-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathShen2009.py
69 lines (55 loc) · 2.55 KB
/
Shen2009.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import cv2
from skimage import morphology, color
from skimage.filters import threshold_otsu
import matplotlib.pyplot as plt
import os
from p_tqdm import p_map
# Code for the following paper:
# H. L. Shen, H. G. Zhang, S. J. Shao, and J. H. Xin,
# Simple and Efficient Method for Specularity Removal in an Image,
threshold_chroma = 0.03
nu = 0.5
folder = 'input'
def process(image_path):
# Read the image
I = cv2.imread(os.path.join(folder, image_path))
I = I.astype(np.float64)
height, width, dim = I.shape
# Reshape the image
I3c = I.reshape(height*width, 3)
# Calculate specular-free image
Imin = np.min(I3c, axis=1)
Imax = np.max(I3c, axis=1)
Ithresh = np.mean(Imin) + nu * np.std(Imin)
Iss = I3c - np.repeat(Imin[:, np.newaxis], 3, axis=1) * (Imin[:, np.newaxis] > Ithresh) + Ithresh * (Imin[:, np.newaxis] > Ithresh)
# Calculate specular component
IBeta = (Imin - Ithresh) * (Imin > Ithresh) + 0
# Estimate largest region of highlight
IHighlight = IBeta.reshape(height, width)
# IHighlight = color.rgb2gray(IHighlight)
IHighlight = IHighlight > threshold_otsu(IHighlight)
IDominantRegion = morphology.remove_small_objects(IHighlight, 1, connectivity=1)
# Dilate largest region by 5 pixels to obtain its surrounding region
se = morphology.square(5)
ISurroundingRegion = morphology.dilation(IDominantRegion, se)
ISurroundingRegion = np.logical_xor(ISurroundingRegion, IDominantRegion)
# Solve least squares problem
Vdom = np.mean(I3c[IDominantRegion.flatten(), :], axis=0)
Vsur = np.mean(I3c[ISurroundingRegion.flatten(), :], axis=0)
Betadom = np.mean(IBeta[IDominantRegion.flatten()])
Betasur = np.mean(IBeta[ISurroundingRegion.flatten()])
k = (Vsur - Vdom) / (Betasur - Betadom)
# Estimate diffuse and specular components
Idf = I3c - np.min(k) * IBeta[:, np.newaxis]
Isp = I3c - Idf
# Display images
# plt.figure(); plt.imshow(I.astype(np.uint8)); plt.title('Original')
# plt.figure(); plt.imshow(Idf.reshape(height, width, 3).astype(np.uint8)); plt.title('Diffuse Component')
# plt.figure(); plt.imshow(Isp.reshape(height, width, 3).astype(np.uint8)); plt.title('Specular Component')
# Save images
cv2.imwrite(os.path.join('result', image_path), Idf.reshape(height, width, 3).astype(np.uint8))
# cv2.imwrite('comp_sp.jpg', Isp.reshape(height, width, 3).astype(np.uint8))
if __name__ == '__main__':
imgs = os.listdir(folder)
p_map(process, imgs)