diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 37d2e9d21..9e509a56b 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/index.doctree b/dev/.doctrees/index.doctree index c70da8ef0..f77422f10 100644 Binary files a/dev/.doctrees/index.doctree and b/dev/.doctrees/index.doctree differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 7a62e66c9..8e01ba5d0 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index 04f08807a..d08b375c9 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index d32b804e7..3677e50f4 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index 95f6cf050..a0de338ca 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index de9c0273c..c2855a89f 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index 941870450..068c0eef6 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index 739885a94..d0d54cde1 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index c48e461de..ae54eddd6 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 259a859f6..d3e9af98b 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index 2156511a1..bbcde1cad 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 0bdd8d06d..7cdeedd10 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index 21849998f..c3695bd51 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index d97d68492..8fefbe089 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index 10993eca4..efba57103 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index eecd11657..cefefbcc9 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png b/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png deleted file mode 100644 index 221e5806d..000000000 Binary files a/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png and /dev/null differ diff --git a/dev/_images/0471bfc7f5b457136d95ba644a9bfe011b2f621280ffbb07488b7d5a793e6a04.png b/dev/_images/0471bfc7f5b457136d95ba644a9bfe011b2f621280ffbb07488b7d5a793e6a04.png new file mode 100644 index 000000000..ea3bfd812 Binary files /dev/null and b/dev/_images/0471bfc7f5b457136d95ba644a9bfe011b2f621280ffbb07488b7d5a793e6a04.png differ diff --git a/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png b/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png deleted file mode 100644 index 8bb73c303..000000000 Binary files a/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png and /dev/null differ diff --git a/dev/_images/15dc40f4e6e445ad3c9d895fa3a76748cacf076c24ee80be754b237051cdc03c.png b/dev/_images/15dc40f4e6e445ad3c9d895fa3a76748cacf076c24ee80be754b237051cdc03c.png new file mode 100644 index 000000000..35e475074 Binary files /dev/null and b/dev/_images/15dc40f4e6e445ad3c9d895fa3a76748cacf076c24ee80be754b237051cdc03c.png differ diff --git a/dev/_images/1b2cd3602e88f0369f1e7f6ddc2996c4ff2d4d8f6adad0df74624b86e44acae7.png b/dev/_images/1b2cd3602e88f0369f1e7f6ddc2996c4ff2d4d8f6adad0df74624b86e44acae7.png new file mode 100644 index 000000000..70a6540ee Binary files /dev/null and b/dev/_images/1b2cd3602e88f0369f1e7f6ddc2996c4ff2d4d8f6adad0df74624b86e44acae7.png differ diff --git a/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png b/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png deleted file mode 100644 index 1e31516e3..000000000 Binary files a/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png and /dev/null differ diff --git a/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png b/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png deleted file mode 100644 index 052cb669e..000000000 Binary files a/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png and /dev/null differ diff --git a/dev/_images/27c79f989dc37a089cf770c31b5b78ec48ceb2afa29bf7edf7045201c97ee7e8.png b/dev/_images/27c79f989dc37a089cf770c31b5b78ec48ceb2afa29bf7edf7045201c97ee7e8.png new file mode 100644 index 000000000..0f4520e72 Binary files /dev/null and b/dev/_images/27c79f989dc37a089cf770c31b5b78ec48ceb2afa29bf7edf7045201c97ee7e8.png differ diff --git a/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png b/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png deleted file mode 100644 index 2661d7162..000000000 Binary files a/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png and /dev/null differ diff --git a/dev/_images/346c7d30a296bd356a4761f846cd627fa166eed929d24c1963d7e4fa286b9638.png b/dev/_images/346c7d30a296bd356a4761f846cd627fa166eed929d24c1963d7e4fa286b9638.png new file mode 100644 index 000000000..c49e58332 Binary files /dev/null and b/dev/_images/346c7d30a296bd356a4761f846cd627fa166eed929d24c1963d7e4fa286b9638.png differ diff --git a/dev/_images/368f7131ff797a25bddc793b46fefba095de3636305043a4322297ba6f4b8b45.png b/dev/_images/368f7131ff797a25bddc793b46fefba095de3636305043a4322297ba6f4b8b45.png new file mode 100644 index 000000000..2264d76b2 Binary files /dev/null and b/dev/_images/368f7131ff797a25bddc793b46fefba095de3636305043a4322297ba6f4b8b45.png differ diff --git a/dev/_images/3f9c9d096d1b45be79de680296b186aa4ef181d7e4390ab20a6046f038f7a98c.png b/dev/_images/3f9c9d096d1b45be79de680296b186aa4ef181d7e4390ab20a6046f038f7a98c.png new file mode 100644 index 000000000..0d9824499 Binary files /dev/null and b/dev/_images/3f9c9d096d1b45be79de680296b186aa4ef181d7e4390ab20a6046f038f7a98c.png differ diff --git