-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_datasets_3D.py
905 lines (691 loc) · 36.6 KB
/
prepare_datasets_3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import numpy as np
from lib.klib.baseio import *
from scipy.ndimage import filters as ndfilter
from scipy import ndimage
from lib.klib.glib.DrawSimulationSWCModel import simulate3DTreeModel_dendrite, save_swc
from lib.swclib.swc_io import swc_save, swc_save_preorder, read_swc_tree, read_swc_tree_matrix, swc_save_metric
from lib.swclib.swc_tree import SwcTree
from lib.swclib.swc_node import SwcNode
from lib.swclib.re_sample import up_sample_swc_tree
from lib.swclib import euclidean_point
from lib.swclib import edge_match_utils, point_match_utils
import copy
import cv2 as cv
import multiprocessing as mp
from skimage import morphology
import time
import math
import random
import tifffile
import GeodisTK
import os
from shutil import rmtree
import argparse
# python prepare_datasets_3D.py --datasets_name FMOST --train_dataset_root_dir /4T/liuchao/deepneutracing/deepbranchtracer_3d/FMOST/training_data_rnn/ --data_type uint16
# python prepare_datasets_3D.py --datasets_name FMOST --train_dataset_root_dir /4T/liuchao/deepneutracing/deepbranchtracer_3d/FMOST/training_data_rnn_32_64_64/ --data_type uint16
# python prepare_datasets_3D.py --datasets_name DIEDAM --train_dataset_root_dir /4T/liuchao/deepneutracing/deepbranchtracer_3d/DIEDAM/training_data_rnn/ --data_type uint8
# python prepare_datasets_3D.py --datasets_name FMOST --train_dataset_root_dir /4T/liuchao/deepneutracing/deepbranchtracer_3d/FMOST/training_data_/ --data_type uint16
# init parameter
def parse_args():
parser = argparse.ArgumentParser()
# (input dir) orginal data
parser.add_argument('--datasets_name', default='FMOST',help='datasets name') # CHASEDB1
parser.add_argument('--image_dir', default='/4T/liuchao/deepneutracing/deepbranchtracer_3d/', help='orginal image saved here')
# (output dir)
parser.add_argument('--train_dataset_root_dir', default='/4T/liuchao/deepneutracing/deepbranchtracer_3d/FMOST/training_data/', help='training dataset saved here')
parser.add_argument('--N_patches', default=20000,help='Number of training image patches') # 80000 20000
parser.add_argument('--data_type', default='uint8') # 80000 20000
# data parameter
parser.add_argument('--input_dim', type=int, default=(16,64,64))
parser.add_argument('--multi_cpu', type=int, default=5)
args = parser.parse_args()
return args
# def gaussianNoisyAddGray3D(image, mean, std):
# # print("gaussianNoisyAddGray")
# row, col, dep = image.shape
# gauss = np.random.normal(mean, std, (row, col, dep))
# gauss = gauss.reshape(row, col, dep)
# noisy = image + gauss
# return noisy
# def normalizeImage16(image):
# image = np.asarray(image, np.float)
# image = np.where(image > 65535, 65535, image)
# image = np.where(image < 0, 0, image)
# # image = image.astype(np.uint16)
# return image
# def normalizeImage8(im):
# im = np.asarray(image, np.float)
# image = np.where(image > 255, 255, image)
# image = np.where(image < 0, 0, image)
# # image = image.astype(np.uint8)
# return image
def vector_norm_f(vector_org):
vector0 = vector_org[0]
vector1 = vector_org[1]
vector2 = vector_org[2]
vector_norm = [0,0,0]
for i in range(3):
vector_norm[i] = vector_org[i] / np.sqrt(vector0 ** 2 + vector1 ** 2 + vector2 ** 2)
return vector_norm
def up_sample_swc_rescale(swc_dir, length_threshold, resize_radio):
swc_tree_upsample = read_swc_tree(swc_dir)
swc_tree_upsample.rescale([resize_radio,resize_radio,resize_radio,resize_radio])
swc_tree_upsample = up_sample_swc_tree(swc_tree_upsample, length_threshold)
swc_tree_upsample.sort_node_list(key="default")
return swc_tree_upsample
def get_centerline_swc(swc_dir, r):
swc_tree_centerline = read_swc_tree(swc_dir)
swc_node_list = swc_tree_centerline.get_node_list()
for node in swc_node_list:
if node.is_virtual():
continue
node.set_r(r=r)
return swc_tree_centerline
def get_centerline_circle(centerline_sample_A, centerline_direction, r=1.0):
circle_num = centerline_sample_A.shape[0]
theta = np.arange(0.001, 2 * np.pi, 1 / (r + 0.1))
circle_x = np.zeros([circle_num, theta.shape[0]], dtype=np.float32)
circle_y = np.zeros([circle_num, theta.shape[0]], dtype=np.float32)
circle_z = np.zeros([circle_num, theta.shape[0]], dtype=np.float32)
circle_vector = np.zeros([circle_num, 3], dtype=np.float32)
