diff --git a/post_processing/ci_plots.jl b/post_processing/ci_plots.jl index ea95614c19d..cb721a5f3ff 100644 --- a/post_processing/ci_plots.jl +++ b/post_processing/ci_plots.jl @@ -673,7 +673,6 @@ function plot_edmf_vert_profile!(grid_loc, var_group) xlabel = "$(short_name(var_group[1])) [$units]", title = parse_var_attributes(var_group[1]), ) - for var in var_group CairoMakie.lines!(ax, var.data, z, label = short_name(var)) end @@ -694,19 +693,24 @@ plot_parsed_attribute_title!(grid_loc, var) = viz.plot!( ) """ - group_edmf_vars(vars) + pair_edmf_names(vars) -Groups updraft and gridmean EDMF OutputVars into a Dict. -Groupings are matched via variable short name, location, and time (if applicable). +Groups updraft and gridmean EDMF short names into tuples. """ -function group_edmf_vars(vars) - grouped_vars = OrderedDict{String, Vector{ClimaAnalysis.OutputVar}}() - for var in sort(vars, by = parse_var_attributes) - info = parse_var_attributes(var) - if haskey(grouped_vars, info) - push!(grouped_vars[info], var) +function pair_edmf_names(short_names) + grouped_vars = Any[] + + for name in short_names + up_index = findfirst(x -> x == name * "up", short_names) + if endswith(name, "up") + dn_index = + findfirst(x -> x == replace(name, "up" => ""), short_names) + # Check for updraft vars with no gridmean pair + isnothing(dn_index) && push!(grouped_vars, tuple(name)) + elseif isnothing(up_index) + push!(grouped_vars, tuple(name)) else - grouped_vars[info] = [var] + push!(grouped_vars, tuple(name, short_names[up_index])) end end return grouped_vars @@ -740,17 +744,27 @@ function make_plots(::EDMFBoxPlots, simulation_path) reduction = "inst" period = "30m" - vars = [ - get(simdir; short_name, reduction, period) for short_name in short_names + short_name_tuples = pair_edmf_names(short_names) + var_groups_zt = [ + tuple( + collect( + slice( + get(simdir; short_name, reduction, period), + x = 0.0, + y = 0.0, + ) for short_name in var_names + )..., + ) for var_names in short_name_tuples + ] + var_groups_z = [ + tuple(collect(slice(v, time = LAST_SNAP) for v in group)...) for + group in var_groups_zt ] - vars_zt = [slice(var, x = 0.0, y = 0.0) for var in vars] - vars_z = [slice(var, x = 0.0, y = 0.0, time = LAST_SNAP) for var in vars] - grouped_vars = group_edmf_vars(vars_z) tmp_file = make_plots_generic( simulation_path, output_name = "tmp", - values(grouped_vars); + var_groups_z; plot_fn = plot_edmf_vert_profile!, MAX_NUM_COLS = 2, MAX_NUM_ROWS = 4, @@ -758,7 +772,8 @@ function make_plots(::EDMFBoxPlots, simulation_path) make_plots_generic( simulation_path, - vars_zt, + # There is probably a better way to flatten this + collect(Iterators.flatten(var_groups_zt)), plot_fn = plot_parsed_attribute_title!, summary_files = [tmp_file], MAX_NUM_COLS = 2, @@ -772,29 +787,41 @@ EDMFSpherePlots = function make_plots(::EDMFSpherePlots, simulation_path) simdir = SimDir(simulation_path) - short_names = ["ua", "wa", "thetaa", "taup", "haup", "waup", "tke", "arup"] + short_names = + ["ua", "wa", "thetaa", "ta", "taup", "haup", "waup", "tke", "arup"] reduction = "average" - vars = [get(simdir; short_name, reduction) for short_name in short_names] - vars_zt0_0 = [slice(var, lon = 0.0, lat = 0.0) for var in vars] - vars_zt30_0 = [slice(var, lon = 0.0, lat = 30.0) for var in vars] - vars_zt60_0 = [slice(var, lon = 0.0, lat = 60.0) for var in vars] - vars_zt90_0 = [slice(var, lon = 0.0, lat = 90.0) for var in vars] - vars_zt = [vars_zt0_0..., vars_zt30_0..., vars_zt60_0..., vars_zt90_0...] - vars_z = [slice(var, time = LAST_SNAP) for var in vars_zt] - grouped_vars = group_edmf_vars(vars_z) + period = "1h" + latitudes = [0.0, 30.0, 60.0, 90.0] + + short_name_tuples = pair_edmf_names(short_names) + var_groups_zt = [ + tuple( + collect( + slice( + get(simdir; short_name, reduction, period), + lon = 0.0, + lat = lat, + ) for short_name in var_names + )..., + ) for lat in latitudes, var_names in short_name_tuples + ] + var_groups_z = [ + tuple(collect(slice(v, time = LAST_SNAP) for v in group)...) for + group in var_groups_zt + ] tmp_file = make_plots_generic( simulation_path, output_name = "tmp", - values(grouped_vars); + var_groups_z; plot_fn = plot_edmf_vert_profile!, MAX_NUM_COLS = 2, MAX_NUM_ROWS = 4, ) - make_plots_generic( simulation_path, - vars_zt, + # There is probably a better way to flatten this + collect(Iterators.flatten(var_groups_zt)), plot_fn = plot_parsed_attribute_title!, summary_files = [tmp_file], MAX_NUM_COLS = 2,