diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 25a63edf8..6a75780f7 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 01ceeafa0..e7573a815 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index 3cb0f92d1..9018d8f9b 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index d7de15fba..3bb58aefd 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index 501170477..13aa90575 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index fdd70af92..8bf6bf3f9 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index d750153eb..84bcede1c 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index eb19e8146..539320f73 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index 9ca7131cf..b75c8af08 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 2667fb122..55bbffe02 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index e509f6dfb..7412f28a0 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 6fadbb182..dcae35105 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index adeb8f59d..4d7209f05 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index 09b03b3fd..e9c9294dd 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index 531338fd4..15e01598e 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index bebf5c261..31a7e8cdf 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/025c6ad68f3b001693ab50fc2ce308dd35dd28546cfa83d91ba655a814893f5f.png b/dev/_images/025c6ad68f3b001693ab50fc2ce308dd35dd28546cfa83d91ba655a814893f5f.png deleted file mode 100644 index 8f17b2ea0..000000000 Binary files a/dev/_images/025c6ad68f3b001693ab50fc2ce308dd35dd28546cfa83d91ba655a814893f5f.png and /dev/null differ diff --git a/dev/_images/0be1fc85be22b2b446cc5a2e5d78a8e444248ee1f0a7a72d8fbe9b4baa452940.png b/dev/_images/0be1fc85be22b2b446cc5a2e5d78a8e444248ee1f0a7a72d8fbe9b4baa452940.png deleted file mode 100644 index 9af067120..000000000 Binary files a/dev/_images/0be1fc85be22b2b446cc5a2e5d78a8e444248ee1f0a7a72d8fbe9b4baa452940.png and /dev/null differ diff --git a/dev/_images/1131a3fca5e90e926c1cc411081758c951984ba25ec23f26ee25bdc2ac0ef5a3.png b/dev/_images/1131a3fca5e90e926c1cc411081758c951984ba25ec23f26ee25bdc2ac0ef5a3.png deleted file mode 100644 index c11836cec..000000000 Binary files a/dev/_images/1131a3fca5e90e926c1cc411081758c951984ba25ec23f26ee25bdc2ac0ef5a3.png and /dev/null differ diff --git a/dev/_images/1cb865b4870a04f288adde0555c636bbd6db7a5d43331b70ebbc54e64c336108.png b/dev/_images/1cb865b4870a04f288adde0555c636bbd6db7a5d43331b70ebbc54e64c336108.png deleted file mode 100644 index 1fb38b56f..000000000 Binary files a/dev/_images/1cb865b4870a04f288adde0555c636bbd6db7a5d43331b70ebbc54e64c336108.png and /dev/null differ diff --git a/dev/_images/2059426ad2f3319e839d0aff485e0e14675f57355a9b58472e3bdf75ffaedff5.png b/dev/_images/2059426ad2f3319e839d0aff485e0e14675f57355a9b58472e3bdf75ffaedff5.png new file mode 100644 index 000000000..2b6d2baef Binary files /dev/null and b/dev/_images/2059426ad2f3319e839d0aff485e0e14675f57355a9b58472e3bdf75ffaedff5.png differ diff --git a/dev/_images/2167ccc99323c237c9015c8b5c3e2c5ff0df0ea271d023c5adf6a809dfe368ab.png b/dev/_images/2167ccc99323c237c9015c8b5c3e2c5ff0df0ea271d023c5adf6a809dfe368ab.png new file mode 100644 index 000000000..5e36dbec9 Binary files /dev/null and b/dev/_images/2167ccc99323c237c9015c8b5c3e2c5ff0df0ea271d023c5adf6a809dfe368ab.png differ diff --git a/dev/_images/22ec1fe2b65fd02c0149da478b434f72aac818456e6b8116506bd870ca97dcbf.png b/dev/_images/22ec1fe2b65fd02c0149da478b434f72aac818456e6b8116506bd870ca97dcbf.png deleted file mode 100644 index b30a27df5..000000000 Binary files a/dev/_images/22ec1fe2b65fd02c0149da478b434f72aac818456e6b8116506bd870ca97dcbf.png and /dev/null differ diff --git a/dev/_images/239e94793fde85a8a7b5fa37525fe62f2106aa7bb41aeb50bdad09751ace89ef.png b/dev/_images/239e94793fde85a8a7b5fa37525fe62f2106aa7bb41aeb50bdad09751ace89ef.png deleted file mode 100644 index 8541740ad..000000000 Binary files a/dev/_images/239e94793fde85a8a7b5fa37525fe62f2106aa7bb41aeb50bdad09751ace89ef.png and /dev/null differ diff --git a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg b/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg similarity index 93% rename from dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg rename to dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg index 6acc91819..4e573a629 100644 --- a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg +++ b/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg @@ -9,13 +9,13 @@ %3 - + -tonic_volatility_3 +tonic_volatility_2 -tonic_volatility_3 +tonic_volatility_2 ~ -Normal +Uniform @@ -25,23 +25,23 @@ ~ Potential - + -tonic_volatility_3->hgf_loglike +tonic_volatility_2->hgf_loglike - + -tonic_volatility_2 +tonic_volatility_3 -tonic_volatility_2 +tonic_volatility_3 ~ -Uniform +Normal - + -tonic_volatility_2->hgf_loglike +tonic_volatility_3->hgf_loglike diff --git a/dev/_images/335cddb217afd62029b02f6b6afec50173f76a1865157e1fe4212ed9fa7b99f5.png b/dev/_images/335cddb217afd62029b02f6b6afec50173f76a1865157e1fe4212ed9fa7b99f5.png new file mode 100644 index 000000000..02fd76da6 Binary files /dev/null and b/dev/_images/335cddb217afd62029b02f6b6afec50173f76a1865157e1fe4212ed9fa7b99f5.png differ diff --git a/dev/_images/3e9200da479f43d2a0f6ae9f9b90c5362a3b5f451d827f5107fb54f93d0a7799.png b/dev/_images/3e9200da479f43d2a0f6ae9f9b90c5362a3b5f451d827f5107fb54f93d0a7799.png new file mode 100644 index 000000000..da4366f5f Binary files /dev/null and b/dev/_images/3e9200da479f43d2a0f6ae9f9b90c5362a3b5f451d827f5107fb54f93d0a7799.png differ diff --git a/dev/_images/4050fe0347ded05a53df568aec1b49d7910606a6343c0c108276244496910f8b.svg b/dev/_images/4050fe0347ded05a53df568aec1b49d7910606a6343c0c108276244496910f8b.svg new file mode 100644 index 000000000..6727f0d36 --- /dev/null +++ b/dev/_images/4050fe0347ded05a53df568aec1b49d7910606a6343c0c108276244496910f8b.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +mu_temperature + +mu_temperature +~ +Normal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +mu_temperature->inverse_temperature + + + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +volatility + +volatility +~ +Normal + + + +sigma_volatility->volatility + + + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +sigma_temperature->inverse_temperature + + + + + +mu_volatility + +mu_volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +volatility->pointwise_loglikelihood + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +volatility->log_likelihood + + + + + +inverse_temperature->pointwise_loglikelihood + + + + + +inverse_temperature->log_likelihood + + + + + \ No newline at end of file diff --git a/dev/_images/40601a81b8f83071e14dc3febf12b2d8e7a79e39b9e78fd142a152c743c88317.png b/dev/_images/40601a81b8f83071e14dc3febf12b2d8e7a79e39b9e78fd142a152c743c88317.png new file mode 100644 index 000000000..5997e7a35 Binary files /dev/null and b/dev/_images/40601a81b8f83071e14dc3febf12b2d8e7a79e39b9e78fd142a152c743c88317.png differ diff --git a/dev/_images/42a00d49502a9df956747c2ded1a31ed98388ae5ae7979036ad01d0e7232ae71.png b/dev/_images/42a00d49502a9df956747c2ded1a31ed98388ae5ae7979036ad01d0e7232ae71.png deleted file mode 100644 index bf2d17474..000000000 Binary files a/dev/_images/42a00d49502a9df956747c2ded1a31ed98388ae5ae7979036ad01d0e7232ae71.png and /dev/null differ diff --git a/dev/_images/472d09d46198daebd1172c7e9fe8dfbc43852041c32839ca967a6e2a98fac92d.png b/dev/_images/472d09d46198daebd1172c7e9fe8dfbc43852041c32839ca967a6e2a98fac92d.png new file mode 100644 index 000000000..b853f452c Binary files /dev/null and b/dev/_images/472d09d46198daebd1172c7e9fe8dfbc43852041c32839ca967a6e2a98fac92d.png differ diff --git a/dev/_images/482aae5bf99898ae3540fd296dda1db83ddbbdf3d25d7e588dccd997fe0c90d0.png b/dev/_images/482aae5bf99898ae3540fd296dda1db83ddbbdf3d25d7e588dccd997fe0c90d0.png deleted file mode 100644 index 3572b27a4..000000000 Binary files a/dev/_images/482aae5bf99898ae3540fd296dda1db83ddbbdf3d25d7e588dccd997fe0c90d0.png and /dev/null differ diff --git a/dev/_images/496d4dbfbdd619abcfe152a1723b8a871f7bc93e03e3922b9cf6110337888440.png b/dev/_images/496d4dbfbdd619abcfe152a1723b8a871f7bc93e03e3922b9cf6110337888440.png deleted file mode 100644 index 18c34e8d3..000000000 Binary files a/dev/_images/496d4dbfbdd619abcfe152a1723b8a871f7bc93e03e3922b9cf6110337888440.png and /dev/null differ diff --git a/dev/_images/4b377b4ee32d314e234bab8b9ad53cc7881d8c76640c3e0829b9a770044c1b29.png b/dev/_images/4b377b4ee32d314e234bab8b9ad53cc7881d8c76640c3e0829b9a770044c1b29.png new file mode 100644 index 000000000..e1b187095 Binary files /dev/null and b/dev/_images/4b377b4ee32d314e234bab8b9ad53cc7881d8c76640c3e0829b9a770044c1b29.png differ diff --git a/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png b/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png new file mode 100644 index 000000000..ddc9a1172 Binary files /dev/null and b/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png differ diff --git a/dev/_images/5aa278b211b6a409bf8958da879a5249962c00cd3cff9ffe61c1ac7fc8780fb3.png b/dev/_images/5aa278b211b6a409bf8958da879a5249962c00cd3cff9ffe61c1ac7fc8780fb3.png deleted file mode 100644 index 84e45729a..000000000 Binary files a/dev/_images/5aa278b211b6a409bf8958da879a5249962c00cd3cff9ffe61c1ac7fc8780fb3.png and /dev/null differ diff --git a/dev/_images/5adbb6e59a7b4be9d4fe6e6dbb81b6a04f44eb22c14261ce8afc8abb6251da7c.svg b/dev/_images/5adbb6e59a7b4be9d4fe6e6dbb81b6a04f44eb22c14261ce8afc8abb6251da7c.svg deleted file mode 100644 index 6736ef19d..000000000 --- a/dev/_images/5adbb6e59a7b4be9d4fe6e6dbb81b6a04f44eb22c14261ce8afc8abb6251da7c.