# circle_angle = np.zeros([circle_num, 2], dtype=np.float32)
u_vector = np.zeros([circle_num, 3], dtype=np.float32)
v_vector = np.zeros([circle_num, 3], dtype=np.float32)
for i in range(circle_num):
# 获取centerline, norm_vector
vector_y = centerline_direction[i][0]
vector_x = centerline_direction[i][1]
vector_z = centerline_direction[i][2]
circle_vector[i][0] = vector_z / np.sqrt(vector_x ** 2 + vector_y ** 2 + vector_z ** 2)
circle_vector[i][1] = vector_x / np.sqrt(vector_x ** 2 + vector_y ** 2 + vector_z ** 2)
circle_vector[i][2] = vector_y / np.sqrt(vector_x ** 2 + vector_y ** 2 + vector_z ** 2)
##############################################
norm_vector_x = centerline_direction[i][0]
norm_vector_y = centerline_direction[i][1]
norm_vector_z = centerline_direction[i][2]
# 获取平面上的向量u
u_x = norm_vector_y
u_y = - norm_vector_x
u_z = 1e-7
# 获取与n,u都正交的向量v
v_x = norm_vector_x * norm_vector_z
v_y = norm_vector_y * norm_vector_z
v_z = - norm_vector_x ** 2 - norm_vector_y ** 2 + 1e-7
# 获取u,v的单位向量
u_n = math.sqrt(u_x ** 2 + u_y ** 2 + u_z ** 2)
u_x_tilde = u_x / u_n
u_y_tilde = u_y / u_n
u_z_tilde = u_z / u_n
v_n = math.sqrt(v_x ** 2 + v_y ** 2 + v_z ** 2)
v_x_tilde = v_x / v_n
v_y_tilde = v_y / v_n
v_z_tilde = v_z / v_n
u_vector[i][0] = u_x_tilde
u_vector[i][1] = u_y_tilde
u_vector[i][2] = u_z_tilde
v_vector[i][0] = v_x_tilde
v_vector[i][1] = v_y_tilde
v_vector[i][2] = v_z_tilde
return circle_vector, u_vector, v_vector
def get_centerline_direction(resample_tree_data):
centerline_direction = np.zeros([resample_tree_data.shape[0], 3], dtype=np.float32)
for i in range(resample_tree_data.shape[0]):
node_id = resample_tree_data[i][0]
node_id_p = resample_tree_data[i][6]
if node_id_p == -1: # parent 是否为root
if node_id != resample_tree_data.shape[0]:
node_A = int(node_id) - 1
node_B = int(node_id + 1) - 1
else:
node_A = int(node_id) - 1
node_B = int(node_id) - 1
else:
node_son = int(node_id + 1) - 1
if node_id != resample_tree_data.shape[0]:
if resample_tree_data[node_son][6] == node_id:
node_A = int(node_id) - 1
node_B = int(node_id_p) - 1
else:
node_A = int(node_id) - 1
node_B = int(node_id_p) - 1
else:
node_A = int(node_id) - 1
node_B = int(node_id_p) - 1
centerline_direction[i][0] = resample_tree_data[node_A][4] - resample_tree_data[node_B][4]
centerline_direction[i][1] = resample_tree_data[node_A][3] - resample_tree_data[node_B][3]
centerline_direction[i][2] = resample_tree_data[node_A][2] - resample_tree_data[node_B][2]
return centerline_direction
def find_image_centerline_bright(org_image_distance):
size = 2
th = 10
image_invert = np.zeros_like(org_image_distance, np.float32)
image_invert[8:-8, 8:-8, 8:-8] = copy.deepcopy(org_image_distance[8:-8, 8:-8, 8:-8])
image_invert[image_invert < th] = 0
weight_map = np.ones_like(org_image_distance, np.float32)
# image_shape = np.ones_like(org_image_distance)
# image_shape[image_invert != th] = 1
point_num_list = np.where(image_invert >= 10)
for i in range(len(point_num_list[0])):
if i % 1000 == 0:
print('search %d / %d' % (i,len(point_num_list[0])))
z = point_num_list[0][i]
x = point_num_list[1][i]
y = point_num_list[2][i]
if z - size >= 0 and z + size+1 < org_image_distance.shape[0] and x - size >= 0 and x + size+1 < org_image_distance.shape[
1] and y - size >= 0 and y + size+1 < org_image_distance.shape[2]:
image_temp = copy.deepcopy(image_invert[z - size:z + size+1, x - size:x + size+1, y - size:y + size+1])
weight_map[z][x][y] = image_invert[z][x][y] / np.sum(image_temp)
final_weight_map = weight_map * image_invert
centerline_map = np.zeros_like(org_image_distance)
centerline_map[final_weight_map >= 0.20] = 255
centerline = morphology.skeletonize_3d(centerline_map)
return centerline
def prepare_train_datasets(image_seq_dir, swc_tree_centerline_matirx, img_sim, label_sim, img_skl_distance, swc_tree_centerline_matirx_radius, swc_tree_centerline_matirx_vector,swc_tree_centerline_matirx_u_vector, swc_tree_centerline_matirx_v_vector, BATCH_SHAPE,image_name, PATCH_NUM, seq_len=1, img_gap=1):
args = parse_args()
data_type_ = args.data_type
if data_type_ == 'uint8':
data_type = np.uint8
else:
data_type = np.uint16
image_seq_dir = image_seq_dir + image_name + '/'
if not os.path.exists(image_seq_dir):
os.mkdir(image_seq_dir)
img_shape = img_sim.shape
if len(img_shape)==3:
img_sim_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2]])
