-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_results_ESC50_no_projection.py
102 lines (71 loc) · 2.96 KB
/
get_results_ESC50_no_projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
def create_results_array(values, channels):
mean = np.mean(values, axis=channels, keepdims=True)
std = np.std(values, axis=channels, keepdims=True)
x,y = mean.shape
results = np.zeros((x, 2*y))
for i in range(0, y):
results[:, 2*i] = mean[:,i]
results[:, 2*i+1] = std[:,i]
return results
D = [1024]
G = [1]
folders = [1,2,3,4,5]
EXPERIMENT_PATH = os.path.join('experiments_no_projection', 'ESC')
#########
#SDGM
########
values = []
cov_types = ['full', 'diag']
for cov_type in cov_types:
general_results = []
for g in G:
for d in D:
complete_results = []
for folder in folders:
df_path = os.path.join(EXPERIMENT_PATH, 'fold_{}'.format(folder), 'SDGM','results', 'test_D_{}_G_{}_cov_{}.csv'.format(d,g, cov_type))
df = pd.read_csv(df_path, sep=';')
values = df.values
accuracy = values[0][2]
complete_results.append(accuracy)
complete_results = np.stack(complete_results, axis=0)
general_results.append(complete_results)
general_results = np.stack(general_results, axis=0)
general_results = general_results.reshape((len(G), len(D), len(folders)), order = 'F')
means = np.mean(general_results, axis=2)
std = np.std(general_results, axis=2)
test_array = np.ravel([means,std],'F').reshape((len(G), 2*len(D)))
index = pd.MultiIndex.from_product([D,['avg','std']])
df = pd.DataFrame(test_array, index = G, columns = index)
print(df)
if d == 768:
df.to_csv(os.path.join('results_no_projection', 'ESC_CLIP_SDGM_cov_{}.csv'.format(cov_type)), sep=';')
else:
df.to_csv(os.path.join('results_no_projection', 'ESC_IMAGEBIND_SDGM_cov_{}.csv'.format(cov_type)), sep=';')
general_results = []
for g in G:
for d in D:
complete_results = []
for folder in folders:
df_path = os.path.join(EXPERIMENT_PATH, 'fold_{}'.format(folder), 'DGMMC','results', 'test_D_{}_G_{}.csv'.format(d,g))
df = pd.read_csv(df_path, sep=';')
values = df.values
accuracy = values[0][2]
complete_results.append(accuracy)
complete_results = np.stack(complete_results, axis=0)
general_results.append(complete_results)
general_results = np.stack(general_results, axis=0)
general_results = general_results.reshape((len(G), len(D), len(folders)), order = 'F')
means = np.mean(general_results, axis=2)
std = np.std(general_results, axis=2)
test_array = np.ravel([means,std],'F').reshape((len(G), 2*len(D)))
index = pd.MultiIndex.from_product([D,['avg','std']])
df = pd.DataFrame(test_array, index = G, columns = index)
print(df)
if d == 768:
df.to_csv(os.path.join('results_no_projection', 'ESC_CLIP_DGMMC.csv'), sep=';')
else:
df.to_csv(os.path.join('results_no_projection', 'ESC_IMAGEBIND_DGMMC.csv'), sep=';')