diff --git a/dev/.doctrees/cite.doctree b/dev/.doctrees/cite.doctree index 561292276..47686abd5 100644 Binary files a/dev/.doctrees/cite.doctree and b/dev/.doctrees/cite.doctree differ diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 21b1a86a6..3d00cc0f4 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.doctree b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.doctree index 5f6880a5e..6e398ae7f 100644 Binary files a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.doctree and b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.doctree b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.doctree index 446f121a6..82f474d92 100644 Binary files a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.doctree and b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.doctree b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.doctree index 92408d3d4..a0ec80b3d 100644 Binary files a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.doctree and b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.doctree b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.doctree index dfcfd545e..aa82645df 100644 Binary files a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.doctree and b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.logp.doctree b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.logp.doctree index b2f6b6fa4..4b2e60719 100644 Binary files a/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.logp.doctree and b/dev/.doctrees/generated/pyhgf.distribution/pyhgf.distribution.logp.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.MultivariateNormal.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.MultivariateNormal.doctree index 8d7bd58a1..cc7d89f3e 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.MultivariateNormal.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.MultivariateNormal.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.Normal.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.Normal.doctree index b55eb6459..461f25e7d 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.Normal.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.Normal.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise.doctree index 8c46fbda4..994de6f25 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.doctree index 03f728efa..467e8f974 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.doctree index f2bc90ca2..03e97508d 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_density.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_density.doctree index 9867bd8a2..cc997f249 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_density.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_density.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.doctree index db5736515..adf31d420 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_surprise.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_surprise.doctree index b9f0b3584..ab055478f 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_surprise.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.gaussian_surprise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.sigmoid.doctree b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.sigmoid.doctree index d82e89876..a01a5d303 100644 Binary files a/dev/.doctrees/generated/pyhgf.math/pyhgf.math.sigmoid.doctree and b/dev/.doctrees/generated/pyhgf.math/pyhgf.math.sigmoid.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.HGF.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.HGF.doctree index bb04fe25b..d436dee77 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.HGF.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.HGF.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.Network.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.Network.doctree index 7a86be8b3..62bdb2e5e 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.Network.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.Network.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_correlations.doctree b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_correlations.doctree index 515edcde5..9246141ee 100644 Binary files a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_correlations.doctree and b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_correlations.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_network.doctree b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_network.doctree index b227a6dcb..cb4fc796d 100644 Binary files a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_network.doctree and b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_network.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_nodes.doctree b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_nodes.doctree index 96f9e77f8..d7d7ac0fa 100644 Binary files a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_nodes.doctree and b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_nodes.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.doctree b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.doctree index 08c71c53d..b0ebf2005 100644 Binary files a/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.doctree and b/dev/.doctrees/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax.doctree b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax.doctree index c5cc13cb1..1accb069b 100644 Binary files a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax.doctree and b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.doctree b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.doctree index 6f141a8ce..3389d37ee 100644 Binary files a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.doctree and b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.doctree b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.doctree index eb642e7bc..1684a9ff6 100644 Binary files a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.doctree and b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.doctree b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.doctree index 3877182f2..13fef2ad6 100644 Binary files a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.doctree and b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.doctree b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.doctree index ff127cdee..49b7136d4 100644 Binary files a/dev/.doctrees/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.doctree and b/dev/.doctrees/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.doctree index d5f4c7d3a..239e68b29 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree index 330c8c068..23a59ec1f 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree index bc7d836e0..ff4ef78c3 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree index 8cf14b658..b81a08a14 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree index 3521bc98b..8c0b181c8 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.doctree index e086ad457..8f74d6bb3 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.doctree index 2af426266..8054bd5b2 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.doctree index 6bc4a8c28..32986b13b 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.doctree index eb0e956dc..5b387cddf 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.doctree index 4493be009..b1ef9eb4a 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.doctree index 0d2ac09f4..d84726102 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.doctree index d24fe6b71..b833e65cc 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.doctree index b35910623..29240fd78 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.doctree index 34505af0a..89cb69e74 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.doctree index 9497d0777..4cba60aaf 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.doctree index fc5e7eb84..10afbdc61 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.doctree index a681ccba7..e3570034f 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.doctree index 1613a4069..1e2e0af98 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.doctree index d6b0bddaa..c3bd6f8c5 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.doctree index bc884579b..6d2f8bf52 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.doctree index 940f281ff..1d2625ff9 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.doctree index 47ee9b42a..d69416fb5 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.doctree b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.doctree index fda2d734a..3dd5801de 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.doctree and b/dev/.doctrees/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.add_edges.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.add_edges.doctree index 4bfb65ae5..5e397547f 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.add_edges.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.add_edges.