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -volatility - -volatility -~ -Normal - - - -sigma_volatility->volatility - - - - - -mu_temperature - -mu_temperature -~ -Normal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -mu_temperature->inverse_temperature - - - - - -mu_volatility - -mu_volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -sigma_temperature->inverse_temperature - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -volatility->pointwise_loglikelihood - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -volatility->log_likelihood - - - - - -inverse_temperature->pointwise_loglikelihood - - - - - -inverse_temperature->log_likelihood - - - - - \ No newline at end of file diff --git a/dev/_images/5c151dc5ff581ecf21238d061d1c7af058ffdb8cd86e183349a9eb3cef93eb73.png b/dev/_images/5c151dc5ff581ecf21238d061d1c7af058ffdb8cd86e183349a9eb3cef93eb73.png deleted file mode 100644 index 780c8441d..000000000 Binary files a/dev/_images/5c151dc5ff581ecf21238d061d1c7af058ffdb8cd86e183349a9eb3cef93eb73.png and /dev/null differ diff --git a/dev/_images/6bbb0356a7d2e791451021478051210bca9e8a126f077782093e97fb0f9fecaf.png b/dev/_images/6bbb0356a7d2e791451021478051210bca9e8a126f077782093e97fb0f9fecaf.png deleted file mode 100644 index cfa6cfde7..000000000 Binary files a/dev/_images/6bbb0356a7d2e791451021478051210bca9e8a126f077782093e97fb0f9fecaf.png and /dev/null differ diff --git a/dev/_images/6e9373eb760ec3c6bb2bee2065daad85a4614370a199c98a3e764a65bf20ee11.png b/dev/_images/6e9373eb760ec3c6bb2bee2065daad85a4614370a199c98a3e764a65bf20ee11.png new file mode 100644 index 000000000..b3126ba44 Binary files /dev/null and b/dev/_images/6e9373eb760ec3c6bb2bee2065daad85a4614370a199c98a3e764a65bf20ee11.png differ diff --git a/dev/_images/773110e0a2a910e680a828febc0758d79bc87e954ce7b9c50c0ba4c597a10b77.png b/dev/_images/773110e0a2a910e680a828febc0758d79bc87e954ce7b9c50c0ba4c597a10b77.png new file mode 100644 index 000000000..e107f172f Binary files /dev/null and b/dev/_images/773110e0a2a910e680a828febc0758d79bc87e954ce7b9c50c0ba4c597a10b77.png differ diff --git a/dev/_images/7ba29b6a14a4553c45c81e146c610f86085909429b44774236ab54f4f61b22ad.png b/dev/_images/7ba29b6a14a4553c45c81e146c610f86085909429b44774236ab54f4f61b22ad.png new file mode 100644 index 000000000..e95feb1ca Binary files /dev/null and b/dev/_images/7ba29b6a14a4553c45c81e146c610f86085909429b44774236ab54f4f61b22ad.png differ diff --git a/dev/_images/7c9c5cd89da3f16d7542a1619530ad2049147c775e6341faacce721ca4eaf61c.png b/dev/_images/7c9c5cd89da3f16d7542a1619530ad2049147c775e6341faacce721ca4eaf61c.png new file mode 100644 index 000000000..158b01115 Binary files /dev/null and b/dev/_images/7c9c5cd89da3f16d7542a1619530ad2049147c775e6341faacce721ca4eaf61c.png differ diff --git a/dev/_images/800b38e1870212139dc19c838b5f6f772a0589c7f0093457677241c62940fb77.png b/dev/_images/800b38e1870212139dc19c838b5f6f772a0589c7f0093457677241c62940fb77.png deleted file mode 100644 index fefc61523..000000000 Binary files a/dev/_images/800b38e1870212139dc19c838b5f6f772a0589c7f0093457677241c62940fb77.png and /dev/null differ diff --git a/dev/_images/84a2c4a9be6742369a78abbadbbcbce3e11b6798e80017dad90de03e875ca35e.png b/dev/_images/84a2c4a9be6742369a78abbadbbcbce3e11b6798e80017dad90de03e875ca35e.png deleted file mode 100644 index 856fbd753..000000000 Binary files a/dev/_images/84a2c4a9be6742369a78abbadbbcbce3e11b6798e80017dad90de03e875ca35e.png and /dev/null differ diff --git a/dev/_images/891136509878ef03a4f7d9bb946e77c1995ee5a9ed70b335571ce8943b28b11d.png b/dev/_images/891136509878ef03a4f7d9bb946e77c1995ee5a9ed70b335571ce8943b28b11d.png new file mode 100644 index 000000000..bdb9e07e8 Binary files /dev/null and b/dev/_images/891136509878ef03a4f7d9bb946e77c1995ee5a9ed70b335571ce8943b28b11d.png differ diff --git a/dev/_images/89417b1e62f0183ff40decddbec57294f2928d3246744538178ea748b3d124fa.png b/dev/_images/89417b1e62f0183ff40decddbec57294f2928d3246744538178ea748b3d124fa.png new file mode 100644 index 000000000..815e82e16 Binary files /dev/null and b/dev/_images/89417b1e62f0183ff40decddbec57294f2928d3246744538178ea748b3d124fa.png differ diff --git a/dev/_images/8c687424d28c53a14096bfa3bc810e1bf1a53fb5d072a06832843dcadb9a8aed.png b/dev/_images/8c687424d28c53a14096bfa3bc810e1bf1a53fb5d072a06832843dcadb9a8aed.png deleted file mode 100644 index e0a892912..000000000 Binary files a/dev/_images/8c687424d28c53a14096bfa3bc810e1bf1a53fb5d072a06832843dcadb9a8aed.png and /dev/null differ diff --git a/dev/_images/8caf92f5ae0ba940256e664ef5b7334b9747081112bbc44e3616eb436eb84484.png b/dev/_images/8caf92f5ae0ba940256e664ef5b7334b9747081112bbc44e3616eb436eb84484.png new file mode 100644 index 000000000..c3c96d8c6 Binary files /dev/null and b/dev/_images/8caf92f5ae0ba940256e664ef5b7334b9747081112bbc44e3616eb436eb84484.png differ diff --git a/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png b/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png deleted file mode 100644 index 21b1de46e..000000000 Binary files a/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png and /dev/null differ diff --git a/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg b/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg similarity index 100% rename from dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg rename to dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg index 0255e9b57..a85f1c417 100644 --- a/dev/_images/8f02834ccc45a1fbb4bd4aabfac2d75a89a86b3ef90438ded772ac7bf43de688.svg +++ b/dev/_images/8fc9c210ab62f5dd9a3be3ce533d3c8c7ee05351b66a0f94da4f8a26be10ae39.svg @@ -9,22 +9,22 @@ %3 - - -hgf_loglike - -hgf_loglike -~ -Potential - - + tonic_volatility_2 tonic_volatility_2 ~ Normal + + +hgf_loglike + +hgf_loglike +~ +Potential + tonic_volatility_2->hgf_loglike diff --git a/dev/_images/92274084c43343457cfbe933888bb1dd2716bf25083d3e45ea9d19e3ddb37e73.png b/dev/_images/92274084c43343457cfbe933888bb1dd2716bf25083d3e45ea9d19e3ddb37e73.png deleted file mode 100644 index e4588727f..000000000 Binary files a/dev/_images/92274084c43343457cfbe933888bb1dd2716bf25083d3e45ea9d19e3ddb37e73.png and /dev/null differ diff --git a/dev/_images/92b40a4aa78df0e756668b0af483fa9a0fd261dfdbb9e6fdc3988925bbfbabf2.png b/dev/_images/92b40a4aa78df0e756668b0af483fa9a0fd261dfdbb9e6fdc3988925bbfbabf2.png new file mode 100644 index 000000000..964cdd225 Binary files /dev/null and b/dev/_images/92b40a4aa78df0e756668b0af483fa9a0fd261dfdbb9e6fdc3988925bbfbabf2.png differ diff --git a/dev/_images/95d2c2154e403b320cf3713a1aa6a05386f7dd1da030689430b27a2437e3ec26.png b/dev/_images/95d2c2154e403b320cf3713a1aa6a05386f7dd1da030689430b27a2437e3ec26.png new file mode 100644 index 000000000..40c8332ce Binary files /dev/null and b/dev/_images/95d2c2154e403b320cf3713a1aa6a05386f7dd1da030689430b27a2437e3ec26.png differ diff --git a/dev/_images/9a1bacc5a7efe588e6e951b4a45f3b5cb1c4b8985b1fc3506d07ed6cf4b79189.png b/dev/_images/9a1bacc5a7efe588e6e951b4a45f3b5cb1c4b8985b1fc3506d07ed6cf4b79189.png deleted file mode 100644 index 892a4fce6..000000000 Binary files a/dev/_images/9a1bacc5a7efe588e6e951b4a45f3b5cb1c4b8985b1fc3506d07ed6cf4b79189.png and /dev/null differ diff --git a/dev/_images/a76761bc41cbe345a0018b344b165c554dcab9b1476ed2096cae1010bc43a3c2.png b/dev/_images/a76761bc41cbe345a0018b344b165c554dcab9b1476ed2096cae1010bc43a3c2.png deleted file mode 100644 index a398f0a42..000000000 Binary files a/dev/_images/a76761bc41cbe345a0018b344b165c554dcab9b1476ed2096cae1010bc43a3c2.png and /dev/null differ diff --git a/dev/_images/b47434316fdf9c08705bfd62ac0f47dee0d4b6365566c6f64c72e661fdbb1feb.png b/dev/_images/b47434316fdf9c08705bfd62ac0f47dee0d4b6365566c6f64c72e661fdbb1feb.png new file mode 100644 index 000000000..beb1c4cf3 Binary files /dev/null and b/dev/_images/b47434316fdf9c08705bfd62ac0f47dee0d4b6365566c6f64c72e661fdbb1feb.png differ diff --git a/dev/_images/b4a68fe9c3b9611968bd5c2e49721bf92da0e9a5e7d37efd792044215c9096b4.png b/dev/_images/b4a68fe9c3b9611968bd5c2e49721bf92da0e9a5e7d37efd792044215c9096b4.png deleted file mode 100644 index 219c86b70..000000000 Binary files a/dev/_images/b4a68fe9c3b9611968bd5c2e49721bf92da0e9a5e7d37efd792044215c9096b4.png and /dev/null differ diff --git a/dev/_images/b51ae87a99338380519629d52d9146a05ba297f831a2d2dda60c7925019181fd.png b/dev/_images/b51ae87a99338380519629d52d9146a05ba297f831a2d2dda60c7925019181fd.png deleted file mode 100644 index 34c416bb2..000000000 Binary files a/dev/_images/b51ae87a99338380519629d52d9146a05ba297f831a2d2dda60c7925019181fd.png and /dev/null differ diff --git a/dev/_images/b9a9de1907f3220c9552221fdfdb27555353584d767cfc1d838f3553532291d3.png b/dev/_images/b9a9de1907f3220c9552221fdfdb27555353584d767cfc1d838f3553532291d3.png deleted file mode 100644 index 71d1b01fe..000000000 Binary files a/dev/_images/b9a9de1907f3220c9552221fdfdb27555353584d767cfc1d838f3553532291d3.png and /dev/null differ diff --git a/dev/_images/bc7fbfec19c0d3925f9c25f2babe6dad485a666a62a29f09e5476bb4344e9b02.png b/dev/_images/bc7fbfec19c0d3925f9c25f2babe6dad485a666a62a29f09e5476bb4344e9b02.png new file mode 100644 index 000000000..304f3662a Binary files /dev/null and b/dev/_images/bc7fbfec19c0d3925f9c25f2babe6dad485a666a62a29f09e5476bb4344e9b02.png differ diff --git a/dev/_images/bdfbd94522ae64e37e17f9f59bd8f7f681b46c3940ba84e06320d1f9ecb043a5.png b/dev/_images/bdfbd94522ae64e37e17f9f59bd8f7f681b46c3940ba84e06320d1f9ecb043a5.png new file mode 100644 index 000000000..9a6b37adc Binary files /dev/null and b/dev/_images/bdfbd94522ae64e37e17f9f59bd8f7f681b46c3940ba84e06320d1f9ecb043a5.png differ diff --git a/dev/_images/cf3f3a9d66a5d762ac19fe1cbef6e223dce12d568239d9e5a180457795462c1f.png b/dev/_images/cf3f3a9d66a5d762ac19fe1cbef6e223dce12d568239d9e5a180457795462c1f.png new file mode 100644 index 000000000..140a49baf Binary files /dev/null and b/dev/_images/cf3f3a9d66a5d762ac19fe1cbef6e223dce12d568239d9e5a180457795462c1f.png differ diff --git a/dev/_images/d4154620ab0010ad605eae092b608e72e20c8e5133d9a10a0c8804917fe11fb3.png b/dev/_images/d4154620ab0010ad605eae092b608e72e20c8e5133d9a10a0c8804917fe11fb3.png new file mode 100644 index 000000000..59d59c7b0 Binary files /dev/null and b/dev/_images/d4154620ab0010ad605eae092b608e72e20c8e5133d9a10a0c8804917fe11fb3.png differ diff --git a/dev/_images/de779af140e9c8170604b81a129ccec3af9e9517410441493b2ff64776ad917d.png b/dev/_images/de779af140e9c8170604b81a129ccec3af9e9517410441493b2ff64776ad917d.png deleted file mode 100644 index cc3c2fd86..000000000 Binary files a/dev/_images/de779af140e9c8170604b81a129ccec3af9e9517410441493b2ff64776ad917d.png and /dev/null differ diff --git a/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg b/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg deleted file mode 100644 index 0a0877fe9..000000000 --- a/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +++ /dev/null @@ -1,35 +0,0 @@ - - - - - - -%3 - - - -hgf_loglike - -hgf_loglike -~ -Potential - - - -tonic_volatility_2 - -tonic_volatility_2 -~ -Uniform - - - -tonic_volatility_2->hgf_loglike - - - - - \ No newline at end of file diff --git a/dev/_images/efc05b204c793f66864d94895db78fd4d729478d6258d2ddf1bd1f1b44d39c72.png b/dev/_images/efc05b204c793f66864d94895db78fd4d729478d6258d2ddf1bd1f1b44d39c72.png new file mode 100644 index 000000000..e8393c60e Binary files /dev/null and b/dev/_images/efc05b204c793f66864d94895db78fd4d729478d6258d2ddf1bd1f1b44d39c72.png differ diff --git a/dev/_images/f312ce7c85b7ff261211a3a0a1791ef0a52b3ebe9b37e7f73953cb2fa1778b3d.png b/dev/_images/f312ce7c85b7ff261211a3a0a1791ef0a52b3ebe9b37e7f73953cb2fa1778b3d.png new file mode 100644 index 000000000..b818df1a6 Binary files /dev/null and b/dev/_images/f312ce7c85b7ff261211a3a0a1791ef0a52b3ebe9b37e7f73953cb2fa1778b3d.png differ diff --git a/dev/_images/fb30ad50512fa98d7a3ccb9ce3bbeaa964e8971e08bdf749547c02cfcebfaaac.png b/dev/_images/fb30ad50512fa98d7a3ccb9ce3bbeaa964e8971e08bdf749547c02cfcebfaaac.png deleted file mode 100644 index ee2461402..000000000 Binary files a/dev/_images/fb30ad50512fa98d7a3ccb9ce3bbeaa964e8971e08bdf749547c02cfcebfaaac.png and /dev/null differ diff --git a/dev/notebooks/0.1-Theory.html b/dev/notebooks/0.1-Theory.html index 7f3bcd0ff..b0a8fd0db 100644 --- a/dev/notebooks/0.1-Theory.html +++ b/dev/notebooks/0.1-Theory.html @@ -921,21 +921,21 @@