img_lab_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2]])
img_dis_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2]])
else:
img_sim_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2],3]) # for color
img_lab_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2],3])
img_dis_temp = np.zeros([img_shape[0]+4*BATCH_SHAPE[0],img_shape[1]+4*BATCH_SHAPE[1],img_shape[2]+4*BATCH_SHAPE[2],3])
z_half = BATCH_SHAPE[0]//2
x_half = BATCH_SHAPE[1]//2
y_half = BATCH_SHAPE[2]//2
if len(img_shape)==3:
img_sim_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2]] = copy.deepcopy(img_sim)
img_lab_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2]] = copy.deepcopy(label_sim)
img_dis_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2]] = copy.deepcopy(img_skl_distance)
else:
img_sim_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2], :] = copy.deepcopy(img_sim) # for color
for ch in range(3):
img_lab_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2], ch] = copy.deepcopy(label_sim)
img_dis_temp[2*BATCH_SHAPE[0]:2*BATCH_SHAPE[0] + img_shape[0], 2*BATCH_SHAPE[1]:2*BATCH_SHAPE[1] + img_shape[1], 2*BATCH_SHAPE[2]:2*BATCH_SHAPE[2] + img_shape[2], ch] = copy.deepcopy(img_skl_distance)
swc_tree_node_flag = np.zeros([swc_tree_centerline_matirx.shape[0]])
# 提取每条枝干的id
branch_list = []
for i in range(swc_tree_centerline_matirx.shape[0]):
node_id_temp = swc_tree_centerline_matirx.shape[0] - 1 - i
branch_list_temp = []
branch_list_temp.append(node_id_temp)
while node_id_temp != -2 and swc_tree_node_flag[int(node_id_temp)] == 0:
swc_tree_node_flag[int(node_id_temp)] = 1
node_id_temp = swc_tree_centerline_matirx[int(node_id_temp)][6] - 1
branch_list_temp.append(int(node_id_temp))
if len(branch_list_temp) > seq_len*2+1:
branch_list.append(branch_list_temp)
#print(len(branch_list_temp))
print('图像id:%s 共有%d条枝干' % (image_name, len(branch_list)))
branch_num = len(branch_list)
for i in range(PATCH_NUM):
if i%20==0:
print('图像id:%s 当前第%d组 / 共%d组'% (image_name, i+1, PATCH_NUM))
branch_id_rand = random.randint(0,branch_num-1)
branch_temp_list = branch_list[branch_id_rand]
branch_length = len(branch_temp_list)
seed_id_rand = random.randint(seq_len,branch_length-1-seq_len)
node1_id = branch_temp_list[seed_id_rand]
node2_id = branch_temp_list[seed_id_rand+1]
node3_id = branch_temp_list[seed_id_rand+2]
node_id_list = [node1_id, node2_id, node3_id]
# node_id_list = [node1_id]
# 正常的采样点
image_seq_single_dir = image_seq_dir + '/' + str(i+1) + '_pos_0/'
if os.path.exists(image_seq_single_dir):
rmtree(image_seq_single_dir)
os.mkdir(image_seq_single_dir)
else:
os.mkdir(image_seq_single_dir)
if len(img_shape)==3:
image_stack = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2]])
else:
image_stack = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2], 3])
node_img_temp_dir = image_seq_single_dir + 'node_img.tif'
seq_id = 0
for node_temp_id in node_id_list:
node_pos_float = swc_tree_centerline_matirx[int(node_temp_id)][2:5]
node_pos = [int(round(j,0)) for j in node_pos_float]
node_pos_p_float = swc_tree_centerline_matirx[int(node_temp_id-1)][2:5]
node_pos_p = [int(round(j,0)) for j in node_pos_p_float]
node_pos_s_float = swc_tree_centerline_matirx[int(node_temp_id+1)][2:5]
node_pos_s = [int(round(j,0)) for j in node_pos_s_float]
node_img = copy.deepcopy(img_sim_temp[node_pos[2]+ 3*z_half:node_pos[2] + 5*z_half, node_pos[1]+ 3*x_half:node_pos[1] + 5*x_half, node_pos[0]+ 3*y_half:node_pos[0] + 5*y_half])
node_lab = copy.deepcopy(img_lab_temp[node_pos[2]+ 3*z_half:node_pos[2] + 5*z_half, node_pos[1]+ 3*x_half:node_pos[1] + 5*x_half, node_pos[0]+ 3*y_half:node_pos[0] + 5*y_half])
node_dis = copy.deepcopy(img_dis_temp[node_pos[2]+ 3*z_half:node_pos[2] + 5*z_half, node_pos[1]+ 3*x_half:node_pos[1] + 5*x_half, node_pos[0]+ 3*y_half:node_pos[0] + 5*y_half])
node_radius = swc_tree_centerline_matirx_radius[int(node_temp_id)][0]
node_vector = node_pos_s_float - node_pos_p_float
node_vector = vector_norm_f(node_vector)
# node_vector = swc_tree_centerline_matirx_vector[int(node_temp_id)]
# print(node_vector)
node_vector_to_p = node_pos_p_float - node_pos_float
node_vector_to_p = vector_norm_f(node_vector_to_p)
node_vector_to_s = node_pos_s_float - node_pos_float
node_vector_to_s = vector_norm_f(node_vector_to_s)
image_stack[3*seq_id+0] = copy.deepcopy(node_img)
image_stack[3*seq_id+1] = copy.deepcopy(node_lab)