a/dev/_images/42ece0c760ca3462d1a64a909fdbb445dec3a2a13903bb304382033cc9c81657.png b/dev/_images/42ece0c760ca3462d1a64a909fdbb445dec3a2a13903bb304382033cc9c81657.png new file mode 100644 index 000000000..c637e37f4 Binary files /dev/null and b/dev/_images/42ece0c760ca3462d1a64a909fdbb445dec3a2a13903bb304382033cc9c81657.png differ diff --git a/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png b/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png deleted file mode 100644 index 3b31c8bb9..000000000 Binary files a/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png and /dev/null differ diff --git a/dev/_images/4535da753e514502a56155b3635236909cb08ff6c3118a75b2b5c95c8c290167.png b/dev/_images/4535da753e514502a56155b3635236909cb08ff6c3118a75b2b5c95c8c290167.png new file mode 100644 index 000000000..2d850aaf5 Binary files /dev/null and b/dev/_images/4535da753e514502a56155b3635236909cb08ff6c3118a75b2b5c95c8c290167.png differ diff --git a/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png b/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png deleted file mode 100644 index 44626bf58..000000000 Binary files a/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png and /dev/null differ diff --git a/dev/_images/552486a3c2daff615e891fe08898274f80724ae60307d06194a91ea136381d07.png b/dev/_images/552486a3c2daff615e891fe08898274f80724ae60307d06194a91ea136381d07.png new file mode 100644 index 000000000..f858418d6 Binary files /dev/null and b/dev/_images/552486a3c2daff615e891fe08898274f80724ae60307d06194a91ea136381d07.png differ diff --git a/dev/_images/5cd5e876923055f6e9a080fad3af8d7656f54bdf27cfed81f3dd2225946b8e1f.png b/dev/_images/5cd5e876923055f6e9a080fad3af8d7656f54bdf27cfed81f3dd2225946b8e1f.png new file mode 100644 index 000000000..71e7f9226 Binary files /dev/null and b/dev/_images/5cd5e876923055f6e9a080fad3af8d7656f54bdf27cfed81f3dd2225946b8e1f.png differ diff --git a/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png b/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png deleted file mode 100644 index 049a78753..000000000 Binary files a/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png and /dev/null differ diff --git a/dev/_images/621bd4bc41eb3bb1c3ba37af682abf523053170fe477709fab35f9e596212895.png b/dev/_images/621bd4bc41eb3bb1c3ba37af682abf523053170fe477709fab35f9e596212895.png new file mode 100644 index 000000000..3e90ee4d8 Binary files /dev/null and b/dev/_images/621bd4bc41eb3bb1c3ba37af682abf523053170fe477709fab35f9e596212895.png differ diff --git a/dev/_images/685fda99af028c72672e3206ea8ee16c1a52789d27948be8eaf87fa8d7d98181.png b/dev/_images/685fda99af028c72672e3206ea8ee16c1a52789d27948be8eaf87fa8d7d98181.png new file mode 100644 index 000000000..fa5ef7e40 Binary files /dev/null and b/dev/_images/685fda99af028c72672e3206ea8ee16c1a52789d27948be8eaf87fa8d7d98181.png differ diff --git a/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png b/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png deleted file mode 100644 index 134cbbec1..000000000 Binary files a/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png and /dev/null differ diff --git a/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png b/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png deleted file mode 100644 index 203b164e4..000000000 Binary files a/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png and /dev/null differ diff --git a/dev/_images/777aa544ac4dcbf5f106862e13b673416c3e48aed23b0ed7616079e97a3e5e32.png b/dev/_images/777aa544ac4dcbf5f106862e13b673416c3e48aed23b0ed7616079e97a3e5e32.png new file mode 100644 index 000000000..9a10c1199 Binary files /dev/null and b/dev/_images/777aa544ac4dcbf5f106862e13b673416c3e48aed23b0ed7616079e97a3e5e32.png differ diff --git a/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png b/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png deleted file mode 100644 index cca2517f1..000000000 Binary files a/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png and /dev/null differ diff --git a/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png b/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png deleted file mode 100644 index 9776e833c..000000000 Binary files a/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png and /dev/null differ diff --git a/dev/_images/8b6be87835fa80f2997c25a27b88d7803528429bdf38de7af260c18a3c7aec03.png b/dev/_images/8b6be87835fa80f2997c25a27b88d7803528429bdf38de7af260c18a3c7aec03.png new file mode 100644 index 000000000..817d52ae9 Binary files /dev/null and b/dev/_images/8b6be87835fa80f2997c25a27b88d7803528429bdf38de7af260c18a3c7aec03.png differ diff --git a/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg b/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg similarity index 100% rename from dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg rename to dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg index 0255e9b57..a85f1c417 100644 --- a/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg +++ b/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg @@ -9,22 +9,22 @@ %3 - - -hgf_loglike - -hgf_loglike -~ -Potential - - + tonic_volatility_2 tonic_volatility_2 ~ Normal + + +hgf_loglike + +hgf_loglike +~ +Potential + tonic_volatility_2->hgf_loglike diff --git a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg b/dev/_images/906f003ac3c62510821da40b51513f921c716a616f423184ce543353e719929c.svg similarity index 100% rename from dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg rename to dev/_images/906f003ac3c62510821da40b51513f921c716a616f423184ce543353e719929c.svg index 6acc91819..3357dc509 100644 --- a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg +++ b/dev/_images/906f003ac3c62510821da40b51513f921c716a616f423184ce543353e719929c.svg @@ -18,7 +18,7 @@ Normal - + hgf_loglike hgf_loglike @@ -32,7 +32,7 @@ - + tonic_volatility_2 tonic_volatility_2 diff --git a/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png b/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png deleted file mode 100644 index f72355289..000000000 Binary files a/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png and /dev/null differ diff --git a/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png b/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png deleted file mode 100644 index 504b35df0..000000000 Binary files a/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png and /dev/null differ diff --git a/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg b/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg deleted file mode 100644 index 77ad0410e..000000000 --- a/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -mu_volatility - -mu_volatility -~ -Normal - - - -volatility - -volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -sigma_volatility->volatility - - - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -sigma_temperature->inverse_temperature - - - - - -mu_temperature - -mu_temperature -~ -Normal - - - -mu_temperature->inverse_temperature - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -volatility->pointwise_loglikelihood - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -volatility->log_likelihood - - - - - -inverse_temperature->pointwise_loglikelihood - - - - - -inverse_temperature->log_likelihood - - - - - \ No newline at end of file diff --git a/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png b/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png deleted file mode 100644 index 7c431c9a2..000000000 Binary files a/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png and /dev/null differ diff --git a/dev/_images/af4d4741e5bc71839707ead7a8738ea417a80edb7eb6eeb7458d70423dd9d49b.png b/dev/_images/af4d4741e5bc71839707ead7a8738ea417a80edb7eb6eeb7458d70423dd9d49b.png new file mode 100644 index 000000000..851665182 Binary files /dev/null and b/dev/_images/af4d4741e5bc71839707ead7a8738ea417a80edb7eb6eeb7458d70423dd9d49b.png differ diff --git a/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png b/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png deleted file mode 100644 index 1f3b1650d..000000000 Binary files a/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png and /dev/null differ diff --git a/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png b/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png deleted file mode 100644 index 521f1abbf..000000000 Binary files a/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png and /dev/null differ diff --git a/dev/_images/beb370f4030370a25b65ecc7562478b3edc6cf905fd72a41d5096c626c408c88.png b/dev/_images/beb370f4030370a25b65ecc7562478b3edc6cf905fd72a41d5096c626c408c88.png new file mode 100644 index 000000000..94100bba3 Binary files /dev/null and b/dev/_images/beb370f4030370a25b65ecc7562478b3edc6cf905fd72a41d5096c626c408c88.png differ diff --git a/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png b/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png deleted file mode 100644 index 5e5e55947..000000000 Binary files a/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png and /dev/null differ diff --git a/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png b/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png deleted file mode 100644 index 9a0e9153b..000000000 Binary files a/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png and /dev/null differ diff --git a/dev/_images/c33edbdb345ad850c93c219b866a261642054de85b00a5c8ce9f5886f0db4526.png b/dev/_images/c33edbdb345ad850c93c219b866a261642054de85b00a5c8ce9f5886f0db4526.png new file mode 100644 index 000000000..6170f16ef Binary files /dev/null and b/dev/_images/c33edbdb345ad850c93c219b866a261642054de85b00a5c8ce9f5886f0db4526.png differ diff --git a/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png b/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png deleted file mode 100644 index bd4f3d5e4..000000000 Binary files a/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png and /dev/null differ diff --git a/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png b/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png deleted file mode 100644 index 285c615f7..000000000 Binary files a/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png and /dev/null differ diff --git a/dev/_images/d26c403c9e83b0b3dff7c5485a76b7732915a7254507dcead6ade3245ca07266.png b/dev/_images/d26c403c9e83b0b3dff7c5485a76b7732915a7254507dcead6ade3245ca07266.png new file mode 