System configuration
-
-
Last updated: Tue Dec 10 2024
+
 
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-IPython   : 8.29.0
+numpy     : 1.26.0
 jax       : 0.4.31
-pyhgf     : 0.0.0.post1.dev0+d064162
 seaborn   : 0.13.2
-numpy     : 1.26.0
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+pyhgf     : 0.0.0.post1.dev0+304ea45
 matplotlib: 3.9.2
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+IPython   : 8.29.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/1.1-Binary_HGF.html b/dev/notebooks/1.1-Binary_HGF.html index 3ff419c9b..6ea285990 100644 --- a/dev/notebooks/1.1-Binary_HGF.html +++ b/dev/notebooks/1.1-Binary_HGF.html @@ -52,7 +52,7 @@ - + @@ -829,8 +829,8 @@

Sampling
NUTS: [tonic_volatility_2]
 
-

-

-../_images/92274084c43343457cfbe933888bb1dd2716bf25083d3e45ea9d19e3ddb37e73.png +../_images/7ba29b6a14a4553c45c81e146c610f86085909429b44774236ab54f4f61b22ad.png
@@ -883,7 +883,7 @@

Using the learned parameters -../_images/239e94793fde85a8a7b5fa37525fe62f2106aa7bb41aeb50bdad09751ace89ef.png +../_images/95d2c2154e403b320cf3713a1aa6a05386f7dd1da030689430b27a2437e3ec26.png

@@ -971,8 +971,8 @@

Sampling#
NUTS: [tonic_volatility_2, tonic_volatility_3]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.
 
@@ -990,7 +990,7 @@

Sampling#

-../_images/8c687424d28c53a14096bfa3bc810e1bf1a53fb5d072a06832843dcadb9a8aed.png +../_images/89417b1e62f0183ff40decddbec57294f2928d3246744538178ea748b3d124fa.png
@@ -1028,7 +1028,7 @@

Using the learned parameters -../_images/6bbb0356a7d2e791451021478051210bca9e8a126f077782093e97fb0f9fecaf.png +../_images/4b377b4ee32d314e234bab8b9ad53cc7881d8c76640c3e0829b9a770044c1b29.png

@@ -1038,7 +1038,7 @@

Using the learned parameters -
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
+pytensor  : 2.25.5
+matplotlib: 3.9.2
+pyhgf     : 0.0.0.post1.dev0+304ea45
+IPython   : 8.29.0
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+numpy     : 1.26.0
 jax       : 0.4.31
-matplotlib: 3.9.2
 seaborn   : 0.13.2
-numpy     : 1.26.0
-pyhgf     : 0.0.0.post1.dev0+d064162
-pytensor  : 2.25.5
-IPython   : 8.29.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index 59e02b8ca..d8822c2b1 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -52,7 +52,7 @@ - + @@ -880,8 +880,8 @@

Sampling
NUTS: [tonic_volatility_1]
 
-

-

@@ -947,7 +947,7 @@

Using the learned parameters -
Array(-1106.1298, dtype=float32)
+
Array(-1106.1078, dtype=float32)
 
@@ -1023,8 +1023,8 @@

Sampling#
NUTS: [tonic_volatility_1]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
 
@@ -1040,7 +1040,7 @@

Sampling#

-../_images/5c151dc5ff581ecf21238d061d1c7af058ffdb8cd86e183349a9eb3cef93eb73.png +../_images/d4154620ab0010ad605eae092b608e72e20c8e5133d9a10a0c8804917fe11fb3.png

@@ -1074,7 +1074,7 @@

Using the learned parameters -../_images/b9a9de1907f3220c9552221fdfdb27555353584d767cfc1d838f3553532291d3.png +../_images/40601a81b8f83071e14dc3febf12b2d8e7a79e39b9e78fd142a152c743c88317.png

@@ -1084,7 +1084,7 @@

Using the learned parameters -
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-matplotlib: 3.9.2
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-jax       : 0.4.31
 IPython   : 8.29.0
 arviz     : 0.20.0
+matplotlib: 3.9.2
+jax       : 0.4.31
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 pymc      : 5.17.0
-pyhgf     : 0.0.0.post1.dev0+d064162
+pyhgf     : 0.0.0.post1.dev0+304ea45
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html index 0ee11a4e9..1f09c06af 100644 --- a/dev/notebooks/2-Using_custom_response_functions.html +++ b/dev/notebooks/2-Using_custom_response_functions.html @@ -52,7 +52,7 @@ - + @@ -890,9 +890,9 @@

Recovering HGF parameters from the observed behaviors
NUTS: [tonic_volatility_2]
 

-

-

-
../_images/efc05b204c793f66864d94895db78fd4d729478d6258d2ddf1bd1f1b44d39c72.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -980,24 +980,24 @@

System configuration

-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-numpy     : 1.26.0
-pyhgf     : 0.0.0.post1.dev0+d064162
-jax       : 0.4.31
+pyhgf     : 0.0.0.post1.dev0+304ea45
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+IPython   : 8.29.0
+jax       : 0.4.31
+arviz     : 0.20.0
+numpy     : 1.26.0
 matplotlib: 3.9.2
 pymc      : 5.17.0
-arviz     : 0.20.0
-IPython   : 8.29.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/3-Multilevel_HGF.html b/dev/notebooks/3-Multilevel_HGF.html index e16ed22f6..fcfc252ce 100644 --- a/dev/notebooks/3-Multilevel_HGF.html +++ b/dev/notebooks/3-Multilevel_HGF.html @@ -52,7 +52,7 @@ - + @@ -806,7 +806,7 @@

Plot the computational graph -../_images/5adbb6e59a7b4be9d4fe6e6dbb81b6a04f44eb22c14261ce8afc8abb6251da7c.svg +../_images/4050fe0347ded05a53df568aec1b49d7910606a6343c0c108276244496910f8b.svg

@@ -832,12 +832,12 @@

Sampling
NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
 
-

-

-
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+pyhgf     : 0.0.0.post1.dev0+304ea45
+numpy     : 1.26.0
+IPython   : 8.29.0
 pymc      : 5.17.0
-pytensor  : 2.25.5
 arviz     : 0.20.0
-numpy     : 1.26.0
 matplotlib: 3.9.2
 seaborn   : 0.13.2
-pyhgf     : 0.0.0.post1.dev0+d064162
-IPython   : 8.29.0
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+pytensor  : 2.25.5
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index ad4078110..5ed28862b 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -50,7 +50,7 @@ - + @@ -676,9 +676,9 @@

Inference from the simulated behaviours
NUTS: [censored_volatility, inverse_temperature]
 

-

-

-
-
Last updated: Tue Dec 10 2024
+
 
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-jax       : 0.4.31
-IPython   : 8.29.0
-pyhgf     : 0.0.0.post1.dev0+d064162
-matplotlib: 3.9.2
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 numpy     : 1.26.0
 seaborn   : 0.13.2
+jax       : 0.4.31
+pyhgf     : 0.0.0.post1.dev0+304ea45
+IPython   : 8.29.0
+matplotlib: 3.9.2
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index f56252b63..65a761998 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -50,7 +50,7 @@ - + @@ -574,16 +574,16 @@

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 

-
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.05it/s]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:01<00:01,  1.11s/it]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.05it/s]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:01<00:01,  1.11s/it]
 
-
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.01it/s]
+
Downloading Respiration channel: 100%|██████████| 2/2 [00:02<00:00,  1.03s/it]
 
-
-
Last updated: Tue Dec 10 2024
+
 
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-pyhgf     : 0.0.0.post1.dev0+d064162
-sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-IPython   : 8.29.0
+pyhgf     : 0.0.0.post1.dev0+304ea45
 matplotlib: 3.9.2
-numpy     : 1.26.0
+sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
 seaborn   : 0.13.2
+numpy     : 1.26.0
+IPython   : 8.29.0
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html index 0d519ceab..0bc31c436 100644 --- a/dev/notebooks/Example_3_Multi_armed_bandit.html +++ b/dev/notebooks/Example_3_Multi_armed_bandit.html @@ -52,7 +52,7 @@ - + @@ -1085,12 +1085,9 @@

Bayesian inference
NUTS: [omega]
 

-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.
-
-
-
-
Last updated: Tue Dec 10 2024
+
 
-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-IPython   : 8.29.0
-matplotlib: 3.9.2
 numpy     : 1.26.0
-seaborn   : 0.13.2
+pyhgf     : 0.0.0.post1.dev0+304ea45
 pandas    : 2.2.3
+IPython   : 8.29.0
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
-pyhgf     : 0.0.0.post1.dev0+d064162
+seaborn   : 0.13.2
+matplotlib: 3.9.2
 
 Watermark: 2.5.0
 
diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index e14433a00..4a83afde7 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -52,7 +52,7 @@ - + @@ -703,7 +703,7 @@

Parameters optimization

-../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg
-

-
-../_images/fb30ad50512fa98d7a3ccb9ce3bbeaa964e8971e08bdf749547c02cfcebfaaac.png +../_images/8caf92f5ae0ba940256e664ef5b7334b9747081112bbc44e3616eb436eb84484.png
-

-

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -925,12 +925,12 @@

Rescorla-Wagner{"version_major": 2, "version_minor": 0, "model_id": "5ad1605315cc4ddfbd83fb20533a7f21"}
/opt/hostedtoolcache/Python/3.12.7/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
+
/opt/hostedtoolcache/Python/3.12.7/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
   self.pid = os.fork()
 

-
-

-

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1150,12 +1147,12 @@

Three-level HGF
NUTS: [tonic_volatility_2]
 

-

-

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1479,25 +1476,25 @@

System configuration

-
Last updated: Tue Dec 10 2024
+
Last updated: Wed Dec 11 2024
 
 Python implementation: CPython
 Python version       : 3.12.7
 IPython version      : 8.29.0
 
-pyhgf : 0.0.0.post1.dev0+d064162
+pyhgf : 0.0.0.post1.dev0+304ea45
 jax   : 0.4.31
 jaxlib: 0.4.31
 
-matplotlib: 3.9.2
-pyhgf     : 0.0.0.post1.dev0+d064162
-pymc      : 5.17.0
+pyhgf     : 0.0.0.post1.dev0+304ea45
 arviz     : 0.20.0
-IPython   : 8.29.0
-seaborn   : 0.13.2
+pytensor  : 2.25.5
+matplotlib: 3.9.2
 sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
+seaborn   : 0.13.2
 numpy     : 1.26.0
-pytensor  : 2.25.5
+pymc      : 5.17.0
+IPython   : 8.29.0
 