image_stack[3*seq_id+2] = copy.deepcopy(node_dis)
# label
node_matrix = np.zeros([1,7])
node_matrix[0][0] = node_radius
for j in range(3):
node_matrix[0][j+1] = node_vector[j]
if node_vector[2]<0:
node_matrix[0][4] = (-node_vector[0]+1)/2//0.02
node_matrix[0][5] = (-node_vector[1])//0.02
node_matrix[0][6] = (-node_vector[2]+1)/2//0.02
else:
node_matrix[0][4] = (node_vector[0]+1)/2//0.02
node_matrix[0][5] = (node_vector[1])//0.02
node_matrix[0][6] = (node_vector[2]+1)/2//0.02
node_matrix_temp_dir = image_seq_single_dir + 'node_matrix_' + str(seq_id+1) + '.txt'
np.savetxt(node_matrix_temp_dir, node_matrix, fmt='%f', delimiter=',')
node_swc = np.zeros([5,7])
node_swc[0][0] = 1
node_swc[1][0] = 2
node_swc[2][0] = 3
node_swc[3][0] = 4
node_swc[4][0] = 5
node_swc[0][5] = 1
node_swc[1][5] = 1
node_swc[2][5] = 1
node_swc[3][5] = 1
node_swc[4][5] = 1
node_swc[0][6] = -1
node_swc[1][6] = 1
node_swc[2][6] = 1
node_swc[3][6] = -1
node_swc[4][6] = -1
node_swc[0][2] = BATCH_SHAPE[1]//2
node_swc[0][3] = BATCH_SHAPE[2]//2
node_swc[0][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id*seq_len
node_swc[1][2] = BATCH_SHAPE[1]//2 + node_matrix[0][1] * 5
node_swc[1][3] = BATCH_SHAPE[2]//2 + node_matrix[0][2] * 5
node_swc[1][4] = BATCH_SHAPE[0]//2 + node_matrix[0][3] * 5 + BATCH_SHAPE[0]*seq_id*seq_len
node_swc[2][2] = BATCH_SHAPE[1]//2 - node_matrix[0][1] * 5
node_swc[2][3] = BATCH_SHAPE[2]//2 - node_matrix[0][2] * 5
node_swc[2][4] = BATCH_SHAPE[0]//2 - node_matrix[0][3] * 5 + BATCH_SHAPE[0]*seq_id*seq_len
node_swc[3][2] = BATCH_SHAPE[1]//2 + node_vector_to_p[0] * 5
node_swc[3][3] = BATCH_SHAPE[2]//2 + node_vector_to_p[1] * 5
node_swc[3][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id*seq_len + node_vector_to_p[2] * 5
node_swc[4][2] = BATCH_SHAPE[1]//2 + node_vector_to_s[0] * 5
node_swc[4][3] = BATCH_SHAPE[2]//2 + node_vector_to_s[1] * 5
node_swc[4][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id*seq_len + node_vector_to_s[2] * 5
node_matrix_temp_dir = image_seq_single_dir + 'node_swc_' + str(seq_id+1) + '.swc'
np.savetxt(node_matrix_temp_dir, node_swc, fmt='%3f', delimiter=',')
# node_pos_txt = np.zeros([1,3])
# node_pos_txt[0][0] = node_pos[2]
# node_pos_txt[0][1] = node_pos[1]
# node_pos_txt[0][2] = node_pos[0]
# node_matrix_temp_dir = image_seq_single_dir + 'node_pos_' + str(seq_id+1) + '.txt'
# np.savetxt(node_matrix_temp_dir, node_pos_txt, fmt='%3f', delimiter=',')
seq_id+=1
save_tif(image_stack, node_img_temp_dir, data_type)
#===============================neg and pos======================================================
pos_num = 2
data_enhance = ['shift', 'noise']
neg_num = 2
for pos_id in range(pos_num):
image_seq_single_dir = image_seq_dir + '/' + str(i+1) + '_pos_' + str(pos_id+1) + '/'
if os.path.exists(image_seq_single_dir):
rmtree(image_seq_single_dir)
os.mkdir(image_seq_single_dir)
else:
os.mkdir(image_seq_single_dir)
if len(img_shape)==3:
image_stack_pos = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2]])
else:
image_stack_pos = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2], 3])
node_img_temp_dir = image_seq_single_dir + 'node_img.tif'
# use two different data enhance method
data_enhance_method = data_enhance[pos_id]
x_noise = []
y_noise = []
if data_enhance_method == 'shift':
x_rand_temp = random.uniform(-3, 3)
y_rand_temp = random.uniform(-3, 3)
x_noise.append(x_rand_temp)
x_noise.append(x_rand_temp)
x_noise.append(x_rand_temp)
y_noise.append(y_rand_temp)
y_noise.append(y_rand_temp)
y_noise.append(y_rand_temp)
elif data_enhance_method == 'noise':
for seq_temp in range(seq_len):
x_rand_temp = random.uniform(-3, 3)
y_rand_temp = random.uniform(-3, 3)
x_noise.append(x_rand_temp)
y_noise.append(y_rand_temp)
seq_id = 0
for node_temp_id in node_id_list:
node_pos_float = swc_tree_centerline_matirx[int(node_temp_id)][2:5]
node_pos = [int(round(j,0)) for j in node_pos_float]
node_pos_p_float = swc_tree_centerline_matirx[int(node_temp_id-1)][2:5]
node_pos_p = [int(round(j,0)) for j in node_pos_p_float]
node_pos_s_float = swc_tree_centerline_matirx[int(node_temp_id+1)][2:5]
node_pos_s = [int(round(j,0)) for j in node_pos_s_float]
node_radius = swc_tree_centerline_matirx_radius[int(node_temp_id)][0]
node_vector = node_pos_p_float - node_pos_s_float
node_vector = vector_norm_f(node_vector)
node_vector_u = [1e-7, -node_vector[2], node_vector[1]]