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.doctree index 3d0baf605..8e7e5e367 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.doctree index 96909c375..aa2b65a56 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.doctree index 4713c13cd..f7d5602c3 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.doctree index 0da691074..fb6420048 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.list_branches.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.list_branches.doctree index 25a14a35d..b22d4383a 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.list_branches.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.list_branches.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.to_pandas.doctree b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.to_pandas.doctree index fa47eba0a..c686e4d93 100644 Binary files a/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.to_pandas.doctree and b/dev/.doctrees/generated/pyhgf.utils/pyhgf.utils.to_pandas.doctree differ diff --git a/dev/.doctrees/index.doctree b/dev/.doctrees/index.doctree index f77422f10..6ab92c818 100644 Binary files a/dev/.doctrees/index.doctree and b/dev/.doctrees/index.doctree differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index aa6280c73..278fe3595 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index aa9844339..b676368c1 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index 75ae6f5df..afe1560b4 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index 1be182854..fd9f90439 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index 7be300685..e1afcc31e 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index ba3a79ce7..feef3c796 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index 1d7fd6ea6..c7de686ac 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index ec8f4fd12..cfbb2bb09 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 203a53d3d..8410021d1 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index c683c579c..b5b3042b2 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 5bb2d2c53..17a3ce268 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index 5f5ee0b5c..89b67597d 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index ca05a96e4..76e48e831 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index 642b537dd..748c201cd 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index 601beeb43..1abefbae5 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/06cd5951c2551d0555a324efb3885633bc610d2e08e6e1d08e3af0d939fa3ce5.png b/dev/_images/06cd5951c2551d0555a324efb3885633bc610d2e08e6e1d08e3af0d939fa3ce5.png deleted file mode 100644 index 8e098ad0e..000000000 Binary files a/dev/_images/06cd5951c2551d0555a324efb3885633bc610d2e08e6e1d08e3af0d939fa3ce5.png and /dev/null differ diff --git a/dev/_images/276f245ebd9fd4bcae5e926f51a69ac0c4a8b7994776641b7ca80207aba0e073.svg b/dev/_images/0747ca4d2db1d73075db0036fa2d7adb40e86a06d3c587c73103c1d2a5698bb6.svg similarity index 100% rename from dev/_images/276f245ebd9fd4bcae5e926f51a69ac0c4a8b7994776641b7ca80207aba0e073.svg rename to dev/_images/0747ca4d2db1d73075db0036fa2d7adb40e86a06d3c587c73103c1d2a5698bb6.svg index 3cf39a20b..331b7e5d2 100644 --- a/dev/_images/276f245ebd9fd4bcae5e926f51a69ac0c4a8b7994776641b7ca80207aba0e073.svg +++ b/dev/_images/0747ca4d2db1d73075db0036fa2d7adb40e86a06d3c587c73103c1d2a5698bb6.svg @@ -9,22 +9,22 @@ %3 - - -tonic_volatility_1 - -tonic_volatility_1 -~ -Normal - - + hgf_loglike hgf_loglike ~ Potential + + +tonic_volatility_1 + +tonic_volatility_1 +~ +Normal + tonic_volatility_1->hgf_loglike diff --git a/dev/_images/094f6f56f04bccb6978a4c6cf2ec5dcd4ef6c2bfe284697bedea2bf9ac881c29.png b/dev/_images/094f6f56f04bccb6978a4c6cf2ec5dcd4ef6c2bfe284697bedea2bf9ac881c29.png new file mode 100644 index 000000000..0a05d812d Binary files /dev/null and b/dev/_images/094f6f56f04bccb6978a4c6cf2ec5dcd4ef6c2bfe284697bedea2bf9ac881c29.png differ diff --git a/dev/_images/0c276c5cfb50b309f07a39e05a3ba3cd13c8b5b60aafcdd907fe5fcd49f5f34c.png b/dev/_images/0c276c5cfb50b309f07a39e05a3ba3cd13c8b5b60aafcdd907fe5fcd49f5f34c.png deleted file mode 100644 index 0114a6e88..000000000 Binary files a/dev/_images/0c276c5cfb50b309f07a39e05a3ba3cd13c8b5b60aafcdd907fe5fcd49f5f34c.png and /dev/null differ diff --git a/dev/_images/0dc8b87353233283107f25343d965d4499efe5da957a578eb62db1f545510ca5.png b/dev/_images/0dc8b87353233283107f25343d965d4499efe5da957a578eb62db1f545510ca5.png deleted file mode 100644 index 5d11a4821..000000000 Binary files a/dev/_images/0dc8b87353233283107f25343d965d4499efe5da957a578eb62db1f545510ca5.png and /dev/null differ diff --git a/dev/_images/0fd03b0a8d1b44a6793a813994bb9e24c446e29152fc568e9b8f863cb92c3b30.png b/dev/_images/0fd03b0a8d1b44a6793a813994bb9e24c446e29152fc568e9b8f863cb92c3b30.png deleted file mode 100644 index 54f0aec56..000000000 Binary files a/dev/_images/0fd03b0a8d1b44a6793a813994bb9e24c446e29152fc568e9b8f863cb92c3b30.png and /dev/null differ diff --git a/dev/_images/13a7d0df5117064a404a2f22cd754aea275a0131f6a9215e253cd7cdf0f40c52.png b/dev/_images/13a7d0df5117064a404a2f22cd754aea275a0131f6a9215e253cd7cdf0f40c52.png deleted file mode 100644 index d03f6df00..000000000 Binary files a/dev/_images/13a7d0df5117064a404a2f22cd754aea275a0131f6a9215e253cd7cdf0f40c52.png and /dev/null differ diff --git a/dev/_images/16c6ada155f288747dee4bff6b2f604c656055b9d1bcb0b91b45bb3f16c69305.png b/dev/_images/16c6ada155f288747dee4bff6b2f604c656055b9d1bcb0b91b45bb3f16c69305.png deleted file mode 100644 index c84465ce4..000000000 Binary files a/dev/_images/16c6ada155f288747dee4bff6b2f604c656055b9d1bcb0b91b45bb3f16c69305.png and /dev/null differ diff --git a/dev/_images/1b5e44337acad6ef76a6d338b3ff2d4ca7ccb2900ec66f94fe260c37dfb9e34b.png b/dev/_images/1b5e44337acad6ef76a6d338b3ff2d4ca7ccb2900ec66f94fe260c37dfb9e34b.png new file mode 100644 index 000000000..d9fcdd639 Binary files /dev/null and b/dev/_images/1b5e44337acad6ef76a6d338b3ff2d4ca7ccb2900ec66f94fe260c37dfb9e34b.png differ diff --git a/dev/_images/30be98f8c9532ee6f9b6c3320fb762b3ed55bcee208da11ea485bf7b5b85ebbd.png b/dev/_images/30be98f8c9532ee6f9b6c3320fb762b3ed55bcee208da11ea485bf7b5b85ebbd.png new file mode 100644 index 000000000..927ff5f4e Binary files /dev/null and b/dev/_images/30be98f8c9532ee6f9b6c3320fb762b3ed55bcee208da11ea485bf7b5b85ebbd.png differ diff --git a/dev/_images/36adc3655fa3b1edac899d675d346f794decde0bd2883b967aa5549b6d0c7be0.png b/dev/_images/36adc3655fa3b1edac899d675d346f794decde0bd2883b967aa5549b6d0c7be0.png deleted file mode 100644 index de80098d4..000000000 Binary files a/dev/_images/36adc3655fa3b1edac899d675d346f794decde0bd2883b967aa5549b6d0c7be0.png and /dev/null differ diff --git a/dev/_images/3cd13b6a780f84d5824d600f479102e9b62d6c7c5191e89e109d922f954ab434.png b/dev/_images/3cd13b6a780f84d5824d600f479102e9b62d6c7c5191e89e109d922f954ab434.png new file mode 100644 index 000000000..39dcc94c5 Binary files /dev/null and b/dev/_images/3cd13b6a780f84d5824d600f479102e9b62d6c7c5191e89e109d922f954ab434.png differ diff --git a/dev/_images/4291acfb28941c400868b537e1194b2b7dffd8cdcb65f3839e462e19feffd434.png b/dev/_images/4291acfb28941c400868b537e1194b2b7dffd8cdcb65f3839e462e19feffd434.png deleted file mode 100644 index ae9531360..000000000 Binary files a/dev/_images/4291acfb28941c400868b537e1194b2b7dffd8cdcb65f3839e462e19feffd434.png and /dev/null differ diff --git a/dev/_images/4ab50732bcd05d082d0f892f89a63f5c6ae73cfdee140fe0cbb3e2c05c383d79.png b/dev/_images/4ab50732bcd05d082d0f892f89a63f5c6ae73cfdee140fe0cbb3e2c05c383d79.png new file mode 100644 index 000000000..70e933c3b Binary files /dev/null and b/dev/_images/4ab50732bcd05d082d0f892f89a63f5c6ae73cfdee140fe0cbb3e2c05c383d79.png differ diff --git a/dev/_images/500ef73e4ec08b5c2df34c9a8ae09ec09a75357f36cbc3542f842e229f3d5ca1.png b/dev/_images/500ef73e4ec08b5c2df34c9a8ae09ec09a75357f36cbc3542f842e229f3d5ca1.png deleted file mode 100644 index 27c73f572..000000000 Binary files a/dev/_images/500ef73e4ec08b5c2df34c9a8ae09ec09a75357f36cbc3542f842e229f3d5ca1.png and /dev/null differ diff --git a/dev/_images/514cf2b6e324d10af6bbcddc12a6da57216c859078391051ba199b1f0e56b878.png b/dev/_images/514cf2b6e324d10af6bbcddc12a6da57216c859078391051ba199b1f0e56b878.png deleted file mode 100644 index db21c2d0c..000000000 Binary files a/dev/_images/514cf2b6e324d10af6bbcddc12a6da57216c859078391051ba199b1f0e56b878.png and /dev/null differ diff --git a/dev/_images/56340da6a6724fa689816d4bb9f702c278ce28f80f94776a2b8f799b1da81ab5.png b/dev/_images/56340da6a6724fa689816d4bb9f702c278ce28f80f94776a2b8f799b1da81ab5.png new file mode 100644 index 000000000..d05d07447 Binary files /dev/null and b/dev/_images/56340da6a6724fa689816d4bb9f702c278ce28f80f94776a2b8f799b1da81ab5.png differ diff --git a/dev/_images/56f1af6cdd1d35f9ce4bf5f3dc1eb12c54cc009a01e4e017dbc7fe5595483c51.png b/dev/_images/56f1af6cdd1d35f9ce4bf5f3dc1eb12c54cc009a01e4e017dbc7fe5595483c51.png new file mode 100644 index 000000000..655252f82 Binary files /dev/null and b/dev/_images/56f1af6cdd1d35f9ce4bf5f3dc1eb12c54cc009a01e4e017dbc7fe5595483c51.png differ diff --git