100644 index 000000000..f374e9a4c Binary files /dev/null and b/dev/_images/d26c403c9e83b0b3dff7c5485a76b7732915a7254507dcead6ade3245ca07266.png differ diff --git a/dev/_images/d5c5a97398656d0686b9767717490d1e07025f0da2e68fbe4d7a5a702cfc5da9.png b/dev/_images/d5c5a97398656d0686b9767717490d1e07025f0da2e68fbe4d7a5a702cfc5da9.png new file mode 100644 index 000000000..ee22ebfcc Binary files /dev/null and b/dev/_images/d5c5a97398656d0686b9767717490d1e07025f0da2e68fbe4d7a5a702cfc5da9.png differ diff --git a/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png b/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png deleted file mode 100644 index b300c2a97..000000000 Binary files a/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png and /dev/null differ diff --git a/dev/_images/df92baea67d169287416455df87f373ce1d18462d4cca6db3be6d2ff9d46f2e6.png b/dev/_images/df92baea67d169287416455df87f373ce1d18462d4cca6db3be6d2ff9d46f2e6.png new file mode 100644 index 000000000..b92d83408 Binary files /dev/null and b/dev/_images/df92baea67d169287416455df87f373ce1d18462d4cca6db3be6d2ff9d46f2e6.png differ diff --git a/dev/_images/ed02c4af08d89f5d7ab0b508f60c80b173f5b42ea7caa307bb171a51dd6ca7a9.png b/dev/_images/ed02c4af08d89f5d7ab0b508f60c80b173f5b42ea7caa307bb171a51dd6ca7a9.png new file mode 100644 index 000000000..bfde674c2 Binary files /dev/null and b/dev/_images/ed02c4af08d89f5d7ab0b508f60c80b173f5b42ea7caa307bb171a51dd6ca7a9.png differ diff --git a/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png b/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png deleted file mode 100644 index 85296af76..000000000 Binary files a/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png and /dev/null differ diff --git a/dev/_images/fb695e13af21b24d9a38ac92d4775b743612ac26e9b6366320449a27e8706e8a.png b/dev/_images/fb695e13af21b24d9a38ac92d4775b743612ac26e9b6366320449a27e8706e8a.png new file mode 100644 index 000000000..c5cf88d7b Binary files /dev/null and b/dev/_images/fb695e13af21b24d9a38ac92d4775b743612ac26e9b6366320449a27e8706e8a.png differ diff --git a/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png b/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png deleted file mode 100644 index f6920b0f5..000000000 Binary files a/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png and /dev/null differ diff --git a/dev/_images/fdd6d877846c97d412099272c3cda0b105e770024d9b6e23f6b5263597b4fc60.png b/dev/_images/fdd6d877846c97d412099272c3cda0b105e770024d9b6e23f6b5263597b4fc60.png new file mode 100644 index 000000000..f3ff43a4e Binary files /dev/null and b/dev/_images/fdd6d877846c97d412099272c3cda0b105e770024d9b6e23f6b5263597b4fc60.png differ diff --git a/dev/_images/ff6ae2c0ae1851f198ac15a979cfa4ebb5d5bfc268b50bc68ad883e32a14a80f.svg b/dev/_images/ff6ae2c0ae1851f198ac15a979cfa4ebb5d5bfc268b50bc68ad883e32a14a80f.svg new file mode 100644 index 000000000..b34093df5 --- /dev/null +++ b/dev/_images/ff6ae2c0ae1851f198ac15a979cfa4ebb5d5bfc268b50bc68ad883e32a14a80f.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +mu_temperature + +mu_temperature +~ +Normal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +mu_temperature->inverse_temperature + + + + + +mu_volatility + +mu_volatility +~ +Normal + + + +volatility + +volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +sigma_temperature->inverse_temperature + + + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +sigma_volatility->volatility + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +inverse_temperature->log_likelihood + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +inverse_temperature->pointwise_loglikelihood + + + + + +volatility->log_likelihood + + + + + +volatility->pointwise_loglikelihood + + + + + \ No newline at end of file diff --git a/dev/_sources/index.md.txt b/dev/_sources/index.md.txt index ec85757d1..4372a8e35 100644 --- a/dev/_sources/index.md.txt +++ b/dev/_sources/index.md.txt @@ -2,9 +2,10 @@ # PyHGF: A Neural Network Library for Predictive Coding -hgf +hgf -PyHGF is a Python library to create and manipulate dynamic probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of [JAX](https://jax.readthedocs.io/en/latest/jax.html), the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in [Rust](https://www.rust-lang.org/) - that will provide full flexibility on structures during inference - is also under active development. + +PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference. * 📖 [API Documentation](https://ilabcode.github.io/pyhgf/api.html) * ✏️ [Tutorials and examples](https://ilabcode.github.io/pyhgf/learn.html) @@ -34,7 +35,7 @@ Dynamic networks can be defined as a tuple containing the following variables: * A set of update functions. An update function receive a network tuple and returns an updated network tuple. * An update sequence (tuple) that defines the order and target of the update functions. -![png](https://raw.githubusercontent.com/ilabcode/pyhgf/master/docs/source/images/graph_network.svg) +networks You can find a deeper introduction to how to create and manipulate networks under the following link: diff --git a/dev/index.html b/dev/index.html index 9bd5459b5..9281200fe 100644 --- a/dev/index.html +++ b/dev/index.html @@ -426,8 +426,8 @@

