From cce87f9ef19800de9ee55bea271c906147b0268e Mon Sep 17 00:00:00 2001 From: Anna Jaruga Date: Mon, 4 Dec 2023 18:37:52 -0800 Subject: [PATCH] try fixing GPU runs --- src/cache/cloud_fraction.jl | 83 ++++++++++++++++++++----------------- 1 file changed, 46 insertions(+), 37 deletions(-) diff --git a/src/cache/cloud_fraction.jl b/src/cache/cloud_fraction.jl index 1d6914caac7..f478e15d835 100644 --- a/src/cache/cloud_fraction.jl +++ b/src/cache/cloud_fraction.jl @@ -61,12 +61,12 @@ function set_cloud_fraction!(Y, p, ::Union{EquilMoistModel, NonEquilMoistModel}) end """ - function quad_loop(SG_quad, p_c, qt_mean, θl_mean, qt′qt′, θl′θl′, θl′qt′, thermo_params) + function quad_loop(SG_quad, p_c, q_mean, θ_mean, qt′qt′, θl′θl′, θl′qt′, thermo_params) where: - SG_quad is a struct containing information about quadrature type and order - p_c is the atmospheic pressure - - qt_mean, θl_mean is the grid mean q_tot and liquid ice potential temperature + - q_mean, θ_mean is the grid mean q_tot and liquid ice potential temperature - qt′qt′, θl′θl′, θl′qt′ are the (co)variances of q_tot and liquid ice potential temperature - thermo params are the thermodynamics parameters @@ -76,67 +76,76 @@ It returns cloud fraction computed as a sum over quadrature points. function quad_loop( SG_quad::SGSQuadrature, p_c, - qt_mean, - θl_mean, - qt′qt′, - θl′θl′, - θl′qt′, + q_mean, + θ_mean, + q′q′, + θ′θ′, + θ′q′, thermo_params, ) - FT = eltype(qt_mean) + FT = eltype(q_mean) @assert SG_quad.quadrature_type isa GaussianQuad sqrt2 = FT(sqrt(2)) # Epsilon defined per typical variable fluctuation - eps_q = FT(eps(FT)) * max(FT(eps(FT)), qt_mean) - eps_θ = FT(eps(FT)) + eps_q = eps(FT) * max(eps(FT), q_mean) + eps_θ = eps(FT) # limit σ_q to prevent negative q_tot_hat - σ_q_lim = -qt_mean / (sqrt2 * SG_quad.a[1]) - σ_q::FT = min(sqrt(qt′qt′), σ_q_lim) - σ_θ::FT = sqrt(θl′θl′) + σ_q_lim = -q_mean / (sqrt2 * SG_quad.a[1]) + σ_q = min(sqrt(q′q′), σ_q_lim) + # Do we also have to try to limit θ in the same way as q?? + σ_θ = sqrt(θ′θ′) # Enforce Cauchy-Schwarz inequality, numerically stable compute - _corr::FT = (θl′qt′ / max(σ_q, eps_q)) - corr::FT = max(min(_corr / max(σ_θ, eps_θ), 1), -1) + _corr = (θ′q′ / max(σ_q, eps_q)) + corr = max(min(_corr / max(σ_θ, eps_θ), FT(1)), FT(-1)) # Conditionals σ_c = sqrt(max(1 - corr * corr, 0)) * σ_θ - function get_x_hat(χ::Tuple{<:Real, <:Real}) - μ_c = θl_mean + sqrt2 * corr * σ_θ * χ[1] - θ_hat = μ_c + sqrt2 * σ_c * χ[2] - q_tot_hat = qt_mean + sqrt2 * σ_q * χ[1] + # Returns the physical values based on quadrature sampling points + # and limited covarainces + function get_x_hat(χ1, χ2) + FT = eltype(χ1) + μ_c = θ_mean + sqrt2 * corr * σ_θ * χ1 + θ_hat = μ_c + sqrt2 * σ_c * χ2 + q_hat = q_mean + sqrt2 * σ_q * χ1 # The σ_q_lim limits q_tot_hat to be close to zero # for the negative sampling points. However due to numerical erros # we sometimes still get small negative numers here - return (θ_hat, max(FT(0), q_tot_hat)) + return (θ_hat, max(FT(0), q_hat)) end # cloudy/dry categories for buoyancy in TKE - f_q_tot_sat(x_hat::Tuple{<:Real, <:Real}, hc) = - hc ? x_hat[2] : eltype(x_hat)(0) - - get_ts(x_hat::Tuple{<:Real, <:Real}) = - thermo_state(thermo_params; p = p_c, θ = x_hat[1], q_tot = x_hat[2]) - f_cf(x_hat::Tuple{<:Real, <:Real}, hc) = - hc ? eltype(x_hat)(1) : eltype(x_hat)(0) - function f(x_hat::Tuple{<:Real, <:Real}) - @assert(x_hat[1] >= FT(0)) - @assert(x_hat[2] >= FT(0)) - ts = get_ts(x_hat) + f_q_tot_sat(x1_hat, x2_hat, hc) = + hc ? x2_hat : eltype(x2_hat)(0) + get_ts(x1_hat, x2_hat) = + thermo_state(thermo_params; p = p_c, θ = x1_hat, q_tot = x2_hat) + f_cf(x1_hat, x2_hat, hc) = + hc ? eltype(x1_hat)(1) : eltype(x1_hat)(0) + function f(x1_hat, x2_hat) + @assert(x1_hat >= FT(0)) + @assert(x2_hat >= FT(0)) + ts = get_ts(x1_hat, x2_hat) hc = TD.has_condensate(thermo_params, ts) - return (; cf = f_cf(x_hat, hc), q_tot_sat = f_q_tot_sat(x_hat, hc)) + return (; + cf = f_cf(x1_hat, x2_hat, hc), + q_tot_sat = f_q_tot_sat(x1_hat, x2_hat, hc), + ) end return quad(f, get_x_hat, SG_quad).cf end """ - Compute f(A, B) as a sum over inner and outer quadrature points - that approximate the sub-grid scale variability of A and B + Compute f(θ, q) as a sum over inner and outer quadrature points + that approximate the sub-grid scale variability of θ and q. + + θ - liquid ice potential temperature + q - total water specific humidity """ function quad(f::F, get_x_hat::F1, quad) where {F <: Function, F1 <: Function} χ = quad.a @@ -144,14 +153,14 @@ function quad(f::F, get_x_hat::F1, quad) where {F <: Function, F1 <: Function} quad_order = quadrature_order(quad) FT = eltype(χ) # zero outer quadrature points - T = typeof(f(get_x_hat((χ[1], χ[1])))) + T = typeof(f(get_x_hat(χ[1], χ[1])...)) outer_env = rzero(T) @inbounds for m_q in 1:quad_order # zero inner quadrature points inner_env = rzero(T) for m_h in 1:quad_order - x_hat = get_x_hat((χ[m_q], χ[m_h])) - inner_env = inner_env ⊞ f(x_hat) ⊠ weights[m_h] ⊠ FT(1 / sqrt(π)) + x_hat = get_x_hat(χ[m_q], χ[m_h]) + inner_env = inner_env ⊞ f(x_hat...) ⊠ weights[m_h] ⊠ FT(1 / sqrt(π)) end outer_env = outer_env ⊞ inner_env ⊠ weights[m_q] ⊠ FT(1 / sqrt(π)) end