a/dev/_images/5870548da7580e87dc96976cef7e986f89a58846775237d170818f378e026c25.png b/dev/_images/5870548da7580e87dc96976cef7e986f89a58846775237d170818f378e026c25.png new file mode 100644 index 000000000..bc428965c Binary files /dev/null and b/dev/_images/5870548da7580e87dc96976cef7e986f89a58846775237d170818f378e026c25.png differ diff --git a/dev/_images/5925149e4af8226fd70aec5be4017a0706347b4e1b0f8258d976c52474f7f3bb.png b/dev/_images/5925149e4af8226fd70aec5be4017a0706347b4e1b0f8258d976c52474f7f3bb.png new file mode 100644 index 000000000..9f7c8b11b Binary files /dev/null and b/dev/_images/5925149e4af8226fd70aec5be4017a0706347b4e1b0f8258d976c52474f7f3bb.png differ diff --git a/dev/_images/5b4a39bc05248c24783aa1a3b0e2e1aaa3489663bbd310b271920d48f264a721.png b/dev/_images/5b4a39bc05248c24783aa1a3b0e2e1aaa3489663bbd310b271920d48f264a721.png deleted file mode 100644 index 4fe70dc97..000000000 Binary files a/dev/_images/5b4a39bc05248c24783aa1a3b0e2e1aaa3489663bbd310b271920d48f264a721.png and /dev/null differ diff --git a/dev/_images/6c1a22605a4997a45cfb410047699b80ee28a2f56f4c2d59e9f7a5753a844883.png b/dev/_images/6c1a22605a4997a45cfb410047699b80ee28a2f56f4c2d59e9f7a5753a844883.png new file mode 100644 index 000000000..3ae22b0bf Binary files /dev/null and b/dev/_images/6c1a22605a4997a45cfb410047699b80ee28a2f56f4c2d59e9f7a5753a844883.png differ diff --git a/dev/_images/6db13be5fd35a236666123ad7ad5029e06a298bc37412103aa94e1a00998eb34.png b/dev/_images/6db13be5fd35a236666123ad7ad5029e06a298bc37412103aa94e1a00998eb34.png deleted file mode 100644 index 05d8f188d..000000000 Binary files a/dev/_images/6db13be5fd35a236666123ad7ad5029e06a298bc37412103aa94e1a00998eb34.png and /dev/null differ diff --git a/dev/_images/6ee48f0814a36c6d2a092e7f3d7190e52df355f5b763e277222f198582801bd9.png b/dev/_images/6ee48f0814a36c6d2a092e7f3d7190e52df355f5b763e277222f198582801bd9.png new file mode 100644 index 000000000..147735c79 Binary files /dev/null and b/dev/_images/6ee48f0814a36c6d2a092e7f3d7190e52df355f5b763e277222f198582801bd9.png differ diff --git a/dev/_images/70c1ec0f520a7179c16b0742faad8dfa6c01828ad307eb237c7db994189d4043.png b/dev/_images/70c1ec0f520a7179c16b0742faad8dfa6c01828ad307eb237c7db994189d4043.png new file mode 100644 index 000000000..b10ad1f41 Binary files /dev/null and b/dev/_images/70c1ec0f520a7179c16b0742faad8dfa6c01828ad307eb237c7db994189d4043.png differ diff --git a/dev/_images/7448dbd5b01f734252295940ca521bb79a7e9ce7d7c02c23790922cf8dee12ad.png b/dev/_images/7448dbd5b01f734252295940ca521bb79a7e9ce7d7c02c23790922cf8dee12ad.png deleted file mode 100644 index e28d989ad..000000000 Binary files a/dev/_images/7448dbd5b01f734252295940ca521bb79a7e9ce7d7c02c23790922cf8dee12ad.png and /dev/null differ diff --git a/dev/_images/79f571b81671e4d1a5a330dea7a300a737c0184361362bece44293e16c758c6c.png b/dev/_images/79f571b81671e4d1a5a330dea7a300a737c0184361362bece44293e16c758c6c.png deleted file mode 100644 index 6cbaed39a..000000000 Binary files a/dev/_images/79f571b81671e4d1a5a330dea7a300a737c0184361362bece44293e16c758c6c.png and /dev/null differ diff --git a/dev/_images/7d1d653f89c31dcbff553f9e4e7fa21764fcdcec90588cd21967bb3c91758740.png b/dev/_images/7d1d653f89c31dcbff553f9e4e7fa21764fcdcec90588cd21967bb3c91758740.png new file mode 100644 index 000000000..93f023822 Binary files /dev/null and b/dev/_images/7d1d653f89c31dcbff553f9e4e7fa21764fcdcec90588cd21967bb3c91758740.png differ diff --git a/dev/_images/8099d16c3bd69dac48d6783186b28bf51cfef46af4cd393a0bd717606ce1fba3.png b/dev/_images/8099d16c3bd69dac48d6783186b28bf51cfef46af4cd393a0bd717606ce1fba3.png new file mode 100644 index 000000000..672c335f8 Binary files /dev/null and b/dev/_images/8099d16c3bd69dac48d6783186b28bf51cfef46af4cd393a0bd717606ce1fba3.png differ diff --git a/dev/_images/8b9a0887ecd366513b02fe235b9bad8dbe01366a68f2120300c7ff0b08d56f01.png b/dev/_images/8b9a0887ecd366513b02fe235b9bad8dbe01366a68f2120300c7ff0b08d56f01.png new file mode 100644 index 000000000..505053106 Binary files /dev/null and b/dev/_images/8b9a0887ecd366513b02fe235b9bad8dbe01366a68f2120300c7ff0b08d56f01.png differ diff --git a/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png b/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png deleted file mode 100644 index 21b1de46e..000000000 Binary files a/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png and /dev/null differ diff --git a/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg b/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg similarity index 100% rename from dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg rename to dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg index a85f1c417..0255e9b57 100644 --- a/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg +++ b/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg @@ -9,22 +9,22 @@ %3 - - -tonic_volatility_2 - -tonic_volatility_2 -~ -Normal - - + hgf_loglike hgf_loglike ~ Potential + + +tonic_volatility_2 + +tonic_volatility_2 +~ +Normal + tonic_volatility_2->hgf_loglike diff --git a/dev/_images/98e8df62f5c6626197fa1eadacb20ea921409801b2f8c0ced3aca1d0606b9dad.png b/dev/_images/98e8df62f5c6626197fa1eadacb20ea921409801b2f8c0ced3aca1d0606b9dad.png new file mode 100644 index 000000000..f57912cd9 Binary files /dev/null and b/dev/_images/98e8df62f5c6626197fa1eadacb20ea921409801b2f8c0ced3aca1d0606b9dad.png differ diff --git a/dev/_images/999a4d53dc2b173e3709e3182e41fc89cee354bf195ebe403a332cdb04deeabe.png b/dev/_images/999a4d53dc2b173e3709e3182e41fc89cee354bf195ebe403a332cdb04deeabe.png deleted file mode 100644 index 49a144128..000000000 Binary files a/dev/_images/999a4d53dc2b173e3709e3182e41fc89cee354bf195ebe403a332cdb04deeabe.png and /dev/null differ diff --git a/dev/_images/a16f2a0e803af1687d9302e019a91fd3ef85cda1d405663f49b57c6e441736d0.png b/dev/_images/a16f2a0e803af1687d9302e019a91fd3ef85cda1d405663f49b57c6e441736d0.png deleted file mode 100644 index 6b6b514c8..000000000 Binary files a/dev/_images/a16f2a0e803af1687d9302e019a91fd3ef85cda1d405663f49b57c6e441736d0.png and /dev/null differ diff --git a/dev/_images/a7ff42ea62b5cfd75e7e16dfeaf0164812fa63a820ea31d9e721139fd19406ad.png b/dev/_images/a7ff42ea62b5cfd75e7e16dfeaf0164812fa63a820ea31d9e721139fd19406ad.png deleted file mode 100644 index 261141490..000000000 Binary files a/dev/_images/a7ff42ea62b5cfd75e7e16dfeaf0164812fa63a820ea31d9e721139fd19406ad.png and /dev/null differ diff --git a/dev/_images/50995f53cefc3c3203ab5161a4f9dd7d4207dff120246367c1eae6dc86853532.svg b/dev/_images/afd058794b250ecaff14b62d2d33f561b49859d0078579d33aadea7a6f8bff67.svg similarity index 100% rename from dev/_images/50995f53cefc3c3203ab5161a4f9dd7d4207dff120246367c1eae6dc86853532.svg rename to dev/_images/afd058794b250ecaff14b62d2d33f561b49859d0078579d33aadea7a6f8bff67.svg index 41d5195ba..c5e6b383c 100644 --- a/dev/_images/50995f53cefc3c3203ab5161a4f9dd7d4207dff120246367c1eae6dc86853532.svg +++ b/dev/_images/afd058794b250ecaff14b62d2d33f561b49859d0078579d33aadea7a6f8bff67.svg @@ -72,7 +72,7 @@ LogNormal - + mu_temperature->inverse_temperature @@ -86,7 +86,7 @@ HalfNormal - + sigma_temperature->inverse_temperature diff --git a/dev/_images/b08e712ef31245f2159c140642c43c12b2835a62eace4eb23381383e1f5c2e59.png b/dev/_images/b08e712ef31245f2159c140642c43c12b2835a62eace4eb23381383e1f5c2e59.png new file mode 100644 index 000000000..fa6266c72 Binary files /dev/null and b/dev/_images/b08e712ef31245f2159c140642c43c12b2835a62eace4eb23381383e1f5c2e59.png differ diff --git a/dev/_images/ba4ce698e4bee20f9cd17a2747f7c5b03142dd97a82b583cd4961c4197aca871.png b/dev/_images/ba4ce698e4bee20f9cd17a2747f7c5b03142dd97a82b583cd4961c4197aca871.png new file mode 100644 index 000000000..4b11fb501 Binary files /dev/null and b/dev/_images/ba4ce698e4bee20f9cd17a2747f7c5b03142dd97a82b583cd4961c4197aca871.png differ diff --git a/dev/_images/bcdae9e6cbcc389e9c8c6218baffd9083d48746ab8b151db2823d7fe6dc7b996.png b/dev/_images/bcdae9e6cbcc389e9c8c6218baffd9083d48746ab8b151db2823d7fe6dc7b996.png deleted file mode 100644 index 300fe7ec5..000000000 Binary files a/dev/_images/bcdae9e6cbcc389e9c8c6218baffd9083d48746ab8b151db2823d7fe6dc7b996.png and /dev/null differ diff --git a/dev/_images/c035746bbc7aef9b1dca655ff4f1d108058bc532b0510447e7ff9f43631b2ecb.png b/dev/_images/c035746bbc7aef9b1dca655ff4f1d108058bc532b0510447e7ff9f43631b2ecb.png new file mode 100644 index 000000000..50dfe92d3 Binary files /dev/null and b/dev/_images/c035746bbc7aef9b1dca655ff4f1d108058bc532b0510447e7ff9f43631b2ecb.png differ diff --git a/dev/_images/c356c335832d4a4938f04a7fc61c1b84bdb88239b5f356c2492d457da8dee69c.png b/dev/_images/c356c335832d4a4938f04a7fc61c1b84bdb88239b5f356c2492d457da8dee69c.png new file mode 100644 index 000000000..b5ff6831b Binary files /dev/null and b/dev/_images/c356c335832d4a4938f04a7fc61c1b84bdb88239b5f356c2492d457da8dee69c.png differ diff --git a/dev/_images/c9bc147d13c0708e4e9c5a643a942f49a94eddb588e285e5d81da81413067502.png b/dev/_images/c9bc147d13c0708e4e9c5a643a942f49a94eddb588e285e5d81da81413067502.png