pre-commit license codecov black mypy Imports: isort pip

PyHGF: A Neural Network Library for Predictive Coding#

-hgf -

PyHGF is a Python library to create and manipulate dynamic probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of JAX, the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in Rust - that will provide full flexibility on structures during inference - is also under active development.

+hgf +

PyHGF is a Python library for creating and manipulating dynamic probabilistic networks for predictive coding. These networks approximate Bayesian inference by optimizing beliefs through the diffusion of predictions and precision-weighted prediction errors. The network structure remains flexible during message-passing steps, allowing for dynamic adjustments. They can be used as a biologically plausible cognitive model in computational neuroscience or as a generalization of Bayesian filtering for designing efficient, modular decision-making agents. The default implementation supports the generalized Hierarchical Gaussian Filters (gHGF, Weber et al., 2024), but the framework is designed to be adaptable to other algorithms. Built on top of JAX, the core functions are differentiable and JIT-compiled where applicable. The library is optimized for modularity and ease of use, allowing seamless integration with other libraries in the ecosystem for Bayesian inference and optimization. Additionally, a binding with an implementation in Rust is under active development, which will further enhance flexibility during inference.

@@ -829,8 +829,8 @@

Sampling
NUTS: [tonic_volatility_2]
 
-

-
-../_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png +../_images/685fda99af028c72672e3206ea8ee16c1a52789d27948be8eaf87fa8d7d98181.png
@@ -883,7 +883,7 @@

Using the learned parameters -../_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png +../_images/15dc40f4e6e445ad3c9d895fa3a76748cacf076c24ee80be754b237051cdc03c.png @@ -971,9 +971,9 @@

Sampling#
NUTS: [tonic_volatility_2, tonic_volatility_3]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
@@ -990,7 +990,7 @@ 

Sampling#

-../_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png +../_images/621bd4bc41eb3bb1c3ba37af682abf523053170fe477709fab35f9e596212895.png
@@ -1028,7 +1028,7 @@

Using the learned parameters -../_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png +../_images/3f9c9d096d1b45be79de680296b186aa4ef181d7e4390ab20a6046f038f7a98c.png

-../_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png +../_images/4535da753e514502a56155b3635236909cb08ff6c3118a75b2b5c95c8c290167.png
@@ -860,12 +860,12 @@

System configurationvar togglebuttonSelector = '.toggle, .admonition.dropdown'; - + @@ -880,8 +880,8 @@

Sampling
NUTS: [tonic_volatility_1]
 
-

-
@@ -947,7 +947,7 @@

Using the learned parameters -
Array(-1106.1246, dtype=float32)
+
Array(-1106.1111, dtype=float32)
 
@@ -1023,9 +1023,9 @@

Sampling#
NUTS: [tonic_volatility_1]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 10 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
@@ -1040,7 +1040,7 @@ 

Sampling#

-../_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png +../_images/fdd6d877846c97d412099272c3cda0b105e770024d9b6e23f6b5263597b4fc60.png
@@ -1074,7 +1074,7 @@

Using the learned parameters -../_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png +../_images/fb695e13af21b24d9a38ac92d4775b743612ac26e9b6366320449a27e8706e8a.png

@@ -1084,7 +1084,7 @@

Using the learned parameters - diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html index 34bd62c50..a54a337a2 100644 --- a/dev/notebooks/2-Using_custom_response_functions.html +++ b/dev/notebooks/2-Using_custom_response_functions.html @@ -52,7 +52,7 @@ - + @@ -890,8 +890,8 @@

Recovering HGF parameters from the observed behaviors
NUTS: [tonic_volatility_2]
 

-

-

../_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png +../_images/df92baea67d169287416455df87f373ce1d18462d4cca6db3be6d2ff9d46f2e6.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -990,14 +990,14 @@

System configuration diff --git a/dev/notebooks/3-Multilevel_HGF.html b/dev/notebooks/3-Multilevel_HGF.html index 11f2364e5..d3d46f280 100644 --- a/dev/notebooks/3-Multilevel_HGF.html +++ b/dev/notebooks/3-Multilevel_HGF.html @@ -52,7 +52,7 @@ - + @@ -806,7 +806,7 @@

Plot the computational graph -../_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg +../_images/ff6ae2c0ae1851f198ac15a979cfa4ebb5d5bfc268b50bc68ad883e32a14a80f.svg @@ -832,8 +832,8 @@

Sampling
NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
 
-

-

The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

@@ -902,17 +902,17 @@

Model comparison
Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.
 
          Estimate       SE
-elpd_loo -2511.06    76.83
-p_loo      739.62        -
+elpd_loo -2554.73    78.30
+p_loo      794.16        -
 
 There has been a warning during the calculation. Please check the results.
 ------
 
 Pareto k diagnostic values:
                          Count   Pct.
-(-Inf, 0.70]   (good)     2167   67.7%
+(-Inf, 0.70]   (good)     2281   71.3%
    (0.70, 1]   (bad)         1    0.0%
-   (1, Inf)   (very bad) 1032   32.2%
+   (1, Inf)   (very bad)  918   28.7%
 
@@ -941,13 +941,13 @@

System configuration diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index 536fda6a1..3369cec97 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -50,7 +50,7 @@ - + @@ -676,12 +676,12 @@

Inference from the simulated behaviours
NUTS: [censored_volatility, inverse_temperature]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 49 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 63 seconds.
 
-
diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index c026e5bbc..3ccf70aa7 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -50,7 +50,7 @@ - + @@ -574,16 +574,16 @@

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 

-
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  2.35it/s]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:01<00:01,  1.14s/it]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  2.35it/s]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:01<00:01,  1.14s/it]
 
-
Downloading Respiration channel: 100%|██████████| 2/2 [00:00<00:00,  2.19it/s]
+
Downloading Respiration channel: 100%|██████████| 2/2 [00:02<00:00,  1.09s/it]
 
-
diff --git a/dev/notebooks/Example_2_Input_node_volatility_coupling.html b/dev/notebooks/Example_2_Input_node_volatility_coupling.html index 4097345c0..8fbb38e1f 100644 --- a/dev/notebooks/Example_2_Input_node_volatility_coupling.html +++ b/dev/notebooks/Example_2_Input_node_volatility_coupling.html @@ -704,12 +704,12 @@

System configuration

diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html index a6cc9ef5c..ddb261107 100644 --- a/dev/notebooks/Example_3_Multi_armed_bandit.html +++ b/dev/notebooks/Example_3_Multi_armed_bandit.html @@ -52,7 +52,7 @@ - + @@ -1085,8 +1085,8 @@

Bayesian inference
NUTS: [omega]
 

-

-
@@ -1133,16 +1133,16 @@

System configuration

diff --git a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html index 4073c574c..0b1f34205 100644 --- a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html +++ b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html @@ -1044,13 +1044,13 @@

System configuration

diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index 736b9578b..5dd8d5fc8 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -52,7 +52,7 @@ - + @@ -703,7 +703,7 @@

Parameters optimization

-../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg
-

-
-../_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png +../_images/d26c403c9e83b0b3dff7c5485a76b7732915a7254507dcead6ade3245ca07266.png
-

-

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -925,12 +925,12 @@

Rescorla-Wagner{"version_major": 2, "version_minor": 0, "model_id": "185316b474b0480b92e62fdbbe031b10"}

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1147,12 +1147,12 @@

Three-level HGF
NUTS: [tonic_volatility_2]
 