node_vector_v = [- node_vector[1] ** 2 - node_vector[2] ** 2 + 1e-7, node_vector[1]*node_vector[0], node_vector[2]*node_vector[0]]
node_vector_u_n = np.linalg.norm(np.array(node_vector_u))
node_vector_v_n = np.linalg.norm(np.array(node_vector_v))
node_u = node_vector_u / node_vector_u_n
node_v = node_vector_v / node_vector_v_n
# node_u = swc_tree_centerline_matirx_u_vector[int(node_temp_id)]
# node_v = swc_tree_centerline_matirx_v_vector[int(node_temp_id)]
x_rand_temp = x_noise[seq_id]
y_rand_temp = y_noise[seq_id]
node_rand_float = [0,0,0]
node_rand_float[2] = x_rand_temp * node_u[0] + y_rand_temp * node_v[0]
node_rand_float[0] = x_rand_temp * node_u[1] + y_rand_temp * node_v[1]
node_rand_float[1] = x_rand_temp * node_u[2] + y_rand_temp * node_v[2]
node_rand = [int(round(rad_num,0)) for rad_num in node_rand_float]
node_pos_float_positive = [a+b for a,b in zip(node_pos_float, node_rand_float)]
node_img_pos = copy.deepcopy(img_sim_temp[node_pos[2]+node_rand[2]+ 3*z_half:node_pos[2]+node_rand[2] + 5*z_half, node_pos[1]+node_rand[0]+ 3*x_half:node_pos[1] + node_rand[0] + 5*x_half, node_pos[0]+node_rand[1]+ 3*y_half:node_pos[0]+node_rand[1] + 5*y_half])
node_lab_pos = copy.deepcopy(img_lab_temp[node_pos[2]+node_rand[2]+ 3*z_half:node_pos[2]+node_rand[2] + 5*z_half, node_pos[1]+node_rand[0]+ 3*x_half:node_pos[1] + node_rand[0] + 5*x_half, node_pos[0]+node_rand[1]+ 3*y_half:node_pos[0]+node_rand[1] + 5*y_half])
node_dis_pos = copy.deepcopy(img_dis_temp[node_pos[2]+node_rand[2]+ 3*z_half:node_pos[2]+node_rand[2] + 5*z_half, node_pos[1]+node_rand[0]+ 3*x_half:node_pos[1] + node_rand[0] + 5*x_half, node_pos[0]+node_rand[1]+ 3*y_half:node_pos[0]+node_rand[1] + 5*y_half])
image_stack_pos[3*seq_id+0] = copy.deepcopy(node_img_pos)
image_stack_pos[3*seq_id+1] = copy.deepcopy(node_lab_pos)
image_stack_pos[3*seq_id+2] = copy.deepcopy(node_dis_pos)
node_matrix = np.zeros([1,7])
node_matrix[0][0] = node_radius
# adjust direction
# node_p_id = swc_tree_centerline_matirx[int(node_temp_id)][6]-1
# node_p_pos_float = swc_tree_centerline_matirx[int(node_p_id)][2:5]
# node_vector_temp = node_p_pos_float - node_pos_float_positive
# node_vector_temp = vector_norm_f(node_vector_temp)
# node_vector_temp_ = node_p_pos_float - node_pos_float
# node_vector_temp_ = vector_norm_f(node_vector_temp_)
# # temp = [a+b for a,b in zip(node_pos, node_rand)]
# print(node_pos)
# print(node_p_pos_float)
# print([a-b for a,b in zip(node_p_pos_float, node_pos)])
# print(node_vector)
# print([a-b for a,b in zip(node_p_pos_float, node_pos_float_positive)])
# print(node_vector_temp)
# print('---')
for j in range(3):
node_matrix[0][j+1] = node_vector[j]
if node_vector[2]<0:
node_matrix[0][4] = (-node_vector[0]+1)/2//0.02
node_matrix[0][5] = (-node_vector[1])//0.02
node_matrix[0][6] = (-node_vector[2]+1)/2//0.02
else:
node_matrix[0][4] = (node_vector[0]+1)/2//0.02
node_matrix[0][5] = (node_vector[1])//0.02
node_matrix[0][6] = (node_vector[2]+1)/2//0.02
# for j in range(3):
# node_matrix[0][4+j] = (node_vector[j]+1)/2//0.02
# node_matrix[0][7+j] = (-node_vector[j]+1)/2//0.02
node_matrix_temp_dir = image_seq_single_dir + 'node_matrix_' + str(seq_id+1) + '.txt'
np.savetxt(node_matrix_temp_dir, node_matrix, fmt='%f', delimiter=',')
node_swc = np.zeros([3,7])
node_swc[0][0] = 1
node_swc[1][0] = 2
node_swc[2][0] = 3
# node_swc[3][0] = 4
# node_swc[4][0] = 5
node_swc[0][5] = 1
node_swc[1][5] = 1
node_swc[2][5] = 1
# node_swc[3][5] = 1
# node_swc[4][5] = 1
node_swc[0][6] = -1
node_swc[1][6] = 1
node_swc[2][6] = 1
# node_swc[3][6] = -1
# node_swc[4][6] = -1
node_swc[0][2] = BATCH_SHAPE[1]//2
node_swc[0][3] = BATCH_SHAPE[2]//2
node_swc[0][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id *seq_len
node_swc[1][2] = BATCH_SHAPE[1]//2 + node_matrix[0][1] * 5
node_swc[1][3] = BATCH_SHAPE[2]//2 + node_matrix[0][2] * 5
node_swc[1][4] = BATCH_SHAPE[0]//2 + node_matrix[0][3] * 5 + BATCH_SHAPE[0]*seq_id*seq_len
node_swc[2][2] = BATCH_SHAPE[1]//2 - node_matrix[0][1] * 5
node_swc[2][3] = BATCH_SHAPE[2]//2 - node_matrix[0][2] * 5
node_swc[2][4] = BATCH_SHAPE[0]//2 - node_matrix[0][3] * 5 + BATCH_SHAPE[0]*seq_id*seq_len