new file mode 100644 index 000000000..7c2936ce4 Binary files /dev/null and b/dev/_images/c9bc147d13c0708e4e9c5a643a942f49a94eddb588e285e5d81da81413067502.png differ diff --git a/dev/_images/ccabe62c371c8a61f698b189a7d306ae989b26daefcf2efd7b822a60eedc82e1.png b/dev/_images/ccabe62c371c8a61f698b189a7d306ae989b26daefcf2efd7b822a60eedc82e1.png deleted file mode 100644 index f280bcaf5..000000000 Binary files a/dev/_images/ccabe62c371c8a61f698b189a7d306ae989b26daefcf2efd7b822a60eedc82e1.png and /dev/null differ diff --git a/dev/_images/d17082169a18874a8b4b778dbaf1366dc44976ae773c8d4e8d97d95660018aaa.png b/dev/_images/d17082169a18874a8b4b778dbaf1366dc44976ae773c8d4e8d97d95660018aaa.png new file mode 100644 index 000000000..348df5389 Binary files /dev/null and b/dev/_images/d17082169a18874a8b4b778dbaf1366dc44976ae773c8d4e8d97d95660018aaa.png differ diff --git a/dev/_images/d8696f77ad78ab88a09d5a8e2003e056348250ad4d8fa2437cd42a5e9f090db8.png b/dev/_images/d8696f77ad78ab88a09d5a8e2003e056348250ad4d8fa2437cd42a5e9f090db8.png new file mode 100644 index 000000000..ee1743545 Binary files /dev/null and b/dev/_images/d8696f77ad78ab88a09d5a8e2003e056348250ad4d8fa2437cd42a5e9f090db8.png differ diff --git a/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg b/dev/_images/e23b939a310486df3afa5ada7aac1a37266da7c16855b27f94e2ecf820ea7441.svg similarity index 100% rename from dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg rename to dev/_images/e23b939a310486df3afa5ada7aac1a37266da7c16855b27f94e2ecf820ea7441.svg index 4e573a629..4dfa88bea 100644 --- a/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg +++ b/dev/_images/e23b939a310486df3afa5ada7aac1a37266da7c16855b27f94e2ecf820ea7441.svg @@ -18,7 +18,7 @@ Uniform - + hgf_loglike hgf_loglike @@ -32,7 +32,7 @@ - + tonic_volatility_3 tonic_volatility_3 diff --git a/dev/_images/ea6b742a70636bb323ad1002378d2c4957c72c53daea8171096b9a0c377ec5e0.png b/dev/_images/ea6b742a70636bb323ad1002378d2c4957c72c53daea8171096b9a0c377ec5e0.png deleted file mode 100644 index 36108815e..000000000 Binary files a/dev/_images/ea6b742a70636bb323ad1002378d2c4957c72c53daea8171096b9a0c377ec5e0.png and /dev/null differ diff --git a/dev/_images/f01e0b345faa7d40cf93694ad661cb50d11e69236c738a27444fde267493537c.png b/dev/_images/f01e0b345faa7d40cf93694ad661cb50d11e69236c738a27444fde267493537c.png deleted file mode 100644 index 805f194a4..000000000 Binary files a/dev/_images/f01e0b345faa7d40cf93694ad661cb50d11e69236c738a27444fde267493537c.png and /dev/null differ diff --git a/dev/_images/f5950061c3cf90e405e403be0dace229921e9a8df24f271be700f0c3fe0d2130.png b/dev/_images/f5950061c3cf90e405e403be0dace229921e9a8df24f271be700f0c3fe0d2130.png deleted file mode 100644 index 2c99d5f16..000000000 Binary files a/dev/_images/f5950061c3cf90e405e403be0dace229921e9a8df24f271be700f0c3fe0d2130.png and /dev/null differ diff --git a/dev/_images/f5c0a7b58c1a364d2906d74c1c317a8dcae6a146a9cfbd3dc3ac08cb1f05b470.png b/dev/_images/f5c0a7b58c1a364d2906d74c1c317a8dcae6a146a9cfbd3dc3ac08cb1f05b470.png new file mode 100644 index 000000000..60258d171 Binary files /dev/null and b/dev/_images/f5c0a7b58c1a364d2906d74c1c317a8dcae6a146a9cfbd3dc3ac08cb1f05b470.png differ diff --git a/dev/_images/f833a2bd70b73c6b7e43c91941b53493e3082768f1a7edb10e51a769deb3798b.png b/dev/_images/f833a2bd70b73c6b7e43c91941b53493e3082768f1a7edb10e51a769deb3798b.png deleted file mode 100644 index 43027cd35..000000000 Binary files a/dev/_images/f833a2bd70b73c6b7e43c91941b53493e3082768f1a7edb10e51a769deb3798b.png and /dev/null differ diff --git a/dev/_sources/cite.md.txt b/dev/_sources/cite.md.txt index 8911db777..89977bd8f 100644 --- a/dev/_sources/cite.md.txt +++ b/dev/_sources/cite.md.txt @@ -2,10 +2,43 @@ If you are using the *pyhgf* package for your research, we ask you to cite the following paper in the final publication: -* Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00039 -* Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825 +> Legrand, N., Weber, L., Waade, P. T., Daugaard, A. H. M., Khodadadi, M., Mikuš, N., & Mathys, C. (2024). pyhgf: A neural network library for predictive coding (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2410.09206 -*In BibTeX format:* +```text +@misc{https://doi.org/10.48550/arxiv.2410.09206, + doi = {10.48550/ARXIV.2410.09206}, + url = {https://arxiv.org/abs/2410.09206}, + author = {Legrand, Nicolas and Weber, Lilian and Waade, Peter Thestrup and Daugaard, Anna Hedvig Møller and Khodadadi, Mojtaba and Mikuš, Nace and Mathys, Chris}, + keywords = {Neural and Evolutionary Computing (cs.NE), Artificial Intelligence (cs.AI), Machine Learning (cs.LG), Neurons and Cognition (q-bio.NC), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences}, + title = {pyhgf: A neural network library for predictive coding}, + publisher = {arXiv}, + year = {2024}, + copyright = {Creative Commons Attribution 4.0 International} +} +``` + +If your application is using the generalised Hierarchical Gaussian Filer, we also ask you to cite the following publication: + +> Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2305.10937 + +```text +@misc{https://doi.org/10.48550/arxiv.2305.10937, + doi = {10.48550/ARXIV.2305.10937}, + url = {https://arxiv.org/abs/2305.10937}, + author = {Weber, Lilian Aline and Waade, Peter Thestrup and Legrand, Nicolas and Møller, Anna Hedvig and Stephan, Klaas Enno and Mathys, Christoph}, + keywords = {Neural and Evolutionary Computing (cs.NE), Neurons and Cognition (q-bio.NC), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences}, + title = {The generalized Hierarchical Gaussian Filter}, + publisher = {arXiv}, + year = {2023}, + copyright = {Creative Commons Attribution 4.0 International} +} +``` + +If you want to refere to the fundational description of the Hierarchical Gaussian Filter, or other important mathematical derivations, please refer to the following publications: + +> Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00039 + +> Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825 ```text @article{2011:mathys, diff --git a/dev/_sources/index.md.txt b/dev/_sources/index.md.txt index 4372a8e35..6d8b78ef7 100644 --- a/dev/_sources/index.md.txt +++ b/dev/_sources/index.md.txt @@ -5,7 +5,7 @@ hgf -PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference. +PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference. You can find the method paper describing the toolbox [here](https://arxiv.org/abs/2410.09206) and the method paper describing the gHGF, which is the main framework currently supported by the toolbox [here](https://arxiv.org/abs/2305.10937). * 📖 [API Documentation](https://ilabcode.github.io/pyhgf/api.html) * ✏️ [Tutorials and examples](https://ilabcode.github.io/pyhgf/learn.html) @@ -49,7 +49,7 @@ Generalized Hierarchical Gaussian Filters (gHGF) are specific instances of dynam You can find a deeper introduction on how does the gHGF works under the following link: -* 🎓 [Introduction to the Hierarchical Gaussian Filter](https://ilabcode.github.io/pyhgf/notebooks/0.2-Theory.html#theory) +* 🎓 [Introduction to the Hierarchical Gaussian Filter](https://ilabcode.github.io/pyhgf/notebooks/0.1-Theory.html#theory) ### Model fitting @@ -100,10 +100,12 @@ This implementation of the Hierarchical Gaussian Filter was inspired by the orig ## References -1. Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. In Frontiers in Human Neuroscience (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnhum.2011.00039 -2. Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825 -3. Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2305.10937 -4. Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., … Stephan, K. E. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. In Frontiers in Psychiatry (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fpsyt.2021.680811 +1. Legrand, N., Weber, L., Waade, P. T., Daugaard, A. H. M., Khodadadi, M., Mikuš, N., & Mathys, C. (2024). pyhgf: A neural network library for predictive coding (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2410.09206 +2. Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. In Frontiers in Human Neuroscience (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnhum.2011.00039 +3. Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825 +4. Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2305.10937 +5. Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., … Stephan, K. E. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. In Frontiers in Psychiatry (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fpsyt.2021.680811 +6. Iglesias, S., Kasper, L., Harrison, S. J., Manka, R., Mathys, C., & Stephan, K. E. (2021). Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning. In NeuroImage (Vol. 226, p. 117590). Elsevier BV. https://doi.org/10.1016/j.neuroimage.2020.117590 ```{toctree} --- diff --git a/dev/cite.html b/dev/cite.html index fdebcae05..02fd9869d 100644 --- a/dev/cite.html +++ b/dev/cite.html @@ -449,11 +449,44 @@

