Skip to content

Commit

Permalink
Merge pull request #890 from CliMA/kp/leaderboard
Browse files Browse the repository at this point in the history
Add leaderboard component to ClimaLand's long runs
  • Loading branch information
ph-kev authored Dec 11, 2024
2 parents 8344976 + 9871b4f commit 035b811
Show file tree
Hide file tree
Showing 8 changed files with 543 additions and 5 deletions.
2 changes: 1 addition & 1 deletion .buildkite/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,6 @@ Thermodynamics = "b60c26fb-14c3-4610-9d3e-2d17fe7ff00c"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[compat]
ClimaAnalysis = "0.5.7"
ClimaAnalysis = "0.5.12"
ClimaTimeSteppers = "0.7"
Statistics = "1"
7 changes: 7 additions & 0 deletions Artifacts.toml
Original file line number Diff line number Diff line change
Expand Up @@ -86,3 +86,10 @@ git-tree-sha1 = "49386718eda19d2fa00ae6981d83948c6664057a"
[[lehmann2008_evaporation.download]]
sha256 = "e9603add174709a8eb7f70487bdc0f519843c03d83cb40cf07acd428f0d9d881"
url = "https://caltech.box.com/shared/static/khhop0nvuumrtzdakemaab8hsq8emh8e.gz"

[ilamb_data]
git-tree-sha1 = "839224a62b59d73073bdb9a5c55d3dc75e30fe33"

[[ilamb_data.download]]
sha256 = "64a9a344ebfbb0113014178a1f93a655c401431565907c07fd33aff8860b62d6"
url = "https://caltech.box.com/shared/static/eii2bfwfp47axfeuysgxlgzbczz27u5g.gz"
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ pages = Any[
"Tutorials" => tutorials,
"Standalone models" => standalone_models,
"Diagnostics" => diagnostics,
"Leaderboard" => "leaderboard/leaderboard.md",
"Restarts" => "restarts.md",
"Contribution guide" => "Contributing.md",
"Repository structure" => "folderstructure.md",
Expand Down
122 changes: 122 additions & 0 deletions docs/src/leaderboard/leaderboard.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Leaderboard

## Long run

### Add a new variable to compare against observations
The infrastructure to compute errors against observations is in the `leaderboard` folder.
This folder contains two files: `data_sources.jl`, responsible for loading and preprocessing
variables of interest, and `leaderboard.jl`, which computes error and draw plots. To add a
new variable to the comparison, you modify the `data_sources.jl`.

### Computation
As of now, the leaderboard produces bias plots with the global bias and global root mean
squared error (RMSE). These quantities are computed for each month with the first year of
the simulation not considered as that is the spinup time. The start date of the simulation
is 2008 which means that only the year 2009 is used to compare against observational data.

### Add a new variable to the bias plots
There are four functions that you need to modify to add a new variable which are
`get_sim_var_dict`, `get_obs_var_dict`, `get_mask_dict`, and
`get_compare_vars_biases_plot_extrema`. Each function returns a dictionary that must be
modified to add a new variable to the leaderboard. The dictionaries are `sim_var_dict`,
`obs_var_dict`, `mask_dict`, and `compare_vars_biases_plot_extrema`.

To add a variable for the leaderboard, add a key-value pair to the dictionary `sim_var_dict`
whose key is the short name of the variable and the value is a function that returns a
[`OutputVar`](https://clima.github.io/ClimaAnalysis.jl/dev/var/). Any preprocessing is done
in the function which includes unit conversion and shifting the dates.

```julia
sim_var_dict["et"] =
() -> begin
# Load in variable
sim_var = get(
ClimaAnalysis.SimDir(diagnostics_folder_path),
short_name = "et",
)
# Shift to the first day and subtract one month as preprocessing
sim_var =
ClimaAnalysis.shift_to_start_of_previous_month(sim_var)
return sim_var
end
```

Then, add a key-value pair to the dictionary `obs_var_dict` whose key is the same short name
as before and the value is a function that takes in a start date and returns a `OutputVar`.
Any preprocessing is done in the function.

```julia
obs_var_dict["et"] =
(start_date) -> begin
# We use ClimaArtifacts to use a dataset from ILAMB
obs_var = ClimaAnalysis.OutputVar(
ClimaLand.Artifacts.ilamb_dataset_path(;
context = "evspsbl_MODIS_et_0.5x0.5.nc",
),
"et",
# start_date is used to align the dates in the observational data
# with the simulation data
new_start_date = start_date,
# Shift dates to the first day of the month before aligning the dates
shift_by = Dates.firstdayofmonth,
)
# More preprocessing to match the units with the simulation data
ClimaAnalysis.units(obs_var) == "kg/m2/s" &&
(obs_var = ClimaAnalysis.set_units(obs_var, "kg m^-2 s^-1"))
# ClimaAnalysis cannot handle `missing` values, but does support handling NaNs
obs_var = ClimaAnalysis.replace(obs_var, missing => NaN)
return obs_var
end
```