# node_swc[3][2] = BATCH_SHAPE[1]//2 - node_rand[1]
# node_swc[3][3] = BATCH_SHAPE[2]//2 - node_rand[0]
# node_swc[3][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id *seq_len - node_rand[2]
# node_swc[4][2] = BATCH_SHAPE[1]//2 - node_vector_temp[0]
# node_swc[4][3] = BATCH_SHAPE[2]//2 - node_vector_temp[1]
# node_swc[4][4] = BATCH_SHAPE[0]//2 + BATCH_SHAPE[0]*seq_id *seq_len - node_vector_temp[2]
node_matrix_temp_dir = image_seq_single_dir + 'node_swc_' + str(seq_id+1) + '.swc'
np.savetxt(node_matrix_temp_dir, node_swc, fmt='%3f', delimiter=',')
# node_pos_txt = np.zeros([1,3])
# node_pos_txt[0][0] = node_pos[2]
# node_pos_txt[0][1] = node_pos[1]
# node_pos_txt[0][2] = node_pos[0]
# node_matrix_temp_dir = image_seq_single_dir + 'node_pos_' + str(seq_id+1) + '.txt'
# np.savetxt(node_matrix_temp_dir, node_pos_txt, fmt='%3f', delimiter=',')
seq_id+=1
save_tif(image_stack_pos, node_img_temp_dir, data_type)
# pause
for neg_id in range(neg_num):
image_seq_single_dir = image_seq_dir + '/' + str(i+1) + '_neg_' + str(neg_id+1) + '/'
if os.path.exists(image_seq_single_dir):
rmtree(image_seq_single_dir)
os.mkdir(image_seq_single_dir)
else:
os.mkdir(image_seq_single_dir)
if len(img_shape)==3:
image_stack_neg = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2]])
else:
image_stack_neg = np.zeros([3*seq_len, BATCH_SHAPE[0], BATCH_SHAPE[1], BATCH_SHAPE[2], 3])
node_img_temp_dir = image_seq_single_dir + 'node_img.tif'
neg_ok_num = 0
seq_id = 0
while neg_ok_num<seq_len:
z_rand_temp = random.randint(BATCH_SHAPE[0], img_sim_temp.shape[0]-BATCH_SHAPE[0])
x_rand_temp = random.randint(BATCH_SHAPE[1], img_sim_temp.shape[1]-BATCH_SHAPE[1])
y_rand_temp = random.randint(BATCH_SHAPE[2], img_sim_temp.shape[2]-BATCH_SHAPE[2])
node_img_neg = copy.deepcopy(img_sim_temp[z_rand_temp - z_half:z_rand_temp + z_half, x_rand_temp - x_half:x_rand_temp + x_half, y_rand_temp - y_half:y_rand_temp + y_half])
node_lab_neg = copy.deepcopy(img_lab_temp[z_rand_temp - z_half:z_rand_temp + z_half, x_rand_temp - x_half:x_rand_temp + x_half, y_rand_temp - y_half:y_rand_temp + y_half])
node_dis_neg = copy.deepcopy(img_dis_temp[z_rand_temp - z_half:z_rand_temp + z_half, x_rand_temp - x_half:x_rand_temp + x_half, y_rand_temp - y_half:y_rand_temp + y_half])
image_stack_neg[3*seq_id+0] = copy.deepcopy(node_img_neg)
image_stack_neg[3*seq_id+1] = copy.deepcopy(node_lab_neg)
image_stack_neg[3*seq_id+2] = copy.deepcopy(node_dis_neg)
node_matrix = np.zeros([1,7])
node_matrix_temp_dir = image_seq_single_dir + 'node_matrix_' + str(seq_id+1) + '.txt'
np.savetxt(node_matrix_temp_dir, node_matrix, fmt='%f', delimiter=',')
seq_id+=1
neg_ok_num += 1
save_tif(image_stack_neg, node_img_temp_dir, data_type)
# pause
return 0
def main_training_data(input_dir):
args = parse_args()
datasets_name = args.datasets_name
image_seq_dir = args.train_dataset_root_dir + 'training_datasets/'
org_image_train_dir = args.image_dir + datasets_name + '/training/images/'
org_swc_train_dir = args.image_dir + datasets_name + '/training/swc/'
temp_image_tif_dir = args.image_dir + datasets_name + '/temp/images/'
temp_swc_centerline_dir = args.image_dir + datasets_name + '/temp/swc_centerline/'
temp_centerline_dir = args.image_dir + datasets_name + '/temp/centerline/'
image_name = input_dir.split("/")[-1].split(".")[0]
print(image_name)
if datasets_name == 'FMOST':
img_dir = org_image_train_dir + image_name + '.tif'
swc_dir = org_swc_train_dir + image_name + '.adj.swc'
fsize = os.path.getsize(swc_dir)
total_fsize = 720000
fsize_rate = fsize/total_fsize
patch_num = round(args.N_patches * fsize_rate // 5)
resize_radio = 1.0
swc_upsample_length = 99.0
sample_gap = 1
seq_len = 3
else:
pause
# 载入灰度图像
img_new = open_tif(img_dir).astype(np.float32)
# img_new = img_new[:,:,:,0]*0.299 + img_new[:,:,:,1]*0.587 + img_new[:,:,:,2]*0.114
# 载入swc,生成centerline
swc_tree_upsample = up_sample_swc_rescale(swc_dir, swc_upsample_length, resize_radio)
data_swc_upsample_dir_tmp = temp_swc_centerline_dir + image_name + '.upsample.swc'
swc_save(swc_tree_upsample, data_swc_upsample_dir_tmp)
# 中心线
swc_tree_centerline = get_centerline_swc(data_swc_upsample_dir_tmp, 1.0)
data_swc_centerline_dir_tmp = temp_swc_centerline_dir + image_name + '.centerline.swc'
swc_save(swc_tree_centerline, data_swc_centerline_dir_tmp)
swc_save_preorder(data_swc_centerline_dir_tmp, data_swc_centerline_dir_tmp) # pre-order
swc_tree_centerline = read_swc_tree(data_swc_centerline_dir_tmp) # read swc
img_skl = save_swc2tif(data_swc_centerline_dir_tmp, [img_new.shape[0], img_new.shape[1], img_new.shape[2]])