How to cite?#

If you are using the pyhgf package for your research, we ask you to cite the following paper in the final publication:

-
    -
  • Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00039

  • -
  • Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825

  • -
-

In BibTeX format:

+
+

Legrand, N., Weber, L., Waade, P. T., Daugaard, A. H. M., Khodadadi, M., Mikuš, N., & Mathys, C. (2024). pyhgf: A neural network library for predictive coding (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2410.09206

+
+
@misc{https://doi.org/10.48550/arxiv.2410.09206,
+  doi = {10.48550/ARXIV.2410.09206},
+  url = {https://arxiv.org/abs/2410.09206},
+  author = {Legrand,  Nicolas and Weber,  Lilian and Waade,  Peter Thestrup and Daugaard,  Anna Hedvig Møller and Khodadadi,  Mojtaba and Mikuš,  Nace and Mathys,  Chris},
+  keywords = {Neural and Evolutionary Computing (cs.NE),  Artificial Intelligence (cs.AI),  Machine Learning (cs.LG),  Neurons and Cognition (q-bio.NC),  FOS: Computer and information sciences,  FOS: Computer and information sciences,  FOS: Biological sciences,  FOS: Biological sciences},
+  title = {pyhgf: A neural network library for predictive coding},
+  publisher = {arXiv},
+  year = {2024},
+  copyright = {Creative Commons Attribution 4.0 International}
+}
+
+
+

If your application is using the generalised Hierarchical Gaussian Filer, we also ask you to cite the following publication:

+
+

Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2305.10937

+
+
@misc{https://doi.org/10.48550/arxiv.2305.10937,
+  doi = {10.48550/ARXIV.2305.10937},
+  url = {https://arxiv.org/abs/2305.10937},
+  author = {Weber,  Lilian Aline and Waade,  Peter Thestrup and Legrand,  Nicolas and Møller,  Anna Hedvig and Stephan,  Klaas Enno and Mathys,  Christoph},
+  keywords = {Neural and Evolutionary Computing (cs.NE),  Neurons and Cognition (q-bio.NC),  FOS: Computer and information sciences,  FOS: Computer and information sciences,  FOS: Biological sciences,  FOS: Biological sciences},
+  title = {The generalized Hierarchical Gaussian Filter},
+  publisher = {arXiv},
+  year = {2023},
+  copyright = {Creative Commons Attribution 4.0 International}
+}
+
+
+

If you want to refere to the fundational description of the Hierarchical Gaussian Filter, or other important mathematical derivations, please refer to the following publications:

+
+

Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00039

+
+
+

Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825

+
@article{2011:mathys,
 abstract = {Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.},
 author = {Mathys, Christoph D.},
diff --git a/dev/index.html b/dev/index.html
index 6b7c80966..c5cf88e9d 100644
--- a/dev/index.html
+++ b/dev/index.html
@@ -427,7 +427,7 @@
 

PyHGF: A Neural Network Library for Predictive Coding#

hgf -

PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference.