 Watermark: 2.5.0
 
diff --git a/dev/searchindex.js b/dev/searchindex.js index 383d5aef9..5d23b3377 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[80, "exercise1.1"], [80, "exercise1.2"], [80, "exercise1.3"], [80, "exercise1.4"], [80, "exercise1.5"], [80, "exercise1.6"], [81, "exercise2.1"], [81, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[65, "acknowledgments"]], "Add data": [[70, "add-data"], [70, "id4"], [72, "add-data"], [72, "id3"]], "Adding a drift to the random walk": [[67, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[67, "autoregressive-processes"]], "Bayesian inference": [[79, "bayesian-inference"]], "Beliefs trajectories": [[81, "beliefs-trajectories"]], "Biased random": [[81, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[69, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[68, "continuous-value-coupling"]], "Continuous volatility coupling": [[68, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[68, "coupling-with-binary-nodes"]], "Create the model": [[70, "create-the-model"], [70, "id3"], [72, "create-the-model"], [72, "id2"]], "Creating a new response function": [[73, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[73, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[68, null]], "Creating custom update functions": [[68, "creating-custom-update-functions"]], "Creating custom update sequences": [[68, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[68, "creating-probabilistic-nodes"]], "Creating the decision rule": [[73, "creating-the-decision-rule"]], "Creating the model": [[70, "creating-the-model"], [70, "id7"], [72, "creating-the-model"], [72, "id5"]], "Creating the probabilistic network": [[71, "creating-the-probabilistic-network"]], "Decision rule": [[79, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[68, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[67, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[77, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[78, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[79, null]], "Exercises": [[66, "exercises"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[81, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[70, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[72, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[71, "fitting-the-model-forwards"]], "Frequency tracking": [[76, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[69, null]], "Gaussian Random Walks": [[67, "gaussian-random-walks"], [80, "gaussian-random-walks"]], "Getting started": [[65, "getting-started"]], "Glossary": [[67, "glossary"], [73, "glossary"]], "Group-level inference": [[74, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[74, null]], "How does it work?": [[65, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[70, "imports"]], "Inference from the simulated behaviours": [[75, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[71, "inference-using-mcmc-sampling"]], "Installation": [[65, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[67, null]], "Kown mean, unknown precision": [[78, "kown-mean-unknown-precision"]], "Learn": [[66, null]], "Learning parameters with MCMC sampling": [[70, "learning-parameters-with-mcmc-sampling"], [72, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[77, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [77, "model"]], "Model comparison": [[74, "model-comparison"], [81, "model-comparison"]], "Model fitting": [[65, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[80, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[68, "modifying-the-attributes"]], "Modifying the edges": [[68, "modifying-the-edges"]], "Multivariate coupling": [[68, "multivariate-coupling"]], "Non-linear predictions": [[76, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[76, null]], "Parameter recovery": [[79, "parameter-recovery"]], "Parameters optimization": [[81, "parameters-optimization"]], "Plot correlation": [[72, "plot-correlation"]], "Plot the computational graph": [[74, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[77, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[70, "plot-trajectories"], [70, "id5"], [72, "plot-trajectories"], [72, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[81, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[80, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[77, "preprocessing"]], "Probabilistic coupling between nodes": [[80, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[65, null]], "ReLU (rectified linear unit) activation function": [[76, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[79, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[73, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[75, null]], "References": [[65, "references"], [82, null]], "Rescorla-Wagner": [[81, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[70, "sampling"], [70, "id9"], [72, "sampling"], [72, "id7"], [74, "sampling"]], "Simulate a dataset": [[74, "simulate-a-dataset"], [79, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[75, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[79, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[71, "simulating-a-dataset"]], "Solution to Exercise 1": [[80, "solution-exercise1.1"]], "Solution to Exercise 2": [[80, "solution-exercise1.2"]], "Solution to Exercise 3": [[80, "solution-exercise1.3"]], "Solution to Exercise 4": [[80, "solution-exercise1.4"]], "Solution to Exercise 5": [[80, "solution-exercise1.5"]], "Solution to Exercise 7": [[81, "solution-exercise2.1"]], "Solution to Exercise 8": [[81, "solution-exercise2.2"]], "Solutions": [[80, "solutions"], [81, "solutions"]], "Static assignation of update sequences": [[68, "static-assignation-of-update-sequences"]], "Surprise": [[70, "surprise"], [70, "id6"], [72, "surprise"]], "System configuration": [[67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[79, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[65, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[66, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[67, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[81, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[70, null]], "The case of multivariate ascendency": [[68, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[68, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[71, null]], "The categorical state node": [[71, "the-categorical-state-node"]], "The categorical state-transition node": [[71, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[72, null]], "The generative model": [[67, "the-generative-model"], [80, "the-generative-model"]], "The propagation of prediction and prediction errors": [[67, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[70, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[72, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[70, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[72, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[66, "theory"]], "Theory and implementation details": [[68, "theory-and-implementation-details"]], "Three-level HGF": [[81, "three-level-hgf"]], "Three-level model": [[70, "three-level-model"], [72, "three-level-model"]], "Time-varying update sequences": [[68, "time-varying-update-sequences"]], "Tutorials": [[66, "tutorials"]], "Two-level HGF": [[81, "two-level-hgf"]], "Two-level model": [[70, "two-level-model"], [72, "two-level-model"]], "Univariate normal distribution": [[69, "univariate-normal-distribution"]], "Unkown mean, known precision": [[78, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[78, "unkown-mean-unknown-precision"]], "Update functions": [[68, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[66, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[69, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[69, "using-a-fixed-nu"]], "Using custom response models": [[73, null]], "Using the learned parameters": [[70, "using-the-learned-parameters"], [70, "id10"], [72, "using-the-learned-parameters"], [72, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[67, "value-coupling"], [68, "value-coupling"], [80, "value-coupling"]], "Visualization of the posterior distributions": [[74, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[75, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[68, "visualizing-probabilistic-networks"]], "Visualizing the model": [[70, "visualizing-the-model"], [70, "id8"], [72, "visualizing-the-model"], [72, "id6"]], "Volatility coupling": [[67, "volatility-coupling"], [68, "volatility-coupling"], [80, "volatility-coupling"]], "Where to go next?": [[81, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[68, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[80, null]], "Zurich CPC II: Application to reinforcement learning": [[81, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[40, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[42, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[43, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[44, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[56, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family": [[57, null]], "pyhgf.utils.add_edges": [[58, null]], "pyhgf.utils.beliefs_propagation": [[59, null]], "pyhgf.utils.fill_categorical_state_node": [[60, null]], "pyhgf.utils.get_input_idxs": [[61, null]], "pyhgf.utils.get_update_sequence": [[62, null]], "pyhgf.utils.list_branches": [[63, null]], "pyhgf.utils.to_pandas": [[64, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[58, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "beliefs_propagation() (in module pyhgf.utils)": [[59, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[45, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[40, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[47, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[51, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[41, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[48, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[73, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[44, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[60, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[67, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[61, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[62, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[63, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[67, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[73, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[38, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[39, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[67, "term-Prediction", true]], "prediction error": [[67, "term-Prediction-error", true]], "prediction_error_update_exponential_family() (in module pyhgf.updates.prediction_error.exponential)": [[57, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", false]], "response function": [[73, "term-Response-function", true]], "response model": [[73, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[64, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[67, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[67, "term-VAPE", true]], "vope": [[67, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 2, 1, "", "posterior_update_mean_continuous_node"], [39, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.prediction.binary": [[40, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[41, 2, 1, "", "continuous_node_prediction"], [42, 2, 1, "", "predict_mean"], [43, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[44, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[45, 2, 1, "", "binary_finite_state_node_prediction_error"], [46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[47, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[48, 2, 1, "", "continuous_node_prediction_error"], [49, 2, 1, "", "continuous_node_value_prediction_error"], [50, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[51, 2, 1, "", "clusters_likelihood"], [52, 2, 1, "", "create_cluster"], [53, 2, 1, "", "dirichlet_node_prediction_error"], [54, 2, 1, "", "get_candidate"], [55, 2, 1, "", "likely_cluster_proposal"], [56, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[57, 2, 1, "", "prediction_error_update_exponential_family"]], "pyhgf.utils": [[58, 2, 1, "", "add_edges"], [59, 2, 1, "", "beliefs_propagation"], [60, 2, 1, "", "fill_categorical_state_node"], [61, 2, 1, "", "get_input_idxs"], [62, 2, 1, "", "get_update_sequence"], [63, 2, 1, "", "list_branches"], [64, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 42, 58, 59, 62, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 