data_image_skl_dir_tmp = temp_centerline_dir + image_name + '_centerline_resize.tif'
save_tif(img_skl, data_image_skl_dir_tmp, np.uint8)
# exist
swc_tree_exist = get_centerline_swc(data_swc_upsample_dir_tmp, 2.0)
data_swc_exist_dir_tmp = temp_swc_centerline_dir + image_name + '.exist.swc'
swc_save(swc_tree_exist, data_swc_exist_dir_tmp)
swc_save_preorder(data_swc_exist_dir_tmp, data_swc_exist_dir_tmp) # pre-order
swc_tree_centerline = read_swc_tree(data_swc_exist_dir_tmp) # read swc
label_new = save_swc2tif(data_swc_exist_dir_tmp, [img_new.shape[0], img_new.shape[1], img_new.shape[2]])
data_image_exist_dir_tmp = temp_centerline_dir + image_name + '_exist_resize.tif'
save_tif(label_new, data_image_exist_dir_tmp, np.uint8)
# # 向量计算
swc_tree_centerline_matirx = read_swc_tree_matrix(data_swc_upsample_dir_tmp)
swc_tree_centerline_matirx_radius = np.zeros([swc_tree_centerline_matirx.shape[0], 1])
for i in range(swc_tree_centerline_matirx.shape[0]):
swc_tree_centerline_matirx_radius[i][0] = swc_tree_centerline_matirx[i][5]
swc_tree_centerline_matirx_direction = get_centerline_direction(swc_tree_centerline_matirx)
swc_tree_centerline_matirx_vector, swc_tree_centerline_matirx_u_vector, swc_tree_centerline_matirx_v_vector = get_centerline_circle(swc_tree_centerline_matirx, swc_tree_centerline_matirx_direction)
prepare_train_datasets(image_seq_dir, swc_tree_centerline_matirx, img_new, label_new, img_skl, swc_tree_centerline_matirx_radius, swc_tree_centerline_matirx_vector, swc_tree_centerline_matirx_u_vector, swc_tree_centerline_matirx_v_vector, BATCH_SHAPE, image_name, patch_num, seq_len = seq_len, img_gap=sample_gap)
time.sleep(1)
def main_test_data(input_dir):
args = parse_args()
datasets_name = args.datasets_name
image_seq_dir = args.train_dataset_root_dir + 'test_datasets/'
org_image_train_dir = args.image_dir + datasets_name + '/test/images/'
org_swc_train_dir = args.image_dir + datasets_name + '/test/swc/'
temp_image_tif_dir = args.image_dir + datasets_name + '/temp/images/'
temp_swc_centerline_dir = args.image_dir + datasets_name + '/temp/swc_centerline/'
temp_centerline_dir = args.image_dir + datasets_name + '/temp/centerline/'
image_name = input_dir.split("/")[-1].split(".")[0]
print(image_name)
if datasets_name == 'FMOST':
img_dir = org_image_train_dir + image_name + '.tif'
swc_dir = org_swc_train_dir + image_name + '.adj.swc'
fsize = os.path.getsize(swc_dir)
total_fsize = 140000
fsize_rate = fsize/total_fsize
patch_num = round(args.N_patches * fsize_rate // 10 // 5)
resize_radio = 1.0
swc_upsample_length = 99.0
sample_gap = 1
seq_len = 3
else:
pause
# 载入灰度图像
img_new = open_tif(img_dir).astype(np.float32)
# img_new = img_new[:,:,:,0]*0.299 + img_new[:,:,:,1]*0.587 + img_new[:,:,:,2]*0.114
# print(img_new.shape)
# 载入swc,生成centerline
swc_tree_upsample = up_sample_swc_rescale(swc_dir, swc_upsample_length, resize_radio)
data_swc_upsample_dir_tmp = temp_swc_centerline_dir + image_name + '.upsample.swc'
swc_save(swc_tree_upsample, data_swc_upsample_dir_tmp)
# 中心线
swc_tree_centerline = get_centerline_swc(data_swc_upsample_dir_tmp, 1.0)
data_swc_centerline_dir_tmp = temp_swc_centerline_dir + image_name + '.centerline.swc'
swc_save(swc_tree_centerline, data_swc_centerline_dir_tmp)
swc_save_preorder(data_swc_centerline_dir_tmp, data_swc_centerline_dir_tmp) # pre-order
swc_tree_centerline = read_swc_tree(data_swc_centerline_dir_tmp) # read swc
img_skl = save_swc2tif(data_swc_centerline_dir_tmp, [img_new.shape[0], img_new.shape[1], img_new.shape[2]])
data_image_skl_dir_tmp = temp_centerline_dir + image_name + '_centerline_resize.tif'
save_tif(img_skl, data_image_skl_dir_tmp, np.uint8)
# exist
swc_tree_exist = get_centerline_swc(data_swc_upsample_dir_tmp, 2.0)
data_swc_exist_dir_tmp = temp_swc_centerline_dir + image_name + '.exist.swc'
swc_save(swc_tree_exist, data_swc_exist_dir_tmp)
swc_save_preorder(data_swc_exist_dir_tmp, data_swc_exist_dir_tmp) # pre-order
swc_tree_centerline = read_swc_tree(data_swc_exist_dir_tmp) # read swc
label_new = save_swc2tif(data_swc_exist_dir_tmp, [img_new.shape[0], img_new.shape[1], img_new.shape[2]])
data_image_exist_dir_tmp = temp_centerline_dir + image_name + '_exist_resize.tif'
save_tif(label_new, data_image_exist_dir_tmp, np.uint8)
# # 向量计算
swc_tree_centerline_matirx = read_swc_tree_matrix(data_swc_upsample_dir_tmp)
swc_tree_centerline_matirx_radius = np.zeros([swc_tree_centerline_matirx.shape[0], 1])