+

PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference. You can find the method paper describing the toolbox here and the method paper describing the gHGF, which is the main framework currently supported by the toolbox here.

@@ -514,10 +514,12 @@

Acknowledgments

References#

    +
  1. Legrand, N., Weber, L., Waade, P. T., Daugaard, A. H. M., Khodadadi, M., Mikuš, N., & Mathys, C. (2024). pyhgf: A neural network library for predictive coding (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2410.09206

  2. Mathys, C. (2011). A Bayesian foundation for individual learning under uncertainty. In Frontiers in Human Neuroscience (Vol. 5). Frontiers Media SA. https://doi.org/10.3389/fnhum.2011.00039

  3. Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00825

  4. -
  5. Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2305.10937

  6. +
  7. Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2305.10937

  8. Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., … Stephan, K. E. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. In Frontiers in Psychiatry (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fpsyt.2021.680811

  9. +
  10. Iglesias, S., Kasper, L., Harrison, S. J., Manka, R., Mathys, C., & Stephan, K. E. (2021). Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning. In NeuroImage (Vol. 226, p. 117590). Elsevier BV. https://doi.org/10.1016/j.neuroimage.2020.117590

diff --git a/dev/notebooks/0.1-Theory.html b/dev/notebooks/0.1-Theory.html index aa1fc21ad..60baa907f 100644 --- a/dev/notebooks/0.1-Theory.html +++ b/dev/notebooks/0.1-Theory.html @@ -921,21 +921,21 @@

System configuration

-
-
Last updated: Tue Oct 15 2024
+
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-seaborn   : 0.13.2
-IPython   : 8.28.0
 numpy     : 1.26.0
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
+IPython   : 8.28.0
 jax       : 0.4.31
-matplotlib: 3.9.2
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+matplotlib: 3.9.2
+seaborn   : 0.13.2
+pyhgf     : 0.0.0.post1.dev0+5332083
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/1.1-Binary_HGF.html b/dev/notebooks/1.1-Binary_HGF.html index 2ca85ca3d..ee588edd3 100644 --- a/dev/notebooks/1.1-Binary_HGF.html +++ b/dev/notebooks/1.1-Binary_HGF.html @@ -52,7 +52,7 @@ - + @@ -829,8 +829,8 @@

Sampling
NUTS: [tonic_volatility_2]
 
-

-

-../_images/a16f2a0e803af1687d9302e019a91fd3ef85cda1d405663f49b57c6e441736d0.png +../_images/98e8df62f5c6626197fa1eadacb20ea921409801b2f8c0ced3aca1d0606b9dad.png
@@ -883,7 +883,7 @@

Using the learned parameters -../_images/999a4d53dc2b173e3709e3182e41fc89cee354bf195ebe403a332cdb04deeabe.png +../_images/5870548da7580e87dc96976cef7e986f89a58846775237d170818f378e026c25.png @@ -971,8 +971,8 @@

Sampling#
NUTS: [tonic_volatility_2, tonic_volatility_3]
 
-

-
-../_images/7448dbd5b01f734252295940ca521bb79a7e9ce7d7c02c23790922cf8dee12ad.png +../_images/8099d16c3bd69dac48d6783186b28bf51cfef46af4cd393a0bd717606ce1fba3.png
@@ -1028,7 +1028,7 @@

Using the learned parameters -../_images/0dc8b87353233283107f25343d965d4499efe5da957a578eb62db1f545510ca5.png +../_images/094f6f56f04bccb6978a4c6cf2ec5dcd4ef6c2bfe284697bedea2bf9ac881c29.png
@@ -1038,7 +1038,7 @@

Using the learned parameters -
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
-numpy     : 1.26.0
-pytensor  : 2.25.5
 IPython   : 8.28.0
-seaborn   : 0.13.2
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 jax       : 0.4.31
+pyhgf     : 0.0.0.post1.dev0+5332083
+pytensor  : 2.25.5
+seaborn   : 0.13.2
 matplotlib: 3.9.2
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+numpy     : 1.26.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index 1eafaef94..2913c37f9 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -52,7 +52,7 @@ - + @@ -854,7 +854,7 @@

Visualizing the model

-../_images/276f245ebd9fd4bcae5e926f51a69ac0c4a8b7994776641b7ca80207aba0e073.svg +../_images/0747ca4d2db1d73075db0036fa2d7adb40e86a06d3c587c73103c1d2a5698bb6.svg
@@ -880,9 +880,9 @@

Sampling
NUTS: [tonic_volatility_1]
 
-

-

-
@@ -1023,11 +1023,14 @@

Sampling#
NUTS: [tonic_volatility_1]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
 
+
There were 2 divergences after tuning. Increase `target_accept` or reparameterize.
+
+
We recommend running at least 4 chains for robust computation of convergence diagnostics
 
@@ -1040,7 +1043,7 @@

Sampling#

-../_images/500ef73e4ec08b5c2df34c9a8ae09ec09a75357f36cbc3542f842e229f3d5ca1.png +../_images/56f1af6cdd1d35f9ce4bf5f3dc1eb12c54cc009a01e4e017dbc7fe5595483c51.png

@@ -1074,7 +1077,7 @@

Using the learned parameters -../_images/0fd03b0a8d1b44a6793a813994bb9e24c446e29152fc568e9b8f863cb92c3b30.png +../_images/30be98f8c9532ee6f9b6c3320fb762b3ed55bcee208da11ea485bf7b5b85ebbd.png

@@ -1084,7 +1087,7 @@

Using the learned parameters -
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-matplotlib: 3.9.2
+IPython   : 8.28.0
+pyhgf     : 0.0.0.post1.dev0+5332083
 arviz     : 0.20.0
+matplotlib: 3.9.2
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 pymc      : 5.17.0
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
-IPython   : 8.28.0
 jax       : 0.4.31
 
 Watermark: 2.5.0
diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html
index 12f269a87..bf0f8f0a3 100644
--- a/dev/notebooks/2-Using_custom_response_functions.html
+++ b/dev/notebooks/2-Using_custom_response_functions.html
@@ -52,7 +52,7 @@
     
     
     
-    
+    
     
     
     
@@ -890,8 +890,8 @@ 

Recovering HGF parameters from the observed behaviors
NUTS: [tonic_volatility_2]
 

-

-
../_images/4291acfb28941c400868b537e1194b2b7dffd8cdcb65f3839e462e19feffd434.png +
../_images/6ee48f0814a36c6d2a092e7f3d7190e52df355f5b763e277222f198582801bd9.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -980,24 +980,24 @@

System configuration
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-IPython   : 8.28.0
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
+pyhgf     : 0.0.0.post1.dev0+5332083
 jax       : 0.4.31
-numpy     : 1.26.0
 pymc      : 5.17.0
+IPython   : 8.28.0
+arviz     : 0.20.0
+numpy     : 1.26.0
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 matplotlib: 3.9.2
-arviz     : 0.20.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/3-Multilevel_HGF.html b/dev/notebooks/3-Multilevel_HGF.html index 548bf5410..aba6ccad5 100644 --- a/dev/notebooks/3-Multilevel_HGF.html +++ b/dev/notebooks/3-Multilevel_HGF.html @@ -52,7 +52,7 @@ - + @@ -806,7 +806,7 @@

Plot the computational graph -../_images/50995f53cefc3c3203ab5161a4f9dd7d4207dff120246367c1eae6dc86853532.svg +../_images/afd058794b250ecaff14b62d2d33f561b49859d0078579d33aadea7a6f8bff67.svg

@@ -832,12 +832,12 @@

Sampling
NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 46 seconds.
 
