-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDGMMC_CIFAR100_no_projection.py
118 lines (85 loc) · 4.87 KB
/
DGMMC_CIFAR100_no_projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import numpy as np
import pandas as pd
import math
import torch
import torch.optim as optim
from torch.utils.data import random_split
from src.Datasets import CIFAR100Dataset
from utils_DGMMC import DGMMClassifier, train_from_features_PCA, test_from_features_PCA, get_means_bandwidth_from_features, CrossEntropy
from utils import get_trained_PCA
if __name__ == "__main__":
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print('Code running on :', device)
G = [1]
runs = [0,1,2]
embeddings = ['IMAGEBIND', 'CLIP']
classes = 100
batch_size = 64
nb_epochs = 30
EXPERIMENT_PATH = os.path.join('experiments_no_projection', 'CIFAR100')
FEATURES_ABOSLUTE_PATH = os.path.join('/home/jeremy/Documents/Datasets/CIFAR100', 'Features')
DATASET_PATH = '/home/jeremy/Documents/Datasets/CIFAR100'
for embedding in embeddings:
embeding_folder = os.path.join(EXPERIMENT_PATH, embedding)
if os.path.isdir(embeding_folder) is False:
os.mkdir(embeding_folder)
SDGM_folder_path = os.path.join(embeding_folder, 'DGMMC')
if os.path.isdir(SDGM_folder_path) is False:
os.mkdir(SDGM_folder_path)
results_path = os.path.join(SDGM_folder_path, 'results')
if os.path.isdir(results_path) is False:
os.mkdir(results_path)
models_path = os.path.join(SDGM_folder_path, 'models')
if os.path.isdir(models_path) is False:
os.mkdir(models_path)
trainset = CIFAR100Dataset(os.path.join(FEATURES_ABOSLUTE_PATH, embedding, 'train'), train=True)
train_ds, val_ds = random_split(trainset, [math.floor(0.90*len(trainset)), len(trainset) - math.floor(0.90*len(trainset))])
trainloader = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory = True)
valloader = torch.utils.data.DataLoader(val_ds, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory = True)
testset = CIFAR100Dataset(os.path.join(FEATURES_ABOSLUTE_PATH, embedding, 'test'), train= False)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory = True)
if embedding == 'CLIP':
d = 768
else:
d = 1024
for g in G:
for run in runs:
init_means, init_stds = get_means_bandwidth_from_features(classes, trainloader)
model = DGMMClassifier(d,classes,g, init_means)
model.to(device)
criterion = CrossEntropy()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, nesterov=True)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=nb_epochs, eta_min=1e-4)
best_loss = math.inf
model_path = os.path.join(models_path, 'model_D_{}_G_{}_run_{}.pt'.format(d, g, run))
tr = []
val = []
for epoch in range(nb_epochs):
model, train_loss, train_acc = train_from_features_PCA(classes, device, model, trainloader, criterion, optimizer)
tr.append(np.hstack((train_loss, train_acc)))
val_loss, val_acc = test_from_features_PCA(classes, device, model, valloader, criterion)
val.append(np.hstack((val_loss, val_acc)))
print("[Epoch {}/{}] tr_loss: {:.4f} -- tr_acc: {:.3f} -- val_loss: {:.4f} -- val_acc: {:.3f}".format(epoch, nb_epochs, train_loss, train_acc, val_loss, val_acc))
if val_loss < best_loss:
torch.save(model, model_path)
best_loss = val_loss
scheduler.step()
best_model = torch.load(model_path)
best_model.eval()
best_model.to(device)
test_loss, test_acc = test_from_features_PCA(classes, device, best_model, testloader, criterion)
print("Test: test_loss: {:.5f} -- test_acc: {:.3f}".format(test_loss, test_acc))
# Save results
tr = np.stack(tr, axis=0)
df_tr = pd.DataFrame(tr, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'train_D_{}_G_{}_run_{}.csv'.format(d, g, run))
df_tr.to_csv(fpath, sep=';')
val = np.stack(val, axis=0)
df_val = pd.DataFrame(val, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'val_D_{}_G_{}_run_{}.csv'.format(d, g, run))
df_val.to_csv(fpath, sep=';')
te = np.vstack((test_loss, test_acc)).transpose()
df_test = pd.DataFrame(te, columns=['loss', 'acc'])
fpath = os.path.join(results_path, 'test_D_{}_G_{}_run_{}.csv'.format(d, g, run))
df_test.to_csv(fpath, sep=';')