y_val_tensor, x_test_tensor, y_test_tensor
if drug == 1:
test_drug_path = "\\2_drug"
test_control_path = "\\2_control"
elif drug == 2:
test_drug_path = "\\1_drug"
test_control_path = "\\1_control"
# x_train_flattened = np.array([x_trimmed_point.flatten() for x_trimmed_point in x_train], dtype=np.float32)
# x_test_flattened = np.array([x_trimmed_point.flatten() for x_trimmed_point in x_test], dtype=np.float32)
#print(f"Shape of x_trimmed matrix: {np.shape(x_flattened)}")
x_test_init, y_test = load_lifespan_data(pwd + "\\data\\Lifespan", mode = mode, drug_path = test_drug_path, control_path = test_control_path, DEATH_LENGTH=death_length, DEATH_THRESHOLD=death_threshold)
x_test_trimmed = get_first_n_periods(x_test_init, periods)
x_test_trimmed, y_test,mask1 = remove_na(0.3, x_test_trimmed, y_test)
if mode == "lifespan":
x_test_trimmed, y_test,mask2 = remove_outliers(5, x_test_trimmed, y_test)
x_test_trimmed_filled = fill_na_interpolation(x_test_trimmed)
x_test_trimmed_filled,y_test,mask3 = remove_na(0.01, x_test_trimmed_filled, y_test)
if mode == "lifespan":
_,y_test_drug_binary = load_lifespan_data(pwd + "\\data\\Lifespan", drug_path = test_drug_path, control_path = test_control_path)
y_test_drug_binary = y_test_drug_binary[mask1][mask2][mask3].astype(bool)
# Convert numpy array into pytorch tensor
x_train_tensor = torch.from_numpy(x_train).float()
x_val_tensor = torch.from_numpy(x_val).float()
# x_train_tensor = x_train_tensor.requires_grad_()
# x_val_tensor = x_val_tensor.requires_grad_()
y_train_tensor = torch.from_numpy(y_train).float()
y_val_tensor = torch.from_numpy(y_val).float()
x_test_tensor = torch.from_numpy(x_test_trimmed_filled).float()
# x_test_tensor = x_test_tensor.requires_grad_()
y_test_tensor = torch.from_numpy(y_test).float()
if mode=="lifespan":
return x_train_tensor, y_train_tensor, x_val_tensor, y_val_tensor, x_test_tensor, y_test_tensor, y_test_drug_binary
else:
return x_train_tensor, y_train_tensor, x_val_tensor, y_val_tensor, x_test_tensor, y_test_tensor
def load_clf_data(periods=8, drug=1, same_group=True):
return load_data(periods=periods,drug=drug,same_group=same_group, mode="binary")
def load_reg_data(death_threshold=DEATH_THRESHOLD, death_length=DEATH_LENGTH,periods=8, drug=1, same_group=True):
return load_data(death_threshold=death_threshold, death_length=death_length,periods=periods, drug=drug, same_group=same_group, mode="lifespan")
def split_kfold(x, y, fold_k=4):
"""
Split pre-cleaned pytorch tensors into folds.
Parameters:
x (pytorch.Tensor) : Contains the data to be split into train and test folds.
y (pytorch.Tensor) : Contains the labels to be split into train and test folds.
fold_k (int) : Number of folds.
Returns:
x_kfold (array) : A fold_k-length array containing tuples with the train and validation data for a given
fold as torch.Tensor objects.
y_kfold (array) : A fold_k-length array containing tuples with the train and validation labels for a given
fold as torch.Tensor objects.
"""
x_kfold = [None]*fold_k
y_kfold = [None]*fold_k
kf = KFold(fold_k, shuffle=True)
kf_indices = kf.split(x)
for fold, (train_idx, test_idx) in enumerate(kf_indices):
x_train = x[np.array(train_idx)]
x_test = x[np.array(test_idx)]
y_train = y[np.array(train_idx)]
y_test = y[np.array(test_idx)]
x_kfold[fold] = (x_train.float(), x_test.float())
y_kfold[fold] = (y_train.float(), y_test.float())
return x_kfold, y_kfold