-
There were 1 divergences after tuning. Increase `target_accept` or reparameterize.
+
There were 2 divergences after tuning. Increase `target_accept` or reparameterize.
 

The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

@@ -896,8 +896,8 @@

Model comparison
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-pytensor  : 2.25.5
-arviz     : 0.20.0
-matplotlib: 3.9.2
 IPython   : 8.28.0
+pytensor  : 2.25.5
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-seaborn   : 0.13.2
 numpy     : 1.26.0
 pymc      : 5.17.0
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
+arviz     : 0.20.0
+seaborn   : 0.13.2
+matplotlib: 3.9.2
+pyhgf     : 0.0.0.post1.dev0+5332083
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index 17e7523b1..63bb96fb1 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -50,7 +50,7 @@ - + @@ -676,9 +676,9 @@

Inference from the simulated behaviours
NUTS: [censored_volatility, inverse_temperature]
 

-

-

-
-
Last updated: Tue Oct 15 2024
+
 
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
+jax       : 0.4.31
 numpy     : 1.26.0
-seaborn   : 0.13.2
 matplotlib: 3.9.2
-jax       : 0.4.31
+pyhgf     : 0.0.0.post1.dev0+5332083
 IPython   : 8.28.0
+seaborn   : 0.13.2
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 
 Watermark: 2.5.0
diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html
index 3778a57fe..a319585fc 100644
--- a/dev/notebooks/Example_1_Heart_rate_variability.html
+++ b/dev/notebooks/Example_1_Heart_rate_variability.html
@@ -50,7 +50,7 @@
     
     
     
-    
+    
     
     
     
@@ -574,16 +574,16 @@ 

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 

-
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.49it/s]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.10it/s]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.49it/s]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.10it/s]
 
-
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.40it/s]
+
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.00s/it]
 
-
-
Last updated: Tue Oct 15 2024
+
 
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-seaborn   : 0.13.2
+pyhgf     : 0.0.0.post1.dev0+5332083
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-matplotlib: 3.9.2
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
 numpy     : 1.26.0
+matplotlib: 3.9.2
+seaborn   : 0.13.2
 IPython   : 8.28.0
 
 Watermark: 2.5.0
diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html
index 688718e82..1ab83d054 100644
--- a/dev/notebooks/Example_3_Multi_armed_bandit.html
+++ b/dev/notebooks/Example_3_Multi_armed_bandit.html
@@ -52,7 +52,7 @@
     
     
     
-    
+    
     
     
     
@@ -1085,8 +1085,8 @@ 

Bayesian inference
NUTS: [omega]
 

-

-
@@ -1123,26 +1123,26 @@

System configuration

-
Last updated: Tue Oct 15 2024
+
 
-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
+matplotlib: 3.9.2
+pyhgf     : 0.0.0.post1.dev0+5332083
 pandas    : 2.2.3
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
 IPython   : 8.28.0
 seaborn   : 0.13.2
-matplotlib: 3.9.2
-numpy     : 1.26.0
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+numpy     : 1.26.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index 8b4dd6b49..a179500fb 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -52,7 +52,7 @@ - + @@ -726,8 +726,8 @@

Parameters optimization
NUTS: [tonic_volatility_2]
 

-

-
-../_images/36adc3655fa3b1edac899d675d346f794decde0bd2883b967aa5549b6d0c7be0.png +../_images/3cd13b6a780f84d5824d600f479102e9b62d6c7c5191e89e109d922f954ab434.png
-

-

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -925,12 +925,12 @@

Rescorla-Wagner{"version_major": 2, "version_minor": 0, "model_id": "ac11ef03023549e391a79062a69e3214"}
/opt/hostedtoolcache/Python/3.12.7/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
+
/opt/hostedtoolcache/Python/3.12.7/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
   self.pid = os.fork()
 

-
-

-

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1150,12 +1147,12 @@

Three-level HGF
NUTS: [tonic_volatility_2]
 

-

-

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1479,25 +1476,25 @@

System configuration

-
Last updated: Tue Oct 15 2024
+
Last updated: Sun Oct 20 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.28.0
 
-pyhgf : 0.0.0.post1.dev0+7bf4ebd
+pyhgf : 0.0.0.post1.dev0+5332083
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-matplotlib: 3.9.2
-numpy     : 1.26.0
-pytensor  : 2.25.5
-pymc      : 5.17.0
-IPython   : 8.28.0
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-pyhgf     : 0.0.0.post1.dev0+7bf4ebd
-arviz     : 0.20.0
+pymc      : 5.17.0
 seaborn   : 0.13.2
+pyhgf     : 0.0.0.post1.dev0+5332083
+numpy     : 1.26.0
+arviz     : 0.20.0
+IPython   : 8.28.0
+pytensor  : 2.25.5
+matplotlib: 3.9.2
 