!!! tip "Preprocessing"
Observational and simulational data should be preprocessed for dates and units. When
using ClimaDiagnostics to report monthly averages from a simulation, monthly averages
are output on the first day following the month when the average was computed. For
instance, the monthly average corresponding to January 2010 is on the date 1 Feb 2010.
Preprocessing is done to shift this date to 1 Jan 2010. When preprocessing data, we
follow the convention that the first day corresponds to the monthly average for that
month. For observational data, you should check the convention being followed and
preprocess the dates if necessary.

For `obs_var_dict`, the anonymous function must take in a start date. The start date is
used in `leaderboard.jl` to adjust the seconds in the `OutputVar` to match between start
date in the simulation data.

Units should be the same between the simulation and observational data.

Next, add a key-value pair to the dictionary `mask_dict` whose key is the same short name
as before and the value is a function that takes in a `OutputVar` representing simulation
data and a `OutputVar` representing observational data and returns a masking function or
`nothing` if no masking function is needed. The masking function is used to correctly
normalize the global bias and global RMSE. See the example below where a mask is made using
the observational data.

```julia
mask_dict["et"] =
(sim_var, obs_var) -> begin
return ClimaAnalysis.make_lonlat_mask(
# We do this to get a `OutputVar` with only two dimensions:
# longitude and latitude
ClimaAnalysis.slice(
obs_var,
time = ClimaAnalysis.times(obs_var) |> first,
);
# Any values that are NaN should be 0.0
set_to_val = isnan,
true_val = 0.0
)
end
```

Finally, add a key-value pair to the dictionary `compare_vars_biases_plot_extrema` whose
key is the same short name as before and the value is a tuple of floats which determine
the range of the bias plots.

```julia
compare_vars_biases_plot_extrema = Dict(
"et" => (-0.00001, 0.00001),
"gpp" => (-8.0, 8.0),
"lwu" => (-40.0, 40.0),
)
```
209 changes: 209 additions & 0 deletions experiments/long_runs/leaderboard/data_sources.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
import ClimaAnalysis

"""
get_sim_var_dict(diagnostics_folder_path)
Return a dictionary mapping short names to `OutputVar` containing preprocessed
simulation data. This is used by the function `compute_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`sim_var_dict` whose key is the short name of the variable and the value is an
anonymous function that returns a `OutputVar`. For each variable, any
preprocessing should be done in the corresponding anonymous function which
includes unit conversion and shifting the dates.
The variable should have only three dimensions: time, longitude, and latitude.
"""
function get_sim_var_dict(diagnostics_folder_path)
# Dict for loading in simulation data
sim_var_dict = Dict{String, Any}()

sim_var_dict["lwu"] =
() -> begin
sim_var = get(
ClimaAnalysis.SimDir(diagnostics_folder_path),
short_name = "lwu",
)
sim_var =
ClimaAnalysis.shift_to_start_of_previous_month(sim_var)
return sim_var
end

sim_var_dict["et"] =
() -> begin
sim_var = get(
ClimaAnalysis.SimDir(diagnostics_folder_path),
short_name = "et",
)
sim_var =
ClimaAnalysis.shift_to_start_of_previous_month(sim_var)
(ClimaAnalysis.units(sim_var) == "kg m^-2 s^-1") && (
sim_var = ClimaAnalysis.convert_units(
sim_var,
"mm / day",
conversion_function = units -> units * 86400.0,
)
)
return sim_var
end


sim_var_dict["gpp"] =
() -> begin
sim_var = get(
ClimaAnalysis.SimDir(diagnostics_folder_path),
short_name = "gpp",
)
sim_var =
ClimaAnalysis.shift_to_start_of_previous_month(sim_var)
# converting from to `mol CO2 m^-2 s^-1` in sim to `g C m-2 day-1` in obs
(ClimaAnalysis.units(sim_var) == "mol CO2 m^-2 s^-1") && (
sim_var = ClimaAnalysis.convert_units(
sim_var,
"g m-2 day-1",
conversion_function = units -> units * 86400.0 * 12.011,
)
)
return sim_var
end
return sim_var_dict
end