79, 80, 81], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 42, 55, 58, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "00": [77, 80, 81], "000000": 81, "000000e": 81, "00039": [1, 65, 82], "00825": [1, 65, 82], "01": [69, 74, 75, 76, 77, 80], "010679": 81, "011": [73, 81], "013": 72, "014": 81, "015": 73, "016": 82, "016216": 73, "018": 80, "0183": 72, "01866": 70, "01it": 77, "02": [69, 80], "027": 2, "02it": 77, "03": [76, 80], "030": [13, 57], "032020": 81, "038": 2, "04": [28, 29, 72, 80], "040020": 81, "047498": 81, "05": [68, 76, 79, 81], "05it": 77, "060": 82, "061": 80, "064361": 73, "065": 2, "067450": 73, "068": 82, "068983": 73, "077038": 73, "08": 82, "08008": [74, 75], "09045": 70, "09206": [1, 65], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 53, 57, 58, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82], "10": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "100": [69, 74, 75, 77], "1000": [2, 67, 68, 69, 76, 77, 78, 80], "10000": [16, 67], "1001": 74, "1007": [13, 57, 82], "1016": [65, 82], "1017": 82, "104136": 81, "109": 81, "10937": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "11": [2, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "1106": 72, "1118": 72, "112": 81, "113": 81, "114": 82, "117590": [65, 82], "12": [2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1220": 74, "1224": 82, "123": [67, 68, 69, 74, 75, 78, 79, 80, 81], "1239": 82, "124": 80, "125": [67, 80], "1251": 82, "1265": 82, "128": [69, 80], "1298": 72, "13": [28, 29, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "1318": 73, "138": 65, "14": [2, 73], "1413": 82, "1432": 82, "147": 80, "15": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "150": 71, "1500": 68, "16": [2, 69, 74], "1662": 1, "16625161": 1, "17": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "171122": 81, "18": [28, 29, 73], "185465": 73, "1903": [74, 75], "1910": 72, "1938": 74, "196": 80, "1_000": [70, 72, 73, 74, 75, 77, 79, 81], "1d": [2, 4], "1e1": [28, 29, 70, 72, 77], "1e2": 80, "1e4": [16, 28, 29, 68, 70, 72, 73, 77, 78, 80], "1i": [11, 71], "1rst": 70, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 38, 39, 50, 53, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "20": [1, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "200": [67, 68, 69, 80], "2000": [68, 74, 75], "20000": [54, 55], "2001": 11, "2010": 72, "2011": [1, 65, 67, 68, 72, 82], "2013": 65, "2014": [1, 65, 67, 68, 74, 80, 82], "2016": [74, 80, 82], "2017": [79, 82], "2019": [75, 80, 82], "202": 70, "2020": [13, 57, 65, 69, 82], "2021": [65, 70, 73, 81, 82], "2023": [0, 1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 80, 82], "2024": [1, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "203": 70, "205": 73, "206": 70, "21": 71, "21596": 70, "21629826": 1, "222": 81, "222455": 81, "224": 80, "2256": 74, "226": [65, 82], "2305": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "230946": 73, "232583": 73, "233799": 73, "234603": 73, "235004": 73, "24": [80, 81], "2410": [1, 65], "244": 80, "245": 80, "247": 80, "248311": 81, "249": 80, "25": [69, 71, 74, 78, 79, 81], "250": [67, 68, 71, 76, 78, 80], "2516081684": 72, "256": 69, "26": [67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "260191": 73, "2633": 70, "2679": 72, "27": [73, 82], "270900": 73, "27879": 82, "283697": 73, "29": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "296556": 73, "2996": 74, "2_000": [70, 72, 73, 74, 75, 77, 79, 81], "2_i": 74, "2a2a2a": 71, "2i": [11, 71], "2nd": 70, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 57, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82], "30": [67, 68, 69, 80, 82], "301674": 73, "308": 80, "30963": 72, "31": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "318": 81, "32": 69, "3200": 74, "326140e": 81, "3389": [1, 65, 82], "345082": 81, "345825": 81, "35": 69, "350": 76, "35667497": 9, "362256": 81, "376855e": 81, "387": 80, "389923": 73, "4": [1, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "40": 79, "400": [68, 69, 76], "401": 81, "4093": 72, "416410": 73, "42": [55, 76], "43": 76, "45": 68, "458906": 73, "463315": 81, "466356": 73, "471": 73, "471469": 73, "472": 80, "474077": 73, "48550": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65], "49547": 82, "4c72b0": [67, 68, 73, 80, 81], "5": [0, 1, 2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "50": [77, 78], "500": [74, 78], "500000": 73, "506923": 73, "510971": 73, "512": 69, "513008": 81, "5161": 1, "518301": 73, "52": [13, 57, 75, 82], "520583": 73, "5297": 70, "530355": 73, "530717": 73, "53662109": 74, "536678": 73, "5377": 80, "54": 73, "540697": 73, "55": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "550": 76, "551": 70, "55585": 70, "55a868": [67, 75, 81], "566859": 73, "568705": 81, "578": 81, "58": [13, 57, 82], "582766": [69, 78], "5d1e51": 81, "6": [29, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82], "60": [75, 77], "600": [68, 69, 76, 81], "602961": 73, "608725": 81, "6174": 72, "622459": 73, "624085": 73, "627284": 73, "631975": 73, "635": 80, "638038": 73, "64": [69, 74], "64919": [13, 57], "650": 76, "66": 81, "680811": 65, "685992": 81, "698": 72, "7": [9, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "70": 74, "701": 80, "72": 81, "731660": 73, "737": 73, "738": 81, "745316": 73, "750": 68, "7554": 82, "766": 2, "776": 2, "793550": 81, "7_7": [13, 57], "7f7f7f": 71, "8": [1, 11, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "80": 79, "800": [68, 69], "806": 2, "828": 72, "834867": 73, "838": 81, "850": 76, "852492": 81, "865": 80, "87854": 73, "886": 72, "8992462158203": 65, "9": [11, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "90": 68, "900": 68, "903": 72, "910": 72, "9189386": 14, "920125": 81, "9297": 72, "931": 80, "935": 73, "938": 2, "944": [2, 74], "950": 76, "955111": 81, "964": 72, "965": 72, "969": 73, "9696": 82, "974": 73, "978": [13, 57], "99": 74, "999": 69, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 55, 59, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82], "And": 73, "As": [68, 74, 79], "At": [66, 67, 80], "Being": 73, "But": [68, 72, 73, 74, 80], "By": [2, 3, 4, 37, 42, 65, 72, 73], "For": [1, 6, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 61, 67, 68, 69, 73, 75, 76, 80, 81], "If": [1, 2, 3, 4, 16, 28, 29, 38, 42, 58, 63, 67, 71, 73, 74, 76, 79, 81], "In": [1, 13, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "It": [1, 16, 35, 47, 58, 67, 68, 69, 72, 73, 75, 76, 78, 79, 81], "NOT": 81, "OR": 80, "On": 73, "One": [68, 70, 72, 81], "Or": 80, "Such": [67, 69, 81], "That": 81, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 69, 73, 74, 75, 76, 77, 78, 79, 82], "Then": [76, 80], "There": [73, 74, 75, 79, 80, 81], "These": [1, 65, 67, 70], "To": [67, 70, 72, 73, 74, 76, 80, 81], "With": [67, 76], "_": [29, 31, 38, 39, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81], "_1": [73, 74], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [40, 42, 43], "_b": [38, 39, 40], "_i": 67, "_j": [38, 39, 49, 50], "a_custom_hgf": 68, "aarhu": [76, 80], "aarhus_weather_df": 80, "ab": [1, 74, 75], "aberr": 72, "abil": 75, "abl": [70, 73, 74, 76], "about": [1, 66, 67, 68, 69, 70, 71, 72, 73, 79, 80, 81], "abov": [63, 67, 68, 69, 72, 73, 76, 79, 80, 81], "absenc": [75, 79], "abstract": [1, 69, 82], "ac": 11, "acceler": 72, "accept": [70, 72, 76], "access": [2, 3, 4, 68, 73], "accommod": 1, "accord": [0, 73, 76], "accordingli": [5, 67, 70, 72, 79, 80], "account": [1, 67, 68, 79], "accumul": 59, "accur": [75, 81], "acetylcholin": 1, "achiev": 69, "across": [29, 34, 67, 69, 70, 72, 79], "act": [70, 72, 73, 74], "action": [65, 73, 74, 81], "actionmodel": 73, "activ": [13, 57, 65, 73, 81, 82], "actual": [65, 68, 71, 79, 81], "acycl": 68, "ad": [70, 71, 72, 76, 78, 79, 80], "adapt": [1, 65, 66, 67, 72, 73, 81], "adapt_diag": [70, 72, 73, 74, 75, 77, 79, 81], "add": [18, 19, 20, 21, 22, 58, 65, 67, 76, 79, 80, 81], "add_group": [74, 81], "add_nod": [2, 3, 4, 65, 68, 69, 71, 72, 76, 78, 79, 80, 81], "addit": [2, 3, 4, 5, 6, 68, 69, 72, 73], "addition": [65, 75, 81], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 68, "adjacencylist": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 68], "adjust": [65, 81], "adopt": [70, 72], "advanc": 66, "advantag": [67, 68, 81], "aesara": [70, 72], "affect": [5, 6, 16, 72, 79, 82], "after": [0, 17, 28, 35, 36, 37, 45, 59, 69, 70, 74, 75, 79, 80, 81], "afterward": [2, 3, 4, 16], "again": [71, 72], "against": 72, "agent": [1, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "agnost": 1, "ai": 1, "aim": 72, "air": 80, "aki": 82, "al": [0, 65, 67, 68, 70, 73, 74, 80, 81], "algorithm": [1, 65, 67, 70, 77, 80], "align": [67, 69, 73], "alin": [1, 82], "all": [0, 1, 2, 5, 16, 29, 32, 58, 61, 62, 63, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "alloc": 53, "allow": [1, 65, 68, 70, 72, 73, 76, 79, 80], "alon": 80, "along": [5, 81], "alpha": [68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "alpha_": [11, 71, 76], "alpha_1": 11, "alpha_2": 11, "alreadi": [63, 68, 73, 74], "also": [1, 16, 28, 41, 43, 48, 63, 65, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81], "altern": [59, 62, 68, 72, 73, 79, 81], "alternative\u00e6li": 74, "alwai": [53, 71, 74, 75, 79, 80, 81], "among": 73, "amount": 72, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 48, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "analys": [1, 81], "analyt": 1, "andrew": 82, "ani": [0, 1, 36, 37, 45, 61, 63, 66, 67, 69, 70, 71, 72, 73, 74, 76], "anim": 69, "ann": 82, "anna": [1, 82], "anoth": [67, 71, 72, 76, 78, 80, 81], "another_custom_hgf": 68, "answer": 75, "anymor": [42, 67, 69], "anyth": [67, 71], "api": [65, 70, 71, 72, 73, 74, 75, 77, 79, 81], "apont": 65, "appar": 67, "appear": [68, 76], "append": [28, 67, 69, 74, 75, 79, 80, 81], "appli": [17, 59, 62, 66, 68, 69, 71, 73, 74, 75, 79, 80, 81], "applic": [1, 6, 65, 66, 68, 69, 72, 73, 75], "apply_along_axi": 69, "approach": [67, 69, 70, 71, 74, 75], "appropri": 78, "approxim": [1, 37, 65, 67, 68, 80], "april": [72, 82], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 59, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ar1": [67, 79], "arang": [68, 69, 71, 73, 76, 79, 81], "arbitrari": [2, 68, 73, 76, 80], "area": [28, 80], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 53, 57], "argument": [2, 3, 4, 68, 70, 72, 73, 76], "arm": [66, 73, 74, 81], "around": [28, 29, 66, 67, 68, 72, 73, 81], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 42, 43, 46, 49, 51, 54, 55, 59, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "arrang": 80, "arriv": 67, "articl": [1, 82], "artifici": [1, 76], "arviz": [2, 70, 72, 73, 74, 75, 77, 79, 81], "arxiv": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 74, 75, 82], "as_tensor_vari": [71, 79, 81], "asarrai": [71, 79], "ask": [1, 72], "aspect": 71, "assert": [68, 70, 72], "assess": [53, 70, 72, 81], "assign": [59, 70, 71, 72, 73, 74, 75, 77, 79, 81], "associ": [2, 3, 4, 5, 6, 62, 65, 71, 73, 74, 75, 76, 79, 81, 82], "assum": [1, 36, 37, 57, 58, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81], "assumpt": [78, 81], "astyp": [76, 79], "atmospher": 80, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 65, 69, 71, 74, 75, 78, 79], "au": 76, "august": [72, 82], "author": [1, 76], "auto": [70, 71, 72, 73, 74, 75, 77, 79, 81], "autoconnect": [42, 67, 76], "autoconnection_strength": [76, 78], "autocorrel": 76, "autom": 80, "automat": [68, 70, 72, 74], "autoregress": 42, "avail": [0, 65, 80], "averag": [70, 80, 81], "avoid": 75, "awai": 69, "ax": [26, 28, 29, 67, 68, 69, 71, 75, 76, 78, 79, 81], "axi": [5, 67, 69, 74], "axvlin": 79, "az": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "b": [38, 39, 40, 42, 65, 69, 76, 79], "back": [42, 67, 74], "backgroud": 28, "backslash": 1, "backward": 68, "bad": 74, "badg": 66, "bandit": [66, 73, 74, 81], "bank": 72, "base": [1, 55, 67, 70, 71, 72, 73, 74, 75, 77, 79, 81], "batch": [5, 79], "bay": 1, "bayesian": [1, 65, 66, 67, 70, 71, 72, 73, 81, 82], "becaus": [67, 68, 70, 71, 72, 76, 79, 80], "becom": 67, "been": [62, 67, 68, 69, 71, 72, 73, 74, 80, 81], "befor": [0, 28, 39, 62, 67, 68, 69, 72, 73, 74, 75, 79, 80], "beforehand": [38, 72, 81], "begin": [9, 13, 66, 67, 69, 73, 76, 81], "behav": [1, 70, 72, 76, 80], "behavior": [1, 81, 82], "behaviour": [5, 6, 65, 66, 67, 70, 72, 73, 74, 76, 77, 79], "behind": [66, 67, 80], "being": [67, 68, 70, 74, 76, 77, 81], "belief": [0, 6, 17, 28, 55, 59, 65, 66, 68, 69, 72, 73, 74, 75, 76, 80], "beliefs_propag": [17, 69, 