forked from dananau/GTPyhop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_hgn.py
325 lines (243 loc) · 10.7 KB
/
simple_hgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
An expanded version of the "travel from home to the park" example in
my lectures, modified to use goals instead of tasks.
-- Dana Nau <nau@umd.edu>, July 20, 2021
"""
# kludge to make gtpyhop available regardless of whether the current directory
# is the Examples directory or its parent (where gtpyhop.py is located)
#
import sys
sys.path.append('../')
import gtpyhop
import random
import test_harness as th # code for use in paging and debugging
# Rather than hard-coding the domain name, use the name of the current file.
# This makes the code more portable.
domain_name = __name__
the_domain = gtpyhop.Domain(domain_name)
################################################################################
# rigid relations, states, goals
rigid = gtpyhop.State('rigid relations')
# These types are used by the 'is_a' helper function, later in this file
rigid.types = {
'person': ['alice', 'bob'],
'location': ['home_a', 'home_b', 'park', 'station'],
'taxi': ['taxi1', 'taxi2']}
rigid.dist = {
('home_a', 'park'):8, ('home_b', 'park'):2,
('station', 'home_a'):1, ('station', 'home_b'):7,
('home_a', 'home_b'):7, ('station','park'):9}
# prototypical initial state
state0 = gtpyhop.State('state0')
state0.loc = {'alice':'home_a', 'bob':'home_b', 'taxi1':'park',
'taxi2':'station'}
state0.cash = {'alice':20, 'bob':15}
state0.owe = {'alice':0, 'bob':0}
# initial goal
goal1 = gtpyhop.Multigoal('goal1')
goal1.loc = {'alice':'park'}
# another initial goal
goal2 = gtpyhop.Multigoal('goal2')
goal2.loc = {'bob':'park'}
# bigger initial goal
goal3 = gtpyhop.Multigoal('goal3')
goal3.loc = {'alice':'park', 'bob':'park'}
###############################################################################
# Helper functions:
def taxi_rate(dist):
"In this domain, the taxi fares are quite low :-)"
return (1.5 + 0.5 * dist)
def distance(x,y):
"""
If rigid.dist[(x,y)] = d, this function figures out that d is both
the distance from x to y and the distance from y to x.
"""
return rigid.dist.get((x,y)) or rigid.dist.get((y,x))
def is_a(variable,type):
"""
In most classical planners, one would declare data-types for the parameters
of each action, and the data-type checks would be done by the planner.
GTPyhop doesn't have a way to do that, so the 'is_a' function gives us a
way to do it in the preconditions of each action, command, and method.
'is_a' doesn't implement subtypes (e.g., if rigid.type[x] = y and
rigid.type[x] = z, it doesn't infer that rigid.type[x] = z. It wouldn't be
hard to implement this, but it isn't needed in the simple-travel domain.
"""
return variable in rigid.types[type]
###############################################################################
# Actions:
def walk(state,p,x,y):
if is_a(p,'person') and is_a(x,'location') and is_a(y,'location') and x != y:
if state.loc[p] == x:
state.loc[p] = y
return state
def call_taxi(state,p,x):
if is_a(p,'person') and is_a(x,'location'):
state.loc['taxi1'] = x
state.loc[p] = 'taxi1'
return state
def ride_taxi(state,p,y):
# if p is a person, p is in a taxi, and y is a location:
if is_a(p,'person') and is_a(state.loc[p],'taxi') and is_a(y,'location'):
taxi = state.loc[p]
x = state.loc[taxi]
if is_a(x,'location') and x != y:
state.loc[taxi] = y
state.owe[p] = taxi_rate(distance(x,y))
return state
def pay_driver(state,p,y):
if is_a(p,'person'):
if state.cash[p] >= state.owe[p]:
state.cash[p] = state.cash[p] - state.owe[p]
state.owe[p] = 0
state.loc[p] = y
return state
gtpyhop.declare_actions(walk, call_taxi, ride_taxi, pay_driver)
###############################################################################
# Commands:
# this does the same thing as the action model
def c_walk(state,p,x,y):
if is_a(p,'person') and is_a(x,'location') and is_a(y,'location'):
if state.loc[p] == x:
state.loc[p] = y
return state
# c_call_taxi
# like the action model, but chooses the taxi randomly
def c_call_taxi(state,p,x):
if is_a(p,'person') and is_a(x,'location'):
taxi = 'taxi{}'.format(1+random.randrange(2))
print(f'Action> the taxi is chosen randomly. This time it is {taxi}.')