-

-

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1486,15 +1486,15 @@

System configuration diff --git a/dev/searchindex.js b/dev/searchindex.js index f8d49274c..833b54ec2 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00745": 62, "00825": [1, 57, 74], "01": [61, 66, 67, 68, 72], "010339": 73, "0105": 64, "011": 73, "012": 65, "015": 73, "015187": 73, "016": 74, "016216": 65, "017": 65, "018": 72, "0183": 64, "02": [61, 72], "026694": 73, "027": 2, "03": [68, 72], "030": [13, 32], "038": 2, "04": [20, 21, 64, 72], "05": [60, 68, 71, 73], "050010": 73, "06": 66, "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "077038": 65, "08": 74, "08008": [66, 67], "09045": 62, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74], "100": [61, 66, 67, 69], "1000": [2, 59, 60, 61, 66, 68, 69, 70, 72], "10000": [16, 59], "1007": [13, 32, 74], "1016": 74, "1017": 74, "1032": 66, "103608": 73, "109": 73, "10937": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1118": 64, "112": 73, "113": 73, "114": 74, "117590": 74, "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "1246": 64, "125": [59, 72], "1251": 74, "1261": 65, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "138": 57, "14": [2, 65], "1413": 74, "1432": 74, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "16": [2, 61], "1662": 1, "16625161": 1, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "175368": 73, "18": [20, 21, 65], "185465": 65, "1903": [66, 67], "1910": 64, "1938": 66, "196": 72, "1999": 67, "19it": 69, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "210907e": 73, "21596": 62, "21629826": 1, "2167": 66, "222": 73, "223249": 73, "224": 72, "226": 74, "22it": 69, "23": 73, "2305": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "238695": 73, "24": 72, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2511": 66, "2516081684": 64, "256": 61, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 66, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "32": [61, 66], "3200": 66, "337250": 73, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "35it": 69, "361": 73, "387": 72, "389923": 65, "4": [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "401": 73, "4093": 64, "416410": 65, "42": [48, 68], "43": 68, "44": 73, "45": 60, "450344": 73, "458906": 65, "466356": 65, "471469": 65, "472": 72, "474077": 65, "48550": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "49": 67, "49547": 74, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [69, 70], "500": [66, 70], "500000": 65, "506923": 65, "510971": 65, "512": 61, "5161": 1, "518301": 65, "52": [13, 32, 74], "520583": 65, "526640": 73, "52985": 62, "530355": 65, "530717": 65, "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "55a868": [59, 67, 73], "562": 73, "564844": 73, "566859": 65, "58": [13, 32, 74], "582766": [61, 70], "591538": 73, "599": 73, "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "602961": 65, "6174": 64, "62": 66, "622459": 65, "624085": 65, "627284": 65, "631975": 65, "635": 72, "638038": 65, "64": [61, 66], "645": 73, "64919": [13, 32], "650": 68, "66": 73, "67": 66, "680811": 57, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "701917": 73, "731660": 65, "739": 66, "745316": 65, "750": 60, "7554": 74, "76": 66, "766": 2, "772407": 73, "776": 2, "7_7": [13, 32], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "83": 66, "834867": 65, "842": 65, "850": 68, "861929": 73, "865": 72, "872": 73, "87854": 65, "886": 64, "889": 65, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "910": 64, "9189386": 14, "927647": 73, "9297": 64, "929917": 73, "931": 72, "938": 2, "944": 2, "950": 68, "952": 65, "964": 64, "965": 64, "9696": 74, "978": [13, 32], "981": 65, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 57, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": [66, 67], "aberr": 64, "abil": 67, "abl": [57, 62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": 73, "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "aim": 64, "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": 74, "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": 74, "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "arbitrarili": 57, "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": 68, "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "bibtex": 1, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "biolog": 57, "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 57, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [60, 62, 64, 72, 73], "burst": 60, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": 74, "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "conceiv": 57, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 57, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 66, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": 74, "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 64, 66, 67, 74], "effective_precis": 36, "effici": [1, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enlarg": 61, "enno": 74, "enough": 57, "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": [66, 67], "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": [57, 60], "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "feasibl": 57, "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "focu": 57, "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "format": 1, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 57, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "further": [59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [57, 58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphic": 57, "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": 74, "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 61, 73], "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": [57, 65], "interleav": [0, 61, 71], "intern": [32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3226": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 66, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "li": 59, "lib": 73, "librari": [0, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": 74, "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": 74, "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": 60, "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": 74, "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [68, 74], "nodal": 69, "nodalis": [57, 72], "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": 74, "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": 66, "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 57, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 66, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 57, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 57, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 57, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": [66, 67], "remain": 71, "rememb": 73, "remot": 59, "remov": 72, "reparameter": [66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": [66, 67], "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 57, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": 13, "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "serv": 57, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 57, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 57, 59, 60, 62, 64, 66, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": [66, 67], "smooth": 58, "smoother": 61, "smoothli": 57, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [57, 60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 66, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "sun": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "system": 57, "systol": 