79], "belong": [63, 69], "below": [0, 67, 70, 71, 73, 76, 79, 80, 81], "bernoulli": [9, 81], "best": [1, 54, 72, 76, 77, 81], "beta": [79, 81], "better": [37, 72, 73, 74, 75, 80, 81], "between": [0, 1, 5, 6, 11, 16, 38, 39, 40, 58, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81], "beyond": 67, "bia": [74, 81, 82], "biased_random": 81, "biased_random_idata": 81, "biased_random_model": 81, "big": 67, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 47, 60, 65, 66, 67, 69, 71, 72, 74, 75, 79], "binary_hgf": 81, "binary_input_upd": [35, 47], "binary_paramet": [60, 71], "binary_precis": [16, 29, 70], "binary_softmax": [73, 81], "binary_softmax_inverse_temperatur": [65, 74, 75], "binary_states_idx": 60, "binary_surpris": [73, 79], "bind": [65, 68], "binomi": [68, 73, 74, 75, 79], "bio": 1, "biolog": [1, 65], "bit": [72, 74], "bivariate_hgf": 69, "bla": [70, 71, 72, 73, 74, 75, 77, 79, 81], "blackjax": 73, "blank": 71, "block": [67, 70, 72, 79], "blog": 71, "blue": [73, 76], "bollmann": 65, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 51, 54, 55, 59], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "boolean": [35, 59, 71, 72, 81], "boom": 82, "both": [1, 42, 66, 67, 68, 71, 73, 74, 76, 78, 79, 80, 81], "bottom": [29, 65, 67, 80], "brain": 1, "branch": [53, 63, 65, 73, 79], "branch_list": 63, "break": 80, "briefli": 81, "broad": 71, "broadcast": [5, 74], "broader": 69, "brodersen": [1, 65, 82], "broken": 72, "brown": [79, 82], "bucklei": 82, "build": [66, 67, 70, 72, 76, 80], "built": [65, 68, 70, 72, 80, 81], "burst": 68, "bv": 65, "c": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82], "c44e52": [67, 69, 73, 75, 81], "ca": 76, "calcul": [74, 76], "call": [0, 35, 67, 69, 70, 72, 73, 74, 79, 80, 81], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 57, 58, 59, 62, 73], "cambridg": 82, "can": [0, 1, 2, 3, 4, 5, 6, 16, 38, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "candid": [51, 53, 54, 55, 79], "cannot": [16, 68, 69, 79], "capabl": [67, 76], "capitalis": 67, "captur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "capture_output": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "cardiac": [66, 72], "carlo": [1, 70, 72, 81], "carri": 81, "carryov": 59, "case": [9, 13, 67, 69, 71, 72, 73, 74, 76, 77, 79, 81], "categor": [16, 19, 60, 66, 69, 74, 79], "categori": [10, 69, 71, 79], "categorical_hgf": 71, "categorical_idata": 71, "categorical_surpris": 71, "caus": 37, "cbo9781139087759": 82, "cdot": 76, "cedric": 82, "cell": [67, 72, 80], "censor": 75, "censored_volatil": 75, "centr": [71, 72], "central": [67, 68, 72, 76, 81], "certain": [1, 67, 68], "chain": [1, 2, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "cham": 82, "chanc": 79, "chance_conting": 79, "chang": [67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "channel": 77, "chaotic": 79, "check": [72, 74], "chf": [28, 29], "child": [0, 38, 39, 53, 61, 67, 68, 69, 76, 80], "children": [0, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 76], "children_idx": 58, "children_input": 28, "choic": 68, "cholinerg": [65, 82], "choos": [69, 72, 79], "chose": [31, 53, 69, 73, 79], "chosen": 79, "chri": 1, "christoph": [1, 82], "chunck": 76, "ci": [28, 29], "circl": 73, "circumst": 37, "citi": 80, "clarifi": 74, "clariti": [72, 81], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 57, 68, 69, 70, 71, 72, 73, 74, 79, 81], "classic": [72, 81], "cldtot": 80, "clear": [73, 80], "clearli": [68, 73], "clock": 76, "close": [73, 75], "closer": 76, "cloud": 80, "cloudi": 80, "cluster": [51, 52, 53, 54, 55, 56], "cm": 78, "cmap": [71, 75], "co": 69, "code": [1, 17, 66, 67, 68, 69, 73, 74, 76, 80, 81], "coeffici": [67, 75], "cognit": [1, 65, 77, 82], "colab": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "collect": [0, 71], "colleg": 11, "collin": [75, 82], "color": [28, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "column": 59, "column_stack": [69, 79], "com": [65, 80], "combin": [1, 42, 67, 68], "come": [1, 67, 69, 73, 74, 76, 80], "command": 81, "common": [1, 68, 71], "commonli": [73, 76, 80], "commun": [13, 67], "compar": [1, 65, 72, 74, 81], "compare_df": 81, "comparison": [4, 66, 75], "compat": [2, 68, 70, 71, 72, 73, 74], "compil": 65, "complet": [67, 80, 81], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59, 66, 67, 68, 73, 80], "complexifi": 67, "compli": 73, "complic": 1, "compon": [67, 68, 72, 74, 79], "compromis": 68, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 38, 39, 42, 43, 46, 49, 50, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82], "computation": 1, "computationalpsychiatri": 65, "concaten": 79, "concentr": 11, "concept": [67, 74, 80], "concern": 67, "concis": 80, "cond": 76, "condit": 81, "connect": [1, 6, 16, 67, 68, 73, 76, 80], "consequ": [67, 68], "consid": [62, 67, 68, 70, 72, 73, 76, 79, 80, 81], "consider": 1, "consist": [17, 59, 67, 68, 69, 71, 73, 75, 76, 79, 81], "constand": 76, "constant": [14, 67, 69, 76], "constitud": 67, "constitut": [76, 80], "constrained_layout": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 42, 43, 53, 59, 65, 67, 68, 74, 77, 80], "context": [2, 4, 59, 69, 70, 72, 73, 79, 80, 81], "contextu": 1, "contin": 3, "conting": [68, 71, 73, 79, 81], "contingencylist": 68, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 45, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81], "continuous_input_upd": [35, 47], "continuous_node_prediction_error": [49, 50], "continuous_node_value_prediction_error": [38, 39, 48, 50], "continuous_node_volatility_prediction_error": [38, 48, 49], "continuous_precis": 16, "contrari": 68, "control": [1, 67, 68, 74, 80, 81], "conveni": [67, 73], "converg": [70, 72, 73, 74, 75, 77, 79, 81], "convert": [28, 29, 67, 70, 71, 77, 79, 81], "copyright": 1, "core": [2, 17, 65, 68, 70, 72, 73, 74, 75, 77, 79, 81], "correct": [69, 82], "correctli": [27, 75], "correl": [0, 26, 75], "correspond": [16, 28, 29, 69, 70, 73, 74, 75, 76, 79, 80], "cost": 79, "could": [32, 33, 34, 68, 71, 72, 73, 76, 79, 81], "count": [13, 69, 74], "counterpart": [68, 70], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 38, 39, 41, 42, 43, 47, 48, 58, 62, 65, 66, 70, 78, 79, 81], "coupling_fn": [20, 24, 58, 68, 76], "coupling_strength": 58, "cours": [66, 80], "covari": 69, "cover": [67, 80, 81], "cpc": 66, "cpython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "creat": [0, 2, 3, 4, 16, 28, 29, 52, 53, 65, 66, 69, 74, 75, 76, 77, 79, 80, 81], "create_belief_propagation_fn": 79, "creation": [68, 73, 80, 81], "creativ": 1, "crisi": 72, "critic": [1, 68, 73], "cross": [4, 74, 81, 82], "crucial": 74, "csv": 80, "cumsum": [67, 76, 80], "currenc": 72, "current": [0, 1, 40, 58, 65, 67, 68, 69, 73, 80, 82], "current_belief": 81, "curv": 28, "custom": [16, 66, 70, 71, 74, 79, 80, 81], "custom_op": [71, 79], "customdist": [74, 81], "customis": 66, "customop": [71, 79], "d": [1, 11, 65, 69, 82], "d064162": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "dai": 80, "dark": 80, "dash": 67, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 59, 64, 65, 67, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "data2": 69, "databas": 80, "datafram": 64, "dataset": [73, 77, 80, 81], "daugaard": [1, 65], "daunizeau": [1, 65, 82], "de": 82, "deadlock": 81, "deal": [1, 79], "debug": 80, "dec": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "decid": [67, 72, 73, 81], "decis": [1, 6, 30, 31, 65, 70, 71, 74, 75, 81], "declar": [68, 74, 76], "decreas": 79, "dedic": 72, "deeper": 65, "def": [68, 69, 71, 73, 74, 76, 79, 81], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 39, 59, 61, 62, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81], "default_paramet": 25, "defin": [12, 16, 17, 28, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 81], "definit": [62, 73], "degre": [69, 70, 72, 76], "deliv": 80, "delta": [69, 76], "delta_j": [38, 39, 49, 50], "demonstr": [1, 65, 69, 70, 73, 75, 77, 78], "denmark": 76, "denot": 67, "densiti": [0, 2, 11, 12, 13, 70, 72, 74, 78, 80], "depend": [5, 38, 40, 67, 70, 72, 73, 74, 76, 80], "depict": [29, 67, 81], "deriv": [1, 67, 69, 76], "describ": [0, 65, 66, 67, 68, 69, 70, 73, 80], "descript": [1, 67, 80], "design": [65, 66, 68, 71, 73, 74, 79, 80, 81], "despin": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "detail": [67, 74, 75, 79, 80], "detect": 77, "determin": 1, "determinist": [1, 74, 81], "dev0": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "develop": [65, 68, 81], "deviat": [28, 29, 51, 54, 55, 74, 77], "df": [69, 70, 72], "diagnos": 81, "diagnost": [70, 72, 73, 74, 75, 77, 79, 81], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60], "dictionari": [16, 59, 65, 68, 70, 72, 80], "dictonari": 25, "did": [72, 74], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 45, 58, 67, 68, 69, 70, 72, 73, 74, 76, 79, 80], "differenti": [65, 69, 70, 72, 76], "difficult": [1, 69, 80], "diffus": [65, 68], "dimens": [3, 5, 6, 67, 68, 74], "dimension": [69, 79], "dir": 11, "direct": [67, 68], "directli": [35, 68, 70, 72, 73, 74, 76, 79], "dirichlet": [11, 21, 35, 69, 71], "dirichlet_nod": 44, "disambigu": 68, "disappear": 76, "discrep": [70, 72], "discret": [1, 71, 81], "discuss": [1, 67, 79, 81], "displai": [69, 74, 76, 81], "dissoci": [0, 68], "dist": 75, "dist_mean": 78, "dist_std": 78, "distanc": 69, "distant": 69, "distinguish": [74, 80], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 55, 57, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81], "dive": [67, 68], "diverg": [0, 11, 71, 74, 75, 79, 81], "dk": 76, "do": [65, 68, 70, 71, 72, 73, 74, 76, 80, 81], "documatt": 68, "document": [65, 71, 80, 81], "doe": [69, 71, 73, 80, 81], "doesn": 76, "doi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 82], "dollar": 72, "domain": [72, 81], "don": [67, 80], "done": 68, "dopamin": 1, "dopaminerg": [65, 82], "dot": 72, "down": [0, 65, 67, 69, 80], "download": [65, 77, 80], "drag": 72, "drai": 70, "draw": [1, 28, 29, 70, 72, 73, 74, 75, 77, 79, 81], "drift": [5, 6, 16, 42, 68, 76, 80], "dse": 81, "dtype": [9, 14, 55, 69, 70, 71, 72, 73, 79, 80, 81], "due": 68, "duplic": [74, 75], "dure": [0, 17, 43, 55, 65, 68, 72, 74, 75, 76, 82], "dx": 82, "dynam": [17, 65, 66, 73, 76, 77, 80, 81], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 58, 59, 63, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82], "e49547": 82, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 55, 56, 57, 59, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "eas": 65, "easili": [68, 71, 73, 80, 81], "ecg": 77, "ecg_peak": 77, "ecosystem": 65, "edg": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 69, 79], "edgecolor": [68, 69, 73, 75, 79, 81], "editor": 82, "ef": 69, "effect": [38, 39, 43, 65, 72, 74, 75, 82], "effective_precis": 43, "effici": [1, 65, 67], "ehgf": [37, 38, 62], "either": [53, 68, 73, 74, 76, 80], "ekaterina": [1, 82], "elaps": [39, 67, 79], "electrocardiographi": 77, "electron": 1, "element": 76, "elicit": 14, "elif": 82, "ellicit": 9, "elpd": 74, "elpd_diff": 81, "elpd_loo": [74, 81], "els": [75, 79], "elsevi": 65, "emb": [70, 72], "embed": [0, 66, 70, 72, 74], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [71, 79], "encod": [1, 65, 67, 71, 73, 75, 80, 81], "end": [9, 13, 67, 69, 73, 76], "endogen": 43, "energi": [1, 82], "enhanc": 65, "enlarg": 69, "enno": [1, 82], "ensur": [62, 70, 72, 74, 75, 79, 80], "enter": 67, "entir": 68, "entri": 16, "enumer": [67, 69, 81], "environ": [1, 67, 68, 73, 74, 80, 81], "environment": [1, 68, 75], "eq": 11, "equal": [1, 3, 37, 59, 76], "equat": [1, 11, 67, 70, 71, 72, 73, 76, 79, 80], "equival": [69, 73], "erdem": 82, "eric": 82, "error": [1, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 65, 68, 69, 72, 76, 77, 80, 81, 82], "especi": [67, 74, 79, 81], "ess": [74, 75], "ess_bulk": [2, 73, 81], "ess_tail": [2, 73, 81], "estim": [0, 1, 2, 28, 29, 66, 67, 69, 73, 74, 75, 79, 80, 81], "et": [0, 65, 67, 68, 70, 73, 74, 80, 81], "eta": 69, "eta0": [10, 16, 29, 70], "eta1": [10, 16, 29, 70], "etc": 68, "euro": 72, "european": 82, "eval": 74, "evalu": [13, 67, 71, 73, 79, 82], "even": [1, 67, 76], "event": [1, 72, 78], "everi": [66, 67, 68, 71, 74, 79, 80, 81], "everyth": 73, "evid": [6, 69, 81], "evidenc": 69, "evolut": [67, 70, 72, 73, 80, 81], "evolutionari": 1, "evolv": [66, 67, 79], "exact": [67, 73, 80], "exactli": [67, 71, 73, 74], "exampl": [1, 2, 9, 14, 28, 29, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "excel": 73, "except": [38, 39, 70, 72, 73, 81], "exchang": 72, "exclud": [63, 79], "exclus": 63, "execut": [0, 68], "exert": [67, 68], "exhibit": [70, 72], "exist": [51, 