forked from muhanzhang/IGMC
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_eval.py
333 lines (301 loc) · 11.9 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import time
import os
import math
import multiprocessing as mp
import numpy as np
import networkx as nx
import torch
import torch.nn.functional as F
from torch import tensor
from torch.optim import Adam
from sklearn.model_selection import StratifiedKFold
from torch_geometric.data import DataLoader, DenseDataLoader as DenseLoader
from tqdm import tqdm
import pdb
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from util_functions import PyGGraph_to_nx
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train_multiple_epochs(train_dataset,
test_dataset,
model,
epochs,
batch_size,
lr,
lr_decay_factor,
lr_decay_step_size,
weight_decay,
ARR=0,
test_freq=1,
logger=None,
continue_from=None,
res_dir=None):
rmses = []
if train_dataset.__class__.__name__ == 'MyDynamicDataset':
num_workers = mp.cpu_count()
else:
num_workers = 2
train_loader = DataLoader(train_dataset, batch_size, shuffle=True,
num_workers=num_workers)
if test_dataset.__class__.__name__ == 'MyDynamicDataset':
num_workers = mp.cpu_count()
else:
num_workers = 2
test_loader = DataLoader(test_dataset, batch_size, shuffle=False,
num_workers=num_workers)
model.to(device).reset_parameters()
optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
start_epoch = 1
if continue_from is not None:
model.load_state_dict(
torch.load(os.path.join(res_dir, 'model_checkpoint{}.pth'.format(continue_from)))
)
optimizer.load_state_dict(
torch.load(os.path.join(res_dir, 'optimizer_checkpoint{}.pth'.format(continue_from)))
)
start_epoch = continue_from + 1
epochs -= continue_from
if torch.cuda.is_available():
torch.cuda.synchronize()
batch_pbar = len(train_dataset) >= 100000
t_start = time.perf_counter()
if not batch_pbar:
pbar = tqdm(range(start_epoch, epochs + start_epoch))
else:
pbar = range(start_epoch, epochs + start_epoch)
for epoch in pbar:
e_start = time.perf_counter()
train_loss = train(model, optimizer, train_loader, device, regression=True, ARR=ARR,
show_progress=batch_pbar, epoch=epoch)
if epoch % test_freq == 0:
rmses.append(eval_rmse(model, test_loader, device, show_progress=batch_pbar)[0])
else:
rmses.append(np.nan)
eval_info = {
'epoch': epoch,
'train_loss': train_loss,
'test_rmse': rmses[-1],
}
if not batch_pbar:
pbar.set_description(
'Epoch {}, train loss {:.6f}, test rmse {:.6f}'.format(*eval_info.values())
)
else:
print('Epoch {}, train loss {:.6f}, test rmse {:.6f}'.format(*eval_info.values()))
if epoch % lr_decay_step_size == 0:
for param_group in optimizer.param_groups:
param_group['lr'] = lr_decay_factor * param_group['lr']
if logger is not None:
logger(eval_info, model, optimizer, timetaken=time.perf_counter() - e_start)
if torch.cuda.is_available():
torch.cuda.synchronize()
t_end = time.perf_counter()
duration = t_end - t_start
print('Final Test RMSE: {:.6f}, Duration: {:.6f}'.
