-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
282 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
# # Global bucket run | ||
|
||
# The code sets up and runs the bucket model on a spherical domain, | ||
# using ERA5 data. | ||
|
||
# Simulation Setup | ||
# Number of spatial elements: 101 in horizontal, 5 in vertical | ||
# Soil depth: 3.5 m | ||
# Simulation duration: 365 d | ||
# Timestep: 3600 s | ||
# Timestepper: RK4 | ||
# Atmos forcing update: every 3 hours | ||
import SciMLBase | ||
import ClimaComms | ||
ClimaComms.@import_required_backends | ||
import ClimaTimeSteppers as CTS | ||
using ClimaCore | ||
using ClimaUtilities.ClimaArtifacts | ||
import Interpolations | ||
using Insolation | ||
|
||
using ClimaDiagnostics | ||
using ClimaAnalysis | ||
import ClimaAnalysis.Visualize as viz | ||
using ClimaUtilities | ||
|
||
import ClimaUtilities.TimeVaryingInputs: | ||
TimeVaryingInput, LinearInterpolation, PeriodicCalendar | ||
import ClimaUtilities.SpaceVaryingInputs: SpaceVaryingInput | ||
import ClimaUtilities.Regridders: InterpolationsRegridder | ||
import ClimaUtilities.ClimaArtifacts: @clima_artifact | ||
import ClimaParams as CP | ||
|
||
using ClimaLand | ||
using ClimaLand.Bucket: | ||
BucketModel, BucketModelParameters, PrescribedBaregroundAlbedo | ||
import ClimaLand | ||
import ClimaLand.Parameters as LP | ||
|
||
using Statistics | ||
using CairoMakie | ||
using Dates | ||
import NCDatasets | ||
|
||
const FT = Float64; | ||
context = ClimaComms.context() | ||
device = ClimaComms.device() | ||
device_suffix = device isa ClimaComms.CPUSingleThreaded ? "cpu" : "gpu" | ||
root_path = "bucket_longrun_$(device_suffix)" | ||
|
||
function setup_prob(t0, tf, Δt,params, outdir; nelements = (101, 7)) | ||
time_interpolation_method = LinearInterpolation(PeriodicCalendar()) | ||
regridder_type = :InterpolationsRegridder | ||
earth_param_set = LP.LandParameters(FT) | ||
radius = FT(6378.1e3) | ||
depth = FT(3.5) | ||
domain = ClimaLand.Domains.SphericalShell(; | ||
radius = radius, | ||
depth = depth, | ||
nelements = nelements, | ||
npolynomial = 1, | ||
dz_tuple = FT.((1.0, 0.05)), | ||
) | ||
surface_space = domain.space.surface | ||
subsurface_space = domain.space.subsurface | ||
|
||
start_date = DateTime(2021) | ||
# Forcing data | ||
era5_artifact_path = | ||
ClimaLand.Artifacts.era5_land_forcing_data2021_folder_path(; context) # Precipitation: | ||
precip = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25_clima.nc"), | ||
"rf", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
file_reader_kwargs = (; preprocess_func = (data) -> -data / 3600,), | ||
method = time_interpolation_method, | ||
) | ||
|
||
snow_precip = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25.nc"), | ||
"sf", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
file_reader_kwargs = (; preprocess_func = (data) -> -data / 3600,), | ||
method = time_interpolation_method, | ||
) | ||
|
||
u_atmos = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25_clima.nc"), | ||
"ws", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
method = time_interpolation_method, | ||
) | ||
q_atmos = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25_clima.nc"), | ||
"q", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
method = time_interpolation_method, | ||
) | ||
P_atmos = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25.nc"), | ||
"sp", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
method = time_interpolation_method, | ||
) | ||
|
||
T_atmos = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25.nc"), | ||
"t2m", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
method = time_interpolation_method, | ||
) | ||
h_atmos = FT(10) | ||
|
||
atmos = PrescribedAtmosphere( | ||
precip, | ||
snow_precip, | ||
T_atmos, | ||
u_atmos, | ||
q_atmos, | ||
P_atmos, | ||
start_date, | ||
h_atmos, | ||
earth_param_set, | ||
) | ||
|
||
# Prescribed radiation | ||
SW_d = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25.nc"), | ||
"ssrd", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
file_reader_kwargs = (; preprocess_func = (data) -> data / 3600,), | ||
method = time_interpolation_method, | ||
) | ||
LW_d = TimeVaryingInput( | ||