69, "t": [23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": 74, "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [57, 59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "whenev": 57, "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [57, 59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": [57, 61], "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00825": [1, 57, 74], "00859": 62, "009833": 73, "01": [61, 66, 67, 68, 69, 72, 73], "011": 73, "012": 65, "013731e": 73, "013782": 73, "015": 73, "016": [65, 74], "016216": 65, "018": 72, "0183": 64, "02": [61, 69, 72], "027": 2, "03": [68, 72], "030": [13, 32], "0354": 64, "038": 2, "04": [20, 21, 64, 72], "041969": 73, "05": [60, 68, 71, 73], "054798": 73, "059": 65, "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "077038": 65, "08": 74, "08008": [66, 67], "09": [69, 73], "09045": 62, "098993": 73, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74], "100": [61, 66, 67, 69], "1000": [2, 59, 60, 61, 66, 68, 69, 70, 72], "10000": [16, 59], "1007": [13, 32, 74], "1016": 74, "1017": 74, "105959": 73, "109": 73, "10937": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1111": 64, "1118": 64, "112": 73, "113": 73, "114": 74, "117590": 74, "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "125": [59, 72], "1251": 74, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "138": 57, "14": [2, 65, 69], "1413": 74, "1432": 74, "1453": 65, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "16": [2, 61, 66], "1662": 1, "16625161": 1, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "171848": 73, "18": [20, 21, 65], "185465": 65, "1903": [66, 67], "1910": 64, "1938": 66, "196": 72, "1997": 67, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "21596": 62, "21629826": 1, "22": 73, "220713": 73, "222": 73, "224": 72, "226": 74, "2281": 66, "2305": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "24": 72, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2516081684": 64, "2554": 66, "256": 61, "257720": 73, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 66, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "286": 73, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 66, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "32": 61, "3200": 66, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "379": 73, "387": 72, "389923": 65, "4": [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "4093": 64, "416410": 65, "42": [48, 68], "420731": 73, "429328e": 73, "43": 68, "45": 60, "458906": 65, "466356": 65, "471469": 65, "472": 72, "474077": 65, "48550": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "487": 65, "49547": 74, "497235": 73, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [69, 70], "500": [66, 70], "500000": 65, "506923": 65, "507049": 73, "510971": 65, "512": 61, "5161": 1, "518301": 65, "52": [13, 32, 73, 74], "520583": 65, "52992": 62, "530355": 65, "530717": 65, "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "544734": 73, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "55a868": [59, 67, 73], "566859": 65, "58": [13, 32, 74], "582766": [61, 70], "583": 73, "590": 73, "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "602961": 65, "610": 73, "6174": 64, "622459": 65, "624085": 65, "627284": 65, "63": 67, "631975": 65, "635": 72, "638038": 65, "64": [61, 66], "643728": 73, "64919": [13, 32], "650": 68, "66": 73, "680811": 57, "685723": 73, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "71": 66, "73": 66, "731660": 65, "745316": 65, "750": 60, "7554": 74, "766": 2, "776": 2, "78": 66, "794": 66, "7_7": [13, 32], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "834867": 65, "850": 68, "858": 65, "865": 72, "866814": 73, "875997": 73, "87854": 65, "886": 64, "893893": 73, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "906": 65, "910": 64, "916": 73, "918": 66, "9189386": 14, "9297": 64, "931": 72, "938": 2, "944": 2, "950": 68, "964": 64, "965": 64, "9696": 74, "978": [13, 32], "98": 65, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": [66, 67], "aberr": 64, "abil": 67, "abl": [62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 57, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [57, 67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": [57, 73], "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "aim": 64, "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": 74, "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 57, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": 74, "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 57, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": 68, "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "bibtex": 1, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "biolog": 57, "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [57, 60, 62, 64, 72, 73], "burst": 60, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": 74, "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "compil": 57, "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [57, 58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 66, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [57, 61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": 74, "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "eas": 57, "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 64, 66, 67, 74], "effective_precis": 36, "effici": [1, 57, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enhanc": 57, "enlarg": 61, "enno": 74, "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": [66, 67], "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": 60, "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "format": 1, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "further": [57, 59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": 74, "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 57, 61, 73], "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": 65, "interleav": [0, 61, 71], "intern": [32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3070": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 66, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "li": 59, "lib": 73, "librari": [0, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": 74, "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": 74, "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": [57, 60], "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": 74, "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [68, 74], "nodal": 69, "nodalis": 72, "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 57, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": 74, "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": 66, "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 66, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": [66, 67], "remain": [57, 71], "rememb": 73, "remot": 59, "remov": 72, "reparameter": [66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": [66, 67], "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": 13, "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "seamless": 57, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 59, 60, 62, 64, 66, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": [66, 67], "smooth": 58, "smoother": 61, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 66, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "sun": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "systol": 69, "t": [23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 57, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": 74, "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": 61, "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file