format(rmses[-1],
duration))
return rmses[-1]
def test_once(test_dataset,
model,
batch_size,
logger=None,
ensemble=False,
checkpoints=None):
test_loader = DataLoader(test_dataset, batch_size, shuffle=False)
model.to(device)
t_start = time.perf_counter()
if ensemble and checkpoints:
rmse, preds = eval_rmse_ensemble(model, checkpoints, test_loader, device, show_progress=True)
else:
rmse, preds = eval_rmse(model, test_loader, device, show_progress=True)
t_end = time.perf_counter()
duration = t_end - t_start
print('Test Once RMSE: {:.6f}, Duration: {:.6f}'.format(rmse, duration))
epoch_info = 'test_once' if not ensemble else 'ensemble'
eval_info = {
'epoch': epoch_info,
'train_loss': 0,
'test_rmse': rmse,
}
if logger is not None:
logger(eval_info, None, None)
return rmse, preds
def num_graphs(data):
if data.batch is not None:
return data.num_graphs
else:
return data.x.size(0)
def train(model, optimizer, loader, device, regression=False, ARR=0,
show_progress=False, epoch=None):
model.train()
total_loss = 0
if show_progress:
pbar = tqdm(loader)
else:
pbar = loader
for data in pbar:
optimizer.zero_grad()
data = data.to(device)
out = model(data)
if regression:
loss = F.mse_loss(out, data.y.view(-1))
else:
loss = F.nll_loss(out, data.y.view(-1))
if show_progress:
pbar.set_description('Epoch {}, batch loss: {}'.format(epoch, loss.item()))
if ARR != 0:
for gconv in model.convs:
# wendi test
#print(gconv)
w = torch.matmul(
gconv.att,
gconv.basis.view(gconv.num_bases, -1)
).view(gconv.num_relations, gconv.in_channels, gconv.out_channels)
reg_loss = torch.sum((w[1:, :, :] - w[:-1, :, :])**2)
loss += ARR * reg_loss
loss.backward()
total_loss += loss.item() * num_graphs(data)
optimizer.step()
torch.cuda.empty_cache()
return total_loss / len(loader.dataset)
def eval_loss(model, loader, device, regression=False, show_progress=False):
model.eval()
loss = 0
outs = []
if show_progress:
print('Testing begins...')
pbar = tqdm(loader)
else:
pbar = loader
for data in pbar:
data = data.to(device)
with torch.no_grad():
out = model(data)
outs.append(out)
if regression:
loss += F.mse_loss(out, data.y.view(-1), reduction='sum').item()
else:
loss += F.nll_loss(out, data.y.view(-1), reduction='sum').item()
torch.cuda.empty_cache()
outs = torch.cat(outs, 0).view(-1, 1)
return (loss / len(loader.dataset), outs.cpu().numpy())
def eval_rmse(model, loader, device, show_progress=False):
mse_loss, preds = eval_loss(model, loader, device, True, show_progress)
rmse = math.sqrt(mse_loss)
return rmse, preds
def eval_loss_ensemble(model, checkpoints, loader, device, regression=False, show_progress=False):
loss = 0
Outs = []
for i, checkpoint in enumerate(checkpoints):
if show_progress:
print('Testing begins...')
pbar = tqdm(loader)
else:
pbar = loader
model.load_state_dict(torch.load(checkpoint))
model.eval()
outs = []
if i == 0:
ys = []
for data in pbar:
data = data.to(device)
if i == 0:
ys.append(data.y.view(-1))
with torch.no_grad():
out = model(data)
outs.append(out)
if i == 0:
ys = torch.cat(ys, 0)
outs = torch.cat(outs, 0).view(-1, 1)
Outs.append(outs)
Outs = torch.cat(Outs, 1).mean(1)
if regression:
loss += F.mse_loss(Outs, ys, reduction='sum').item()
else:
loss += F.nll_loss(Outs, ys, reduction='sum').item()
torch.cuda.empty_cache()
return (loss / len(loader.dataset), Outs.cpu().numpy())
def eval_rmse_ensemble(model, checkpoints, loader, device, show_progress=False):