joinpath(era5_artifact_path, "era5_2021_0.9x1.25.nc"), | ||
"strd", | ||
surface_space; | ||
reference_date = start_date, | ||
regridder_type, | ||
file_reader_kwargs = (; preprocess_func = (data) -> data / 3600,), | ||
method = time_interpolation_method, | ||
) | ||
|
||
function zenith_angle( | ||
t, | ||
start_date; | ||
latitude = ClimaCore.Fields.coordinate_field(surface_space).lat, | ||
longitude = ClimaCore.Fields.coordinate_field(surface_space).long, | ||
insol_params::Insolation.Parameters.InsolationParameters{FT} = earth_param_set.insol_params, | ||
) where {FT} | ||
# This should be time in UTC | ||
current_datetime = start_date + Dates.Second(round(t)) | ||
|
||
# Orbital Data uses Float64, so we need to convert to our sim FT | ||
d, δ, η_UTC = | ||
FT.( | ||
Insolation.helper_instantaneous_zenith_angle( | ||
current_datetime, | ||
start_date, | ||
insol_params, | ||
) | ||
) | ||
|
||
Insolation.instantaneous_zenith_angle.( | ||
d, | ||
δ, | ||
η_UTC, | ||
longitude, | ||
latitude, | ||
).:1 | ||
end | ||
radiation = | ||
PrescribedRadiativeFluxes(FT, SW_d, LW_d, start_date; θs = zenith_angle) | ||
|
||
# Set up parameters | ||
z_0b = z_0m | ||
τc = FT(Δt) | ||
α_snow = FT(0.8) | ||
(; κ_soil, ρc_soil, f_bucket, W_f, p, z_0m) = params | ||
albedo = PrescribedBaregroundAlbedo{FT}(α_snow, surface_space) | ||
bucket_parameters = BucketModelParameters(FT; albedo, z_0m, z_0b, τc, f_bucket, σS_c, p, W_f, κ_soil, ρc_soil) | ||
bucket = BucketModel( | ||
parameters = bucket_parameters, | ||
domain = domain, | ||
atmosphere = atmos, | ||
radiation = radiation, | ||
) | ||
|
||
temp_anomaly_amip(coord) = 40 * cosd(coord.lat)^4 | ||
Y, p, cds = initialize(bucket) | ||
# Set temperature IC including anomaly, based on atmospheric setup | ||
T_sfc_0 = FT(271.0) | ||
@. Y.bucket.T = T_sfc_0 + temp_anomaly_amip(cds.subsurface) | ||
Y.bucket.W .= FT(f_bucket*W_f) | ||
Y.bucket.Ws .= FT(0.0) | ||
Y.bucket.σS .= FT(0.0) | ||
|
||
set_initial_cache! = make_set_initial_cache(bucket) | ||
set_initial_cache!(p, Y, t0) | ||
exp_tendency! = make_exp_tendency(bucket) | ||
|
||
prob = SciMLBase.ODEProblem( | ||
CTS.ClimaODEFunction(T_exp! = exp_tendency!, dss! = ClimaLand.dss!), | ||
Y, | ||
(t0, tf), | ||
p, | ||
) | ||
|
||
updateat = Array(t0:(3600 * 3):tf) | ||
drivers = ClimaLand.get_drivers(bucket) | ||
updatefunc = ClimaLand.make_update_drivers(drivers) | ||
|
||
# ClimaDiagnostics | ||
|
||
nc_writer = ClimaDiagnostics.Writers.NetCDFWriter(subsurface_space, outdir) | ||
|
||
diags = ClimaLand.default_diagnostics( | ||
bucket, | ||
start_date; | ||
output_writer = nc_writer, | ||
average_period = :monthly, | ||
) | ||
|
||
diagnostic_handler = | ||
ClimaDiagnostics.DiagnosticsHandler(diags, Y, p, t0; dt = Δt) | ||
|
||
diag_cb = ClimaDiagnostics.DiagnosticsCallback(diagnostic_handler) | ||
|
||
driver_cb = ClimaLand.DriverUpdateCallback(updateat, updatefunc) | ||
return prob, SciMLBase.CallbackSet(driver_cb, diag_cb) | ||
end | ||
|
||
function bucket_turbulent_fluxes(params) | ||
t0 = 0.0 | ||
tf = 60 * 60.0 * 24 * 365 | ||
Δt = 900.0 | ||
nelements = (101, 7) | ||
output_id = ?# | ||
diagnostics_outdir = joinpath(root_path, "global_diagnostics", output_id) | ||
outdir = | ||
ClimaUtilities.OutputPathGenerator.generate_output_path(diagnostics_outdir) | ||
prob, cb = setup_prob(t0, tf, Δt, params, outdir; nelements) | ||
|
||
timestepper = CTS.RK4() | ||
ode_algo = CTS.ExplicitAlgorithm(timestepper) | ||
SciMLBase.solve(prob, ode_algo; dt = Δt, callback = cb, adaptive = false) | ||
|
||
# read in output | ||
simdir = ClimaAnalysis.SimDir(outdir) | ||
short_names = | ||
["lhf", "shf"] | ||
timeseries_list = [[],[]] | ||
# First read in a monthly average of one variable to obtain size of data | ||
var = get(simdir; "lhf") | ||
|
||
for short_name, timeseries in zip(short_names,timeseries_list) | ||
var = get(simdir; short_name) | ||
kwargs = ClimaAnalysis.has_altitude(var) ? Dict(:z => 1) : Dict() | ||
times = ClimaAnalysis.times(var) | ||
for t in times | ||
data = ClimaAnalysis.slice(var, time = t; kwargs...) | ||
push!(timeseries, data) | ||
end | ||
end | ||
return timeseries_list | ||
end | ||
|
||
# not sure about mask, output_id |