state.loc[taxi] = x
state.loc[p] = taxi
return state
# c_ride_taxi, version used in simple_tasks1
# this does the same thing as the action model
def c_ride_taxi(state,p,y):
# if p is a person, p is in a taxi, and y is a location:
if is_a(p,'person') and is_a(state.loc[p],'taxi') and is_a(y,'location'):
taxi = state.loc[p]
x = state.loc[taxi]
if is_a(x,'location') and x != y:
state.loc[taxi] = y
state.owe[p] = taxi_rate(distance(x,y))
return state
# this does the same thing as the action model
def c_pay_driver(state,p,y):
return pay_driver(state,p,y)
gtpyhop.declare_commands(c_walk, c_call_taxi, c_ride_taxi, c_pay_driver)
###############################################################################
# Methods:
def travel_by_foot(state,p,y):
if is_a(p,'person') and is_a(y,'location'):
x = state.loc[p]
if x != y and distance(x,y) <= 2:
return [('walk',p,x,y)]
def travel_by_taxi(state,p,y):
if is_a(p,'person') and is_a(y,'location'):
x = state.loc[p]
if x != y and state.cash[p] >= taxi_rate(distance(x,y)):
return [('call_taxi',p,x), ('ride_taxi',p,y), ('pay_driver',p,y)]
gtpyhop.declare_unigoal_methods('loc',travel_by_foot,travel_by_taxi)
# GTPyhop provides a built-in multigoal method called m_split_multigoal to
# separate a multigoal G into a collection of unigoals. It returns a list of
# goals [g1, ..., gn, G], where g1, ..., gn are the unigoals in G that aren't
# true in the current state. Since G is at the end of the list, seek_plan
# will first plan for g1, ..., gn and then call m_split_multigoal again, in
# order to re-achieve any goals that (due to deleted-condition interactions)
# became false while accomplishing g1, ..., gn.
# The main problem with m_split_multigoal is that it isn't smart about
# choosing an order in which to achieve g1, ..., gn. Usually some orders
# will work better than others, and a possible project would be to create a
# heuristic function to choose a good order.
gtpyhop.declare_multigoal_methods(gtpyhop.m_split_multigoal)
###############################################################################
# Running the examples
print('-----------------------------------------------------------------------')
print(f"Created the domain '{domain_name}'. To run the examples, type this:")
print(f"{domain_name}.main()")
def main(do_pauses=True):
"""
Run various examples.
main() will pause occasionally to let you examine the output.
main(False) will run straight through to the end, without stopping.
"""
# If we've changed to some other domain, this will change us back.
gtpyhop.current_domain = the_domain
gtpyhop.print_domain()
state1 = state0.copy()
# state1.display(heading='\nThe initial state is')
print("""
Next, several planning problems using the above domain and initial state.
""")
th.pause(do_pauses)
print("""
Below, we give find_plan the goal of having alice be at the park.
We do it several times with different values for 'verbose'.
""")
expected = [('call_taxi', 'alice', 'home_a'), ('ride_taxi', 'alice', 'park'), ('pay_driver', 'alice', 'park')]
print("If verbose=0, the planner returns the solution but prints nothing:")
gtpyhop.verbose = 0
result = gtpyhop.find_plan(state1,[('loc','alice','park')])
th.check_result(result,expected)
print("""If verbose=1, then in addition to returning the solution, the planner prints
both the problem and the solution"
""")
gtpyhop.verbose = 1
result = gtpyhop.find_plan(state1,[('loc','alice','park')])
th.check_result(result,expected)
print("""If verbose=2, the planner also prints a note at each recursive call. Below,
_verify_g is a task used by the planner to check whether a method has
achieved its goal.
""")
gtpyhop.verbose = 2
result = gtpyhop.find_plan(state1,[('loc','alice','park')])
th.check_result(result,expected)
th.pause(do_pauses)
print("""
If verbose=3, the planner prints even more information.
""")
gtpyhop.verbose = 3
result = gtpyhop.find_plan(state1,[('loc','alice','park')])
th.check_result(result,expected)
th.pause(do_pauses)
print("""
Next, we give find_plan a sequence of two goals: first for Alice to be at the
park, then for Bob to be at the park. Since this is a sequence, it doesn't
matter whether they're both at the park at the same time.
""")
gtpyhop.verbose = 2
plan = gtpyhop.find_plan(state1,[('loc','alice','park'),('loc','bob','park')])
th.check_result(plan,[('call_taxi', 'alice', 'home_a'), ('ride_taxi', 'alice', 'park'), ('pay_driver', 'alice', 'park'), ('walk', 'bob', 'home_b', 'park')])
th.pause(do_pauses)
state1.display(heading='\nInitial state')
print("""
A multigoal g looks similar to a state, but usually it includes just a few of
the state variables rather than all of them. It specifies *desired* values
for those state variables, rather than current values. The goal is to produce
a state that satisfies all of the desired values.
Below, goal3 is the goal of having Alice and Bob at the park at the same time.
""")
goal3.display()
print("""
Next, we'll call find_plan on goal3, with verbose=2. In the printout,
_verify_mg is a task used by the planner to check whether a multigoal
method has achieved all of the values specified in the multigoal.
""")
th.pause(do_pauses)
gtpyhop.verbose = 2
plan = gtpyhop.find_plan(state1,[goal3])
th.check_result(plan,[('call_taxi', 'alice', 'home_a'), ('ride_taxi', 'alice', 'park'), ('pay_driver', 'alice', 'park'), ('walk', 'bob', 'home_b', 'park')])
th.pause(do_pauses)
print('\nCall run_lazy_lookahead with verbose=1:\n')
gtpyhop.verbose = 1
new_state = gtpyhop.run_lazy_lookahead(state1,[('loc','alice','park')])
print('')
th.pause(do_pauses)
print('\nAlice is now at the park, so the planner will return an empty plan:\n')
gtpyhop.verbose = 1
plan = gtpyhop.find_plan(new_state,[('loc','alice','park')])
th.check_result(plan,[])
print("No more examples")
###############################################################################
# At this point, I used to call main() so the examples would run automatically,
# but I've removed that to maintain uniformity with the other example domains.