-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
72 lines (51 loc) · 1.91 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import random
style.use('ggplot')
def create_dataset(howmuch, variance, step = 2, correlation = False):
val = 1
ys = []
for i in range(howmuch):
y = val + random.randrange(-variance, variance)
ys.append(y)
if correlation and correlation == 'pos':
val += step
elif correlation and correlation == 'neg':
val -= step
xs = [i for i in range(len(ys))]
return np.array(xs, dtype = np.float64), np.array(ys, dtype = np.float64)
def best_fit_slope_and_intercept(xs, ys):
m = (((mean(xs) * mean(ys)) - mean(xs*ys)) / ((mean(xs)**2) - mean(xs*xs)))
b = mean(ys) - m*mean(xs)
return m,b
def squared_error(ys_orig, ys_line):
return sum((ys_line - ys_orig) * (ys_line - ys_orig))
def coefficient_of_determination(ys_orig, ys_line):
y_mean_line = [mean(ys_orig) for y in ys_orig]
squared_error_regr = squared_error(ys_orig, ys_line)
squared_error_mean = squared_error(ys_orig, y_mean_line)
return 1 - (squared_error_regr / squared_error_mean)
def main():
## xs = [1,2,3,4,5]
## ys = [5,4,6,5,6]
##
## xs = np.array([1,2,3,4,5], dtype = np.float64)
## ys = np.array([5,4,6,5,6], dtype = np.float64)
xs, ys = create_dataset(40, 10, 2, correlation = 'pos')
m,b = best_fit_slope_and_intercept(xs, ys)
print(m, b)
regression_line = [(m*x) + b for x in xs]
## predict_x = 7
## predict_y = (m*predict_x) + b
## print(predict_y)
r_squared = coefficient_of_determination(ys, regression_line)
print(r_squared)
plt.scatter(xs, ys, color = '#003F72', label = 'data')
plt.plot(xs, regression_line, label = 'regression line')
## plt.scatter(predict_x, predict_y, color = '#2eb82e', label = 'prediction')
plt.legend(loc=4)
plt.show()
if __name__ == '__main__':
main()