mse_loss, preds = eval_loss_ensemble(model, checkpoints, loader, device, True, show_progress)
rmse = math.sqrt(mse_loss)
return rmse, preds
def visualize(model, graphs, res_dir, data_name, class_values, num=10, sort_by='rmse'):
model.eval()
model.to(device)
R = []
Y = []
graph_loader = DataLoader(graphs, 50, shuffle=False)
for data in tqdm(graph_loader):
data = data.to(device)
r = model(data).detach()
y = data.y
R.extend(r.view(-1).tolist())
Y.extend(y.view(-1).tolist())
if sort_by == 'true': # sort graphs by their true ratings
order = np.argsort(Y).tolist()
elif sort_by == 'prediction':
order = np.argsort(R).tolist()
elif sort_by == 'random': # randomly select graphs to visualize
order = np.random.permutation(range(len(R))).tolist()
elif sort_by == 'rmse':
Ynp = np.array(Y)
Rnp = np.array(R)
order = np.argsort(np.sqrt((Ynp-Rnp)**2))
highest = [PyGGraph_to_nx(graphs[i]) for i in order[-num:][::-1]]
lowest = [PyGGraph_to_nx(graphs[i]) for i in order[:num]]
highest_scores = [R[i] for i in order[-num:][::-1]]
lowest_scores = [R[i] for i in order[:num]]
highest_ys = [Y[i] for i in order[-num:][::-1]]
lowest_ys = [Y[i] for i in order[:num]]
scores = highest_scores + lowest_scores
ys = highest_ys + lowest_ys
type_to_label = {0: 'u0', 1: 'v0', 2: 'u1', 3: 'v1', 4: 'u2', 5: 'v2'}
type_to_color = {0: 'xkcd:red', 1: 'xkcd:blue', 2: 'xkcd:orange',
3: 'xkcd:lightblue', 4: 'y', 5: 'g'}
plt.axis('off')
f = plt.figure(figsize=(20, 10))
axs = f.subplots(2, num)
cmap = plt.cm.get_cmap('rainbow')
vmin, vmax = min(class_values), max(class_values)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm.set_array([])
for i, g in enumerate(highest + lowest):
u_nodes = [x for x, y in g.nodes(data=True) if y['type'] % 2 == 0]
u0, v0 = 0, len(u_nodes)
pos = nx.drawing.layout.bipartite_layout(g, u_nodes)
bottom_u_node = min(pos, key=lambda x: (pos[x][0], pos[x][1]))
bottom_v_node = min(pos, key=lambda x: (-pos[x][0], pos[x][1]))
# swap u0 and v0 with bottom nodes if they are not already
if u0 != bottom_u_node:
pos[u0], pos[bottom_u_node] = pos[bottom_u_node], pos[u0]
if v0 != bottom_v_node:
pos[v0], pos[bottom_v_node] = pos[bottom_v_node], pos[v0]
labels = {x: type_to_label[y] for x, y in nx.get_node_attributes(g, 'type').items()}
node_colors = [type_to_color[y] for x, y in nx.get_node_attributes(g, 'type').items()]
edge_types = nx.get_edge_attributes(g, 'type')
edge_types = [class_values[edge_types[x]] for x in g.edges()]
axs[i//num, i%num].axis('off')
nx.draw_networkx(g, pos,
#labels=labels,
with_labels=False,
node_size=150,
node_color=node_colors, edge_color=edge_types,
ax=axs[i//num, i%num], edge_cmap=cmap, edge_vmin=vmin, edge_vmax=vmax,
)
# make u0 v0 on top of other nodes
nx.draw_networkx_nodes(g, {u0: pos[u0]}, nodelist=[u0], node_size=150,
node_color='xkcd:red', ax=axs[i//num, i%num])
nx.draw_networkx_nodes(g, {v0: pos[v0]}, nodelist=[v0], node_size=150,
node_color='xkcd:blue', ax=axs[i//num, i%num])
axs[i//num, i%num].set_title('{:.4f} ({:})'.format(
scores[i], ys[i]), x=0.5, y=-0.05, fontsize=20
)
f.subplots_adjust(right=0.85)
cbar_ax = f.add_axes([0.88, 0.15, 0.02, 0.7])
if len(class_values) > 20:
class_values = np.linspace(min(class_values), max(class_values), 20, dtype=int).tolist()
cbar = plt.colorbar(sm, cax=cbar_ax, ticks=class_values)
cbar.ax.tick_params(labelsize=22)
f.savefig(os.path.join(res_dir, "visualization_{}_{}.pdf".format(data_name, sort_by)),
interpolation='nearest', bbox_inches='tight')