 Watermark: 2.5.0
 
diff --git a/dev/searchindex.js b/dev/searchindex.js index 2e1cf4139..416688b59 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00299": 62, "0038": 64, "00825": [1, 57, 74], "01": [61, 67, 68, 69, 72, 73], "013": [65, 73], "015287": 73, "016": 74, "016216": 65, "018": [65, 72, 73], "0183": 64, "02": [61, 72], "027": 2, "03": [68, 72], "030": [13, 32], "034207": 73, "038": 2, "04": [20, 21, 64, 72], "040968": 73, "05": [60, 68, 71, 73], "053439": 73, "055744": 73, "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "07": 65, "077038": 65, "08": 74, "08008": 67, "089369e": 73, "09045": 62, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74], "100": [61, 67, 69], "1000": [2, 59, 60, 61, 68, 69, 70, 72], "10000": [16, 59], "1007": [13, 32, 74], "1016": 74, "1017": 74, "103887": 73, "109": 73, "10937": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1118": 64, "112": 73, "113": 73, "114": 74, "117590": 74, "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "125": [59, 72], "1251": 74, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "1302": 65, "138": 57, "14": [2, 65], "1413": 74, "1428": 64, "1432": 74, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "16": [2, 61], "1662": 1, "16625161": 1, "1684": 66, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "179574": 73, "18": [20, 21, 65, 66], "185465": 65, "1903": 67, "1910": 64, "1938": 66, "196": 72, "1997": 67, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "21596": 62, "21629826": 1, "22": 73, "222": 73, "224": 72, "226": 74, "2305": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "24": 72, "240641": 73, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2516081684": 64, "256": 61, "259427": 73, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "29": 66, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "3186": 66, "32": 61, "3200": 66, "329": 73, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "387": 72, "389923": 65, "39": 73, "4": [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "404": 73, "4093": 64, "40it": 69, "416410": 65, "41it": 69, "42": [48, 68], "43": 68, "448389": 73, "45": 60, "454857": 73, "458906": 65, "46": 66, "466356": 65, "471469": 65, "472": 72, "474077": 65, "48550": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "488": 73, "494": 65, "49547": 74, "49it": 69, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [66, 69, 70], "500": [66, 70], "500000": 65, "506923": 65, "510971": 65, "511213": 73, "512": 61, "5161": 1, "518301": 65, "52": [13, 32, 74], "520583": 65, "523351e": 73, "52966": 62, "530355": 65, "530717": 65, "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "558": 73, "55a868": [59, 67, 73], "566859": 65, "58": [13, 32, 74], "582766": [61, 70], "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "600886": 73, "602961": 65, "6174": 64, "622459": 65, "624085": 65, "627284": 65, "631975": 65, "635": 72, "635093": 73, "638038": 65, "64": [61, 66], "64919": [13, 32], "650": 68, "66": 73, "67": 66, "680811": 57, "688255": 73, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "71": 73, "731660": 65, "74": 67, "745316": 65, "750": 60, "7554": 74, "766": 2, "776": 2, "797": 65, "7_7": [13, 32], "7bf4ebd": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "834867": 65, "847503": 73, "850": 68, "862": 65, "862041": 73, "865": 72, "87854": 65, "886": 64, "89": 73, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "910": 64, "9189386": 14, "9297": 64, "931": 72, "931178": 73, "938": 2, "944": 2, "95": 65, "950": 68, "964": 64, "965": 64, "9696": 74, "978": [13, 32], "99": 66, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": 67, "aberr": 64, "abil": 67, "abl": [62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 57, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [57, 67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": [57, 73], "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "aim": 64, "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": 74, "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 57, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": 74, "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 57, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": 68, "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "bibtex": 1, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "biolog": 57, "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [57, 60, 62, 64, 72, 73], "burst": 60, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": 74, "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "compil": 57, "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [57, 58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "dev0": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [57, 61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": 74, "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "eas": 57, "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 64, 67, 74], "effective_precis": 36, "effici": [1, 57, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enhanc": 57, "enlarg": 61, "enno": 74, "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": 67, "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": 60, "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "format": 1, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "further": [57, 59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": 74, "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 57, 61, 73], "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": 65, "interleav": [0, 61, 71], "intern": [32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3231": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "li": 59, "lib": 73, "librari": [0, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": 74, "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": 74, "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": [57, 60], "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": 74, "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [68, 74], "nodal": 69, "nodalis": 72, "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 57, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": 74, "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": 66, "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "post1": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": 67, "remain": [57, 71], "rememb": 73, "remot": 59, "remov": 72, "reparameter": [66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": 67, "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": 13, "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "seamless": 57, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 59, 60, 62, 64, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": 67, "smooth": 58, "smoother": 61, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "systol": 69, "t": [23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 57, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": 74, "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tue": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": 61, "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00825": [1, 57, 74], "01": [61, 66, 67, 68, 69, 72], "011": 65, "01106": 62, "014705": 73, "015": 73, "015419e": 73, "0156": 64, "016": [65, 74], "016216": 65, "018": 72, "0183": 64, "01it": 69, "02": [61, 72, 73], "027": 2, "027674": 73, "03": [68, 72], "030": [13, 32], "031511": 73, "038": 2, "04": [20, 21, 64, 72], "049": 65, "05": [60, 68, 71, 73], "055563": 73, "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "076883": 73, "077038": 65, "08": 74, "08008": 67, "0854": 64, "09045": 62, "09206": [1, 57], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 70, 71, 73, 74], "100": [61, 67, 69], "1000": [2, 59, 60, 61, 68, 69, 70, 72], "10000": [16, 59], "1003": 65, "1007": [13, 32, 74], "1016": [57, 74], "1017": 74, "103902": 73, "109": 73, "10937": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "10it": 69, "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1118": 64, "112": 73, "113": 73, "114": 74, "117590": [57, 74], "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "125": [59, 72], "1251": 74, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "138": 57, "14": [2, 65], "1413": 74, "1432": 74, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "16": [2, 61], "1662": 1, "16625161": 1, "1684": 66, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "170073": 73, "18": [20, 21, 65, 66], "185465": 65, "1903": 67, "1910": 64, "1938": 66, "196": 72, "1997": 67, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 57, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [1, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "21596": 62, "21629826": 1, "222": 73, "224": 72, "226": [57, 74], "229048": 73, "23": 73, "2305": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "24": 72, "2410": [1, 57], "243883": 73, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2516081684": 64, "256": 61, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "3186": 66, "32": 61, "3200": 66, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "377": 73, "38": 73, "381491e": 73, "387": 72, "389923": 65, "4": [1, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "402": 73, "4093": 64, "416410": 65, "42": [48, 68], "43": 68, "434740": 73, "45": 60, "452": 73, "458906": 65, "46": 66, "466356": 65, "471469": 65, "472": 72, "474077": 65, "48550": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "495138": 73, "49547": 74, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [69, 70], "500": [66, 70], "500000": 65, "505": 65, "506923": 65, "510971": 65, "512": 61, "513102": 73, "5161": 1, "518301": 65, "52": [13, 32, 74], "520583": 65, "530355": 65, "53049": 62, "530717": 65, "5332083": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "55a868": [59, 67, 73], "563781": 73, "566859": 65, "58": [13, 32, 67, 74], "582766": [61, 70], "583": 73, "595292": 73, "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "602961": 65, "6174": 64, "622459": 65, "624085": 65, "627284": 65, "63": 66, "631975": 65, "635": 72, "638038": 65, "64": [61, 66], "64919": [13, 32], "650": 68, "66": 73, "674681": 73, "680811": 57, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "731660": 65, "745316": 65, "750": 60, "7554": 74, "766": 2, "776": 2, "7_7": [13, 32], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "834867": 65, "850": 68, "865": 72, "870960": 73, "87854": 65, "879": 73, "883051": 73, "886": 64, "886869": 73, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "905": 65, "910": 64, "9189386": 14, "9297": 64, "931": 72, "938": 2, "944": 2, "948": 65, "950": 68, "954": 65, "964": 64, "965": 64, "9696": 74, "978": [13, 32], "99": 66, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [64, 65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": [1, 67], "aberr": 64, "abil": 67, "abl": [62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 57, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [57, 67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": [57, 73], "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 64, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "ai": 1, "aim": 64, "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": [1, 74], "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 57, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [1, 16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": [1, 74], "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 57, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": [1, 68], "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [1, 2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "bio": 1, "biolog": [1, 57], "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [57, 60, 62, 64, 72, 73], "burst": 60, "bv": 57, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": [57, 74], "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "chri": 1, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [1, 17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [1, 57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [1, 60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "compil": 57, "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "copyright": 1, "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "creativ": 1, "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daugaard": [1, 57], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [57, 58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "dev0": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [57, 61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 64, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": [57, 74], "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "eas": 57, "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 57, 64, 67, 74], "effective_precis": 36, "effici": [1, 57, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "elsevi": 57, "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enhanc": 57, "enlarg": 61, "enno": [1, 74], "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": 67, "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolutionari": 1, "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": 60, "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "filer": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "fo": 1, "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "fundat": 1, "further": [57, 59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [1, 58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": [1, 74], "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [1, 2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 57, 61, 73], "intellig": 1, "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": 65, "interleav": [0, 61, 71], "intern": [1, 32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3199": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "khodadadi": [1, 57], "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "lg": 1, "li": 59, "lib": 73, "librari": [0, 1, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": [1, 74], "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [1, 57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "machin": 1, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": [57, 74], "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [1, 14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": [57, 60], "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 57, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "miku\u0161": [1, 57], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "misc": 1, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mojtaba": 1, "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [1, 2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "nace": 1, "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "nc": 1, "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "ne": 1, "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 1, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 1, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": [57, 74], "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [1, 68, 74], "nodal": 69, "nodalis": 72, "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [1, 30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [1, 11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 57, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 57, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": [1, 74], "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": [1, 66], "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "post1": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [1, 32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [1, 11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [57, 59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [1, 7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": 67, "remain": [57, 71], "rememb": 73, "remot": 59, "remov": 72, "reparameter": [64, 66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": 67, "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": [1, 13], "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "seamless": 57, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 57, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 59, 60, 62, 64, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": 67, "smooth": 58, "smoother": 61, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "sun": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "systol": 69, "t": [1, 23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [64, 66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 57, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": [1, 74], "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [1, 17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [1, 2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 64, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": 61, "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file