for i in range(swc_tree_centerline_matirx.shape[0]):
swc_tree_centerline_matirx_radius[i][0] = swc_tree_centerline_matirx[i][5]
swc_tree_centerline_matirx_direction = get_centerline_direction(swc_tree_centerline_matirx)
swc_tree_centerline_matirx_vector, swc_tree_centerline_matirx_u_vector, swc_tree_centerline_matirx_v_vector = get_centerline_circle(swc_tree_centerline_matirx, swc_tree_centerline_matirx_direction)
prepare_train_datasets(image_seq_dir, swc_tree_centerline_matirx, img_new, label_new, img_skl, swc_tree_centerline_matirx_radius, swc_tree_centerline_matirx_vector, swc_tree_centerline_matirx_u_vector, swc_tree_centerline_matirx_v_vector, BATCH_SHAPE, image_name, patch_num, seq_len = seq_len, img_gap=sample_gap)
time.sleep(1)
if __name__ == '__main__':
args = parse_args()
datasets_name = args.datasets_name
cpu_core_num = args.multi_cpu
batch_size = args.input_dim
BATCH_SHAPE = [batch_size[0],batch_size[1],batch_size[2]]
print("loading " + datasets_name + " datasets")
org_image_train_dir = args.image_dir + datasets_name + '/training/images/'
org_swc_train_dir = args.image_dir + datasets_name + '/training/swc/'
org_image_test_dir = args.image_dir + datasets_name + '/test/images/'
org_swc_test_dir = args.image_dir + datasets_name + '/test/swc/'
temp_image_tif_dir = args.image_dir + datasets_name + '/temp/images/'
temp_label_tif_dir = args.image_dir + datasets_name + '/temp/labels/'
temp_swc_centerline_dir = args.image_dir + datasets_name + '/temp/swc_centerline/'
temp_centerline_dir = args.image_dir + datasets_name + '/temp/centerline/'
training_datasets_dir = args.train_dataset_root_dir + 'training_datasets/'
test_datasets_dir = args.train_dataset_root_dir + 'test_datasets/'
if not os.path.exists(args.image_dir + datasets_name + '/temp'):
os.makedirs(args.image_dir + datasets_name + '/temp')
if not os.path.exists(temp_image_tif_dir):
os.makedirs(temp_image_tif_dir)
if not os.path.exists(temp_label_tif_dir):
os.makedirs(temp_label_tif_dir)
if not os.path.exists(temp_swc_centerline_dir):
os.makedirs(temp_swc_centerline_dir)
if not os.path.exists(temp_centerline_dir):
os.makedirs(temp_centerline_dir)
if not os.path.exists(args.train_dataset_root_dir):
os.makedirs(args.train_dataset_root_dir)
if not os.path.exists(training_datasets_dir):
os.makedirs(training_datasets_dir)
if not os.path.exists(test_datasets_dir):
os.makedirs(test_datasets_dir)
org_label_list = glob.glob(org_image_train_dir + '*.tif')
org_label_num = len(org_label_list)
print('find %d images' % (org_label_num))
pool = mp.Pool(processes=cpu_core_num) # we set cpu core is 4
pool.map(main_training_data, org_label_list)
org_label_list = glob.glob(org_image_test_dir + '*.tif')
org_label_num = len(org_label_list)
print('find %d images' % (org_label_num))
pool = mp.Pool(processes=cpu_core_num)
pool.map(main_test_data, org_label_list)
import shutil
total_training_data_num = 0
training_dataset_list = glob.glob(training_datasets_dir + '*/')
training_dataset_image_num = len(training_dataset_list)
print('find %d image folders' % (training_dataset_image_num))
for training_dataset_image_dir in training_dataset_list:
training_dataset_image_list = glob.glob(training_dataset_image_dir + '*/')
training_dataset_image_patch_num = len(training_dataset_image_list)
print('Folder: %s, find %d images patches' % (training_dataset_image_dir.split('/')[-2], training_dataset_image_patch_num))
total_training_data_num += training_dataset_image_patch_num
# for training_dataset_image_patch_dir in training_dataset_image_list:
# shutil.rmtree(training_dataset_image_patch_dir)
print('TOTAL %d images patches' % (total_training_data_num))
total_test_data_num = 0
test_dataset_list = glob.glob(test_datasets_dir + '*/')
test_dataset_image_num = len(test_dataset_list)
print('find %d image folders' % (test_dataset_image_num))
for test_dataset_image_dir in test_dataset_list:
test_dataset_image_list = glob.glob(test_dataset_image_dir + '*/')
test_dataset_image_patch_num = len(test_dataset_image_list)
print('Folder: %s, find %d images patches' % (test_dataset_image_dir.split('/')[-2], test_dataset_image_patch_num))
total_test_data_num += test_dataset_image_patch_num
# for test_dataset_image_patch_dir in test_dataset_image_list:
# shutil.rmtree(test_dataset_image_patch_dir)
print('TOTAL %d images patches' % (total_test_data_num))