"""
get_obs_var_dict()
Return a dictionary mapping short names to `OutputVar` containing preprocessed
observational data. This is used by the function `compute_leaderboard`.
To add a variable for the leaderboard, add a key-value pair to the dictionary
`obs_var_dict` whose key is the short name of the variable and the value is an
anonymous function that returns a `OutputVar`. The function must take in a
start date which is used to align the times in the observational data to match
the simulation data. The short name must be the same as in `sim_var_dict` in the
function `sim_var_dict`. For each variable, any preprocessing is done in the
corresponding anonymous function which includes unit conversion and shifting the
dates.
The variable should have only three dimensions: latitude, longitude, and time.
"""
function get_obs_var_dict()
# Dict for loading in observational data
obs_var_dict = Dict{String, Any}()
obs_var_dict["et"] =
(start_date) -> begin
obs_var = ClimaAnalysis.OutputVar(
ClimaLand.Artifacts.ilamb_dataset_path(;
context = "evspsbl_MODIS_et_0.5x0.5.nc",
),
"et",
new_start_date = start_date,
shift_by = Dates.firstdayofmonth,
)
(ClimaAnalysis.units(obs_var) == "kg/m2/s") && (
obs_var = ClimaAnalysis.convert_units(
obs_var,
"mm / day",
conversion_function = units -> units * 86400.0,
)
)
obs_var = ClimaAnalysis.replace(obs_var, missing => NaN)
return obs_var
end

obs_var_dict["gpp"] =
(start_date) -> begin
obs_var = ClimaAnalysis.OutputVar(
ClimaLand.Artifacts.ilamb_dataset_path(;
context = "gpp_FLUXCOM_gpp.nc",
),
"gpp",
new_start_date = start_date,
shift_by = Dates.firstdayofmonth,
)
ClimaAnalysis.dim_units(obs_var, "lon") == "degree" &&
(obs_var.dim_attributes["lon"]["units"] = "degrees_east")
ClimaAnalysis.dim_units(obs_var, "lat") == "degree" &&
(obs_var.dim_attributes["lat"]["units"] = "degrees_north")
obs_var = ClimaAnalysis.replace(obs_var, missing => NaN)
return obs_var
end

obs_var_dict["lwu"] =
(start_date) -> begin
obs_var = ClimaAnalysis.OutputVar(
ClimaLand.Artifacts.ilamb_dataset_path(;
context = "rlus_CERESed4.2_rlus.nc",
),
"rlus",
new_start_date = start_date,
shift_by = Dates.firstdayofmonth,
)
ClimaAnalysis.units(obs_var) == "W m-2" &&
(obs_var = ClimaAnalysis.set_units(obs_var, "W m^-2"))
return obs_var
end
return obs_var_dict
end

"""
get_mask_dict()
Return a dictionary mapping short names to a function which takes in `sim_var`,
a `OutputVar` containing simulation data, and `obs_var`, a `OutputVar`
containing observational data, and return a masking function.
To add a variable to the leaderboard, add a key-value pair to the dictionary
`mask_dict` whose key is the same short name in `sim_var_dict` and the value is
a function that takes in a `OutputVar` representing simulation data and a
`OutputVar` representing observational data and returns a masking function or
`nothing` if a masking function is not needed. The masking function is used to
correctly normalize the global bias and global RMSE.
"""
function get_mask_dict()
# Dict for loading in masks
mask_dict = Dict{String, Any}()

mask_dict["et"] =
(sim_var, obs_var) -> begin
return ClimaAnalysis.make_lonlat_mask(
ClimaAnalysis.slice(
obs_var,
time = ClimaAnalysis.times(obs_var) |> first,
);
set_to_val = isnan,
)
end

mask_dict["gpp"] =
(sim_var, obs_var) -> begin
return ClimaAnalysis.make_lonlat_mask(
ClimaAnalysis.slice(
obs_var,
time = ClimaAnalysis.times(obs_var) |> first,
);
set_to_val = isnan,
)
end

mask_dict["lwu"] = (sim_var, obs_var) -> begin
return nothing
end
return mask_dict
end

"""
get_compare_vars_biases_plot_extrema()
Return a dictionary mapping short names to ranges for the bias plots.
To add a variable to the leaderboard, add a key-value pair to the dictionary
`compare_vars_biases_plot_extrema` whose key is a short name key is the same
short name in `sim_var_pfull_dict` in the function `get_sim_var_pfull_dict` and
the value is a tuple, where the first element is the lower bound and the last
element is the upper bound for the bias plots.
"""
function get_compare_vars_biases_plot_extrema()
compare_vars_biases_plot_extrema =
Dict("et" => (-2.0, 2.0), "gpp" => (-6.0, 6.0), "lwu" => (-40.0, 40.0))
return compare_vars_biases_plot_extrema
end
Loading

0 comments on commit 035b811

Please sign in to comment.