53, 54, 55, 56, 68], "exogen": 43, "exot": 71, "exp": [43, 67, 69, 74, 79, 80], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 38, 39, 40, 41, 42, 43, 54, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "expected_mean": [9, 10, 14, 42, 51, 54, 55, 67, 68, 69, 73, 74, 75, 78, 79, 81], "expected_precis": [10, 14, 43, 68, 78], "expected_sigma": [51, 54, 55], "experi": [73, 81], "experiment": [1, 66, 73, 74, 75, 79, 81], "explain": [74, 80, 81], "explan": 81, "explicit": 73, "explicitli": [1, 68, 74, 77], "explor": 81, "exponenti": [7, 8, 13, 22, 66, 67, 69, 80], "exponential_famili": [7, 8], "export": [64, 73], "express": [1, 68, 69, 71, 72, 76, 79, 80], "extend": [68, 69, 70, 72, 74], "extens": [1, 66, 81], "extract": [70, 72, 77, 78, 81], "extrem": [1, 72, 79], "f": [42, 65, 67, 68, 76, 80], "f_1": 68, "f_i": 68, "f_n": 68, "f_x": 69, "facilit": 68, "fact": [76, 79], "fail": 37, "fairli": 75, "fall": 72, "fals": [28, 29, 76, 81], "famili": [7, 8, 13, 22, 57, 66, 67, 69, 80], "familiar": 73, "far": [68, 72, 73, 80, 81], "fashion": 1, "fast": [76, 79, 81], "featur": [68, 74, 77, 80], "februari": 82, "fed": 74, "feed": [28, 29, 79], "fewer": 78, "field": [1, 68, 73, 81], "fig": [69, 71, 75, 76, 78], "figsiz": [28, 29, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "figur": [28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "fil": 11, "file": 1, "filer": 1, "fill": 75, "fill_between": [71, 78, 79], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 78, 79, 81, 82], "final": [1, 80, 81], "find": [54, 65, 66, 68, 72, 73, 80], "finit": [10, 45], "fir": 77, "firebrick": 79, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "first_level_binary_surpris": [70, 81], "first_level_gaussian_surpris": [72, 77, 80], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 74, 75, 76, 79, 80], "fix": [2, 57, 67, 73, 74, 76, 80, 81], "flatten": 74, "flexibl": [1, 65, 71, 80, 81], "flexibli": 69, "flight": 72, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 51, 54, 55, 58, 59, 74, 79], "float32": [9, 14, 70, 72, 73, 80, 81], "float64": [71, 79], "floor": 72, "fluctuat": 67, "flux": 80, "fn": 81, "fnhum": [1, 65, 82], "fo": 1, "focus": [68, 79], "folder": 65, "follow": [1, 11, 62, 65, 67, 68, 69, 70, 71, 72, 76, 79, 80, 81], "forc": 79, "fork": [70, 81], "form": [1, 67, 68, 69, 74, 76, 80], "formal": 67, "formul": 1, "forward": [65, 67, 70, 72, 74, 75, 79, 80, 81], "found": [1, 67, 68, 70, 72, 80], "foundat": [1, 65, 80, 82], "four": [1, 68, 79, 81], "fpsyt": 65, "frac": [11, 13, 14, 28, 31, 38, 39, 40, 42, 43, 50, 57, 67, 69, 71, 74, 79], "fraction": 80, "frame": [64, 67, 69, 77, 80], "framework": [1, 65, 66, 67, 68, 69], "franc": 72, "free": [1, 65, 70, 73, 75], "freedom": 69, "friston": [1, 65, 82], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 38, 39, 47, 59, 62, 63, 65, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81], "frontier": [1, 65, 82], "frontiersin": [1, 82], "fry": 55, "fr\u00e4ssle": 65, "full": [1, 6, 69], "fulli": [67, 80], "func": 69, "funcanim": 69, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81], "fundament": 67, "fundat": 1, "further": [65, 67, 68, 74, 78, 79], "fusion": 73, "futur": [0, 67, 82], "g": [1, 5, 6, 38, 39, 65, 67, 73, 75, 76, 81], "g_": [69, 76], "gabri": 82, "gamma": [11, 13, 69, 71], "gamma_a": 43, "gamma_j": [38, 39], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 76, 77, 79, 81, 82], "gaussian_predictive_distribut": 69, "gcc": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ge": 82, "gelman": 82, "gener": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 60, 62, 66, 68, 69, 70, 71, 73, 74, 75, 76, 79, 81, 82], "generalis": [1, 66, 71, 73], "generalised_filt": 69, "get": [40, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81], "get_legend_handles_label": [67, 81], "get_network": [69, 79], "get_update_sequ": 68, "ghgf": [65, 80, 81], "gif": 69, "git": 65, "github": [11, 65], "githubusercont": 80, "give": [70, 72, 73, 76, 79, 81], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 38, 39, 42, 43, 45, 49, 50, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 79, 80, 81], "global": [1, 72], "go": [67, 70, 72, 73, 74, 79, 80], "goe": 71, "good": [73, 74, 75, 79], "googl": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "grad": [71, 79], "gradient": [3, 71, 79], "grai": 79, "grandpar": 68, "graph": [59, 66, 68, 71, 79], "graphviz": [27, 70, 72], "greater": 68, "greatli": 69, "greec": 72, "green": [75, 76], "grei": [28, 67, 69, 72, 75, 78], "grid": [67, 69, 75, 76, 78, 80, 81], "ground": 80, "group": [66, 67, 75, 81], "grow": 71, "grw": [67, 80], "grw_1": 80, "grw_2": 80, "guid": 67, "gz": [71, 79], "h": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 69, 81, 82], "ha": [1, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81], "had": [73, 74, 81], "halfnorm": 74, "hamiltonian": [70, 72, 81], "hand": [39, 66, 73], "handi": 76, "handl": [66, 67, 69, 71, 73, 74, 81], "happen": [67, 73, 76, 80], "harrison": [65, 82], "hat": [9, 14, 28, 31, 38, 39, 40, 42, 43, 49, 50, 67, 73, 74, 76], "have": [1, 35, 47, 62, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "hdi_3": [2, 73, 81], "hdi_97": [2, 73, 81], "he": 73, "head": [73, 80], "heart": [0, 67, 68], "heartbeat": 77, "heatmap": 26, "heavi": 68, "hedvig": [1, 82], "height": [28, 29, 80], "heinzl": 65, "help": [72, 74, 80], "her": 73, "here": [1, 2, 30, 31, 32, 33, 34, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 60, 65, 66, 67, 68, 69, 71, 74, 75, 76, 77, 78, 79, 80], "hgf_loglik": [70, 72, 73, 75, 77, 81], "hgf_logp_op": [2, 70, 72, 73, 74, 75, 77, 81], "hgf_logp_op_pointwis": [74, 81], "hgf_mcmc": [70, 72], "hgfdistribut": [70, 71, 72, 73, 74, 75, 77, 81], "hgfpointwis": [74, 81], "hhgf_loglik": 2, "hidden": [1, 67, 79, 80, 81], "hide": 79, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 75, 77, 78, 79, 81, 82], "hierarchi": [0, 1, 2, 3, 4, 16, 65, 67, 68, 70, 72, 80], "hierarchicalgaussianfilt": 73, "high": [78, 79], "high_nois": 76, "high_prob": 79, "higher": [67, 70, 72, 74, 75, 76, 80, 81], "highest": 1, "highli": [1, 72, 81], "hist": 79, "hold": [67, 73], "home": 1, "hood": 69, "hostedtoolcach": 81, "hour": [66, 80], "hourli": [80, 82], "how": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "howev": [1, 67, 68, 69, 71, 72, 73, 74, 76, 77, 81], "html": 11, "http": [1, 7, 8, 11, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 80, 82], "human": [1, 65, 82], "hyper": 74, "hyperparamet": [13, 57, 69], "hyperprior": [74, 75], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "iain": 82, "idata": [2, 77, 79, 81], "idata_kwarg": 81, "idea": [67, 68, 72, 73, 75], "ident": 76, "identifi": 75, "idx": [71, 75], "iglesia": [1, 65, 70, 73, 81, 82], "ignor": [5, 6], "ii": [1, 66], "iii": 1, "ilabcod": 80, "illustr": [1, 67, 68, 71, 72, 73, 76, 77, 79, 80, 81], "imagin": 76, "impact": 79, "implement": [0, 16, 42, 57, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "impli": [35, 60, 67, 69, 71, 72, 79, 80], "implicitli": 73, "import": [1, 2, 9, 14, 28, 29, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "import_dataset1": 77, "importantli": [67, 68], "imposs": 62, "improv": [62, 81], "imshow": 71, "includ": [5, 6, 16, 67, 68, 69, 70, 72, 73, 74, 76, 77, 81], "incom": [67, 80], "incompat": 81, "incorpor": [16, 41, 48, 69, 73, 74], "incorrect": 76, "increas": [69, 70, 72, 74, 75, 76, 79, 80, 81], "increment": [59, 67], "inde": 74, "independ": [66, 69, 75], "index": [17, 23, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68], "indic": [58, 67, 72, 73, 74, 75, 76, 77, 79, 81], "individu": [1, 65, 75, 82], "inf": [5, 16, 29, 32, 33, 34, 70, 71, 74, 79], "infer": [0, 1, 5, 6, 13, 57, 59, 65, 66, 67, 68, 72, 73, 78, 81, 82], "inferred_paramet": 75, "infin": 80, "infinit": [71, 79], "influenc": [0, 1, 42, 67, 68, 69, 70, 72, 74, 76, 79, 80, 81], "inform": [1, 13, 17, 59, 68, 69, 70, 71, 72, 74, 76, 79, 80, 81], "infti": 72, "ingredi": 73, "inherit": [5, 6, 65, 67, 80], "initi": [2, 3, 4, 16, 17, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "initial_belief": 81, "initial_mean": [16, 28, 29, 70, 72, 73, 74, 75, 77, 81], "initial_precis": [16, 28, 29, 70, 72, 73, 77, 81], "initv": 75, "inplac": 71, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 45, 47, 48, 52, 53, 54, 56, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_convers": 77, "input_data": [2, 3, 4, 5, 6, 28, 29, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_idx": [59, 69, 79], "input_nodes_idx": 44, "input_precis": [5, 6], "input_typ": 77, "insert": [24, 67], "insid": [73, 76, 79, 81], "inspir": [65, 67, 68], "instal": [27, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 60, 62, 65, 68, 70, 72, 73, 74, 80], "instanti": [71, 79], "instead": [2, 3, 4, 38, 39, 72, 79, 80, 81], "instruct": 68, "instrument": 76, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 69, 71, 76, 79], "int32": 81, "integ": [2, 3, 4, 68], "integr": [1, 65, 69, 81], "intellig": 1, "inter": 1, "interact": [66, 67, 81], "intercept": 67, "interest": [67, 74, 75, 79, 80], "interestingli": 69, "interfac": 73, "interleav": [0, 69, 79], "intern": [1, 57, 66, 71, 73, 74, 76, 80, 82], "interocept": 66, "interpol": 71, "interpret": 1, "intersect": 66, "interv": [40, 69, 76, 77], "interven": 72, "intervent": 72, "introduc": [1, 66, 67, 71, 80, 81], "introduct": [65, 66], "introductori": 80, "intuit": [1, 66, 73], "invers": [1, 5, 6, 31, 65, 66, 67, 73, 74, 75, 79], "inverse_temperatur": [74, 75], "invert": [1, 80, 81], "involv": 1, "io": [11, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ion": 11, "ipykernel_2716": 72, "ipython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "irrespect": 55, "isbn": 1, "isclos": [70, 72], "isnan": [71, 79], "issn": 1, "item": [2, 3, 4], "iter": [67, 70, 72, 73, 74, 75, 77, 78, 79, 81], "its": [1, 40, 42, 53, 58, 65, 66, 67, 68, 70, 72, 73, 74, 76, 77, 80, 81], "itself": [67, 68, 70, 76, 80], "iv": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "j": [1, 38, 39, 43, 50, 65, 82], "jacobian": [71, 79], "jan": 82, "jax": [0, 5, 17, 29, 30, 31, 55, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jaxlib": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jean": [1, 82], "jit": [65, 71, 79], "jitted_custom_op_jax": [71, 79], "jitted_vjp_custom_op_jax": [71, 79], "jitter": [70, 72, 73, 74, 75, 77, 79, 81], "jl": 73, "jnp": [16, 29, 32, 33, 34, 69, 70, 71, 72, 73, 75, 76, 79], "job": [70, 72, 73, 74, 75, 77, 79, 81], "joint": [68, 69], "jonah": 82, "journal": [1, 82], "julia": [65, 68, 73], "jump": 67, "just": [73, 74, 75, 76, 80, 81], "k": [1, 11, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "kai": [1, 82], "kalman": [67, 73], "kappa": 67, "kappa_1": 67, "kappa_j": [38, 39, 43], "karl": [1, 82], "kasper": [65, 82], "kdeplot": 75, "keep": [76, 80], "kei": [1, 55, 67, 68, 81], "keyword": [1, 25, 68, 73], "kg": 80, "khodadadi": [1, 65], "kind": [38, 58, 65, 67, 68, 69, 71, 72, 74, 76, 79, 80, 81], "kl": [11, 71], "kl_diverg": 71, "klaa": [1, 82], "knew": [70, 72], "know": [67, 73, 76, 81], "knowledg": 80, "known": 76, "kora": 76, "kullback": [11, 71], "kwarg": [7, 8], "l": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 81, 82], "l_a": 79, "l_b": 79, "label": [67, 68, 69, 71, 73, 74, 78, 79, 80, 81], "laew": 1, "lambda": [67, 74, 76], "lambda_1": 67, "lambda_2": [67, 76], "lambda_2x_2": 76, "lambda_3": [67, 76], "lambda_a": [42, 67, 76], "land": 80, "lanillo": 82, "lar": 82, "larg": [68, 69, 80], "larger": [68, 69, 74, 75, 80], "last": [59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "latent": 67, "later": [43, 65, 67, 74, 81], "latter": 79, "lax": [17, 59, 76, 79], "layer": [5, 67, 72, 80, 81], "layout": 72, "lead": [67, 72, 81], "learn": [1, 65, 67, 71, 75, 76, 78, 80, 82], "learning_r": 81, "learnt": 76, "least": [0, 70, 72, 73, 74, 75, 77, 79, 81], "leav": [0, 59, 67, 74, 80, 81, 82], "lee": [74, 82], "left": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 80], "leftarrow": [57, 69], "legend": [67, 68, 69, 73, 74, 76, 78, 79, 80, 81], "legrand": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 76, 82], "leibler": [11, 71], "len": [71, 73, 79, 81], "length": [2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 59, 61, 73, 74], "leq": 76, "less": [16, 68, 73], "let": [67, 68, 69, 71, 73, 76, 80, 81], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 65, 66, 67, 68, 69, 73, 75, 76, 77, 78, 79, 80], "leverag": 74, "lg": 1, "li": 67, "lib": 81, "librari": [0, 1, 68, 70, 72, 81], "like": [55, 70, 71, 72, 73, 74, 76, 80, 81], "likelihood": [51, 53, 72, 73, 74, 81], "lilian": [1, 82], "limit": [1, 37, 67, 69, 73, 76, 79, 81], "line": [67, 68, 72, 73, 76], "linear": [38, 39, 58, 66], "linear_hgf": 76, "linearli": 69, "linestyl": [67, 68, 69, 73, 75, 76, 78, 81], "linewidth": [67, 69, 71, 80, 81], "link": [1, 58, 65, 68, 74], "linspac": [74, 75, 78], "list": [2, 3, 4, 5, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68, 71, 73, 74, 79, 80], "lit": 1, "ln": [11, 71], "load": [65, 80, 81], "load_data": [2, 28, 29, 65, 70, 72, 73, 74, 75, 80, 81], "load_ext": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "loc": [67, 69, 71, 78, 79, 80], "log": [2, 4, 5, 6, 9, 14, 28, 65, 70, 72, 73, 74, 79, 80, 81], "log_likelihoo": 81, "log_likelihood": [74, 81], "log_prob": 5, "logist": 15, "logit": [70, 81], "lognorm": 74, "logp": [5, 74, 81], "logp_fn": 79, "logp_pointwis": [74, 81], "lomakina": [1, 65, 82], "london": 11, "long": [76, 82], "loo": 74, "loo_hgf": 74, "look": [70, 71, 72, 76, 81], "loop": [67, 79, 80, 81], "loos": 79, "loss": 79, "loss_arm1": 79, "loss_arm2": 79, "lot": 70, "low": [78, 79], "low_nois": 76, "low_prob": 79, "lower": [67, 68, 69, 70, 71, 75], "lower_bound": 15, "lowest": 65, "luckili": 74, "m": [1, 65, 67, 68], "m2": 80, "m3": 80, "m_1": 67, "m_a": 42, "machin": 1, "made": [16, 68, 73, 74, 79, 80, 81], "magic": 80, "mai": [1, 71, 82], "main": [0, 27, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "major": 1, "make": [1, 65, 67, 68, 70, 71, 73, 74, 78, 79, 80, 81], "make_nod": [71, 79], "manag": 76, "mani": [1, 2, 67, 68, 71, 73, 74], "manipul": [0, 17, 65, 66, 70, 73, 74, 79, 80], "manka": [65, 82], "manual": [68, 69, 74, 76, 81], "many_binary_children_hgf": 68, "many_value_children_hgf": 68, "many_value_parents_hgf": 68, "many_volatility_children_hgf": 68, "many_volatility_parents_hgf": 68, "map": 74, "marker": 76, "market": 72, "markov": 1, "mask": [59, 69, 79], "master": 65, "match": [5, 68, 76, 81], "math": [2, 42, 57, 69, 75, 79], "mathcal": [2, 13, 67, 68, 69, 73, 74, 80], "mathemat": [1, 14, 67, 80], "mathi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "matlab": [65, 67, 72], "matplotlib": [26, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "matrix": [74, 79], "matter": [73, 81], "maxim": 72, "mayb": 74, "mcmc": [2, 66, 81], "mcse_mean": [2, 73, 81], "mcse_sd": [2, 73, 81], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 42, 51, 54, 55, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "mean_1": [2, 5, 6, 72], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 78, "mean_mu_g0": 55, "mean_precision_hgf": 78, "measur": [71, 73, 75, 76, 77, 80], "mechan": 1, "media": 65, "mention": 67, "mere": 73, "messag": [65, 68], "meta": [68, 72], "meter": 80, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 57, 65, 68, 70, 72, 73, 74, 77, 80], "metric": 73, "michael": 82, "might": [2, 3, 4, 16, 73, 81], "miku\u0161": [1, 65], "min": 71, "mind": 81, "minim": [1, 68, 70, 72, 80, 81], "minimis": 77, "misc": 1, "miss": [76, 79], "missing_inputs_u": 79, "mix": 80, "mm": 80, "modal": 77, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 60, 62, 66, 68, 69, 75, 76, 78, 79, 82], "model_to_graphviz": [70, 72, 74, 77, 81], "model_typ": [2, 3, 4, 16, 28, 29, 32, 68, 70, 72, 73, 74, 75, 77, 81], "modifi": 73, "modul": [0, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "modular": [65, 67, 68, 81], "mojtaba": 1, "mont": [1, 70, 72, 81], "montemagno": 76, "month": 80, "more": [66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 80, 81], "moreov": 74, "most": [16, 67, 68, 69, 70, 71, 72, 73, 79, 80], "mostli": 79, "move": [67, 74, 81], "mu": [9, 14, 31, 38, 39, 40, 42, 49, 67, 70, 72, 73, 74, 80], "mu_1": [67, 72, 76, 80], "mu_2": [67, 76], "mu_3": 76, "mu_a": [42, 43, 76], "mu_b": [38, 39, 76], "mu_i": 67, "mu_j": [38, 39, 49], "mu_temperatur": 74, "mu_volatil": 74, "much": [68, 69, 72, 80, 81], "multi": [66, 74, 75], "multiarm": 66, "multilevel": [66, 74, 81], "multinomi": 71, "multipl": [1, 5, 28, 58, 68, 71, 73, 74, 76, 77, 79], "multipleloc": 69, "multipli": 68, "multiprocess": 81, "multithread": 81, "multivari": [7, 69], "multivariatenorm": 69, "must": [58, 76], "m\u00f8ller": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "m\u00fcller": 65, "n": [1, 2, 4, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "n1662": 1, "n_": [38, 39, 43], "n_1": 68, "n_categori": 71, "n_j": 68, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 68, 70, 72, 73, 74, 75, 77, 81], "n_node": [18, 19, 20, 21, 22, 24, 68, 69, 76, 79], "n_sampl": [54, 55], "nace": 1, "name": 67, "nan": [2, 3, 4, 5, 81], "nativ": [70, 72, 74, 76], "natur": [1, 67, 69], "nc": 1, "ncol": [67, 75], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 45, 47, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "neg": [5, 6, 28, 37, 70, 72, 73, 76, 79, 80], "nelder": 1, "nest": [71, 73, 79, 80], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 42, 43, 44, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81], "neural": [0, 1, 17, 44, 52, 53, 56, 58, 62, 66, 67, 68, 76, 81], "neuroimag": [65, 82], "neuromodel": 65, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 65, 70, 72, 74, 82], "new": [0, 28, 29, 38, 39, 40, 42, 43, 51, 52, 53, 54, 55, 59, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 79, 80, 81], "new_attribut": 68, "new_belief": 81, "new_input_precision_1": 68, "new_input_precision_2": 68, "new_mean": 69, "new_mu": 55, "new_observ": 81, "new_sigma": 55, "newaxi": [2, 70, 72, 73, 74, 77, 81], "next": [1, 67, 70, 72, 73, 80], "nicola": [1, 76, 82], "nodal": 77, "nodalis": 80, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 74, 77, 78, 79, 81], "node_idx": [28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 60, 63, 68, 71, 79], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 68, 69], "node_precis": 38, "node_trajectori": [17, 69, 71, 73, 74, 75, 78, 79, 81], "node_typ": [24, 68], "nois": [1, 68, 76], "noisi": [68, 69, 76], "noisier": [76, 81], "non": [38, 39, 52, 56, 66], "non_sequ": 81, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 58, 67, 68, 70, 71, 73, 74, 76], "nonlinear_hgf": 76, "noon": 80, "norm": [69, 78], "normal": [1, 2, 7, 10, 11, 57, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "note": [16, 27, 35, 38, 39, 41, 47, 48, 58, 67, 70, 72, 73, 74, 76, 79, 80, 81], "notebook": [66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 81], "notic": 76, "notion": [67, 68], "nov": 82, "novel": 1, "novemb": 82, "now": [67, 68, 70, 72, 73, 74, 76, 79, 80, 81], "np": [2, 5, 13, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nrow": [67, 69, 71, 79], "nu": [13, 57], "nu_": 69, "num": 75, "num_sampl": 81, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 81], "numer": [1, 71, 79], "numpi": [2, 4, 5, 29, 30, 31, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nut": [70, 72, 73, 74, 75, 77, 79, 81], "nutshel": 73, "o": [65, 80, 81], "o_": 73, "object": [75, 81], "observ": [0, 9, 10, 13, 14, 28, 35, 38, 39, 47, 51, 53, 54, 55, 59, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81], "obtain": 73, "occur": [37, 71, 74], "oct": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "octob": 82, "offer": [1, 67], "offici": [65, 71], "often": [37, 67, 68, 73, 74, 75], "omega": [70, 71, 72, 74, 77, 79, 80], "omega_": [70, 72, 74], "omega_1": [67, 72, 80], "omega_2": [2, 67, 70, 71, 72, 73, 77, 81], "omega_3": [70, 72], "omega_a": 43, "omega_j": [38, 39], "onc": [67, 68, 81], "one": [1, 2, 3, 4, 28, 38, 39, 42, 57, 67, 68, 69, 73, 74, 79, 80, 81, 82], "ones": [69, 71, 75, 76, 79], "onli": [0, 6, 16, 29, 32, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80], "onlin": 1, "oop": 80, "op": [3, 71, 79], "open": [65, 77], "oper": [65, 69, 71, 73, 79, 80], "operand": [52, 56], "opt": 81, "optim": [1, 62, 65, 67, 68, 70, 72, 79], "optimis": [70, 72, 73], "option": [31, 42, 72, 73], "orang": 72, "order": [58, 65, 67, 68, 69, 70, 72, 73, 76, 81], "org": [1, 7, 8, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 82], "organ": 0, "origin": [62, 65, 76], "orphan": 67, "oscil": 76, "oscillatori": 76, "other": [1, 38, 39, 63, 65, 67, 68, 70, 72, 73, 76, 79, 80, 81], "otherwis": 79, "our": [1, 67, 69, 70, 72, 73, 74, 76, 77, 79, 81], "ourselv": [70, 72], "out": [67, 74, 81, 82], "outcom": [9, 14, 65, 66, 68, 70, 73, 74, 79, 81], "outcome_1": 81, "outcome_2": 81, "output": [71, 73, 79, 82], "output_gradi": [71, 79], "output_typ": 77, "outputs_info": 81, "outsid": 76, "over": [2, 5, 6, 13, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81], "overal": [1, 72, 73], "overcom": 76, "overfit": [72, 79], "overlai": 55, "overtim": 78, "overview": 67, "own": [42, 67, 80], "p": [1, 11, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "p1": 71, "p2": 71, "p3": 71, "p_a": [42, 76, 79], "p_loo": [74, 81], "pablo": 82, "packag": [1, 65, 68, 73], "page": 1, "pair": 67, "pan": 77, "panda": [64, 73, 77, 80], "panel": [29, 68, 72, 73], "paper": [1, 65, 67], "paralel": 69, "parallel": [3, 5, 6, 74], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 74, 76, 77, 80], "parameter": [16, 67], "parameter_structur": 59, "parametr": [11, 13, 17, 31, 51, 53, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 81], "parametris": [24, 79, 80, 81], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80], "parent_idx": 58, "pareto": 74, "part": [5, 6, 16, 65, 67, 68, 71, 72, 73, 74, 76, 80, 81], "partial": [71, 75, 79], "particip": [73, 74, 75, 77, 81], "particular": [67, 80], "pass": [2, 3, 4, 5, 6, 17, 35, 47, 65, 67, 68, 69, 70, 72, 73, 76, 79, 80], "past": [69, 73], "patholog": 1, "pattern": 82, "pct": 74, "pd": 80, "pdf": [1, 69, 78], "peak": 77, "penni": 11, "per": [74, 75], "percept": [1, 65, 82], "perceptu": [1, 2, 3, 4, 16, 73, 74, 75], "pereira": 65, "perform": [1, 5, 6, 37, 42, 59, 62, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 80, 81], "perspect": [70, 72], "peter": [1, 82], "petzschner": 65, "pfenning": [80, 82], "phasic": [5, 6, 16, 42, 43, 67, 80], "phenomena": 68, "phenomenon": 76, "phi": 67, "physio_df": 77, "physiolog": [66, 72], "pi": [13, 14, 28, 38, 39, 40, 43, 50, 67, 69, 70, 72, 76], "pi_1": 67, "pi_a": 43, "pi_b": [38, 39], "pi_i": 67, "pi_j": [38, 39, 50], "pid": 81, "piec": 81, "pip": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pjitfunct": 5, "place": [67, 68, 74, 79], "plai": [1, 72], "plausibl": 65, "pleas": [1, 74], "plot": [67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "plot_compar": 81, "plot_correl": 72, "plot_network": [68, 69, 70, 71, 72, 76, 78, 79, 80, 81], "plot_nod": [68, 71, 76, 79], "plot_posterior": [74, 79], "plot_raw": 77, "plot_trac": [70, 71, 72, 73, 77, 81], "plot_trajectori": [65, 68, 70, 72, 76, 77, 80, 81], "plt": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "plu": 79, "pm": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pmid": 1, "point": [13, 32, 33, 34, 40, 59, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80], "pointer": [35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57], "pointwis": [4, 74, 81], "pointwise_loglikelihood": [74, 81], "pool": 75, "poor": 80, "popen_fork": 81, "popul": 74, "popular": 81, "posit": [68, 73, 74, 80], "possess": 76, "possibl": [10, 42, 61, 66, 68, 69, 71, 73, 74, 76, 77, 80, 81], "post": 71, "post1": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "posterior": [1, 2, 28, 29, 45, 59, 62, 65, 66, 67, 69, 80], "posterior_mean": 38, "posterior_precis": 39, "posterior_update_mean_continuous_nod": [36, 37, 39], "posterior_update_precision_continuous_nod": [36, 37, 38], "posteriori": 74, "potenti": [2, 70, 71, 72, 73, 75, 77, 79, 81], "power": [81, 82], "pp": [13, 57], "ppg": 77, "pr": [70, 73], "practic": [66, 68, 69, 73, 82], "pre": [16, 17, 51, 53, 55, 70, 71, 72, 81], "precipit": 80, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 43, 45, 46, 54, 62, 65, 66, 67, 68, 69, 70, 71, 72, 76, 79, 80], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 80, "prectotland": 80, "predict": [1, 13, 14, 17, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 66, 68, 69, 72, 73, 74, 77, 79, 80, 82], "predict_precis": 38, "prediction_error": [38, 39], "prediction_sequ": 62, "presenc": 75, "present": [65, 66, 67, 68, 70, 72, 73, 74, 79, 80], "press": 82, "previou": [0, 1, 39, 40, 53, 54, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "previous": [67, 73, 80], "principl": [1, 62, 67, 68, 69, 73, 80, 81], "print": [2, 65], "prior": [2, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 61, 65, 66, 67, 69, 72, 73, 77, 79, 81], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 51, 57, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81], "problem": [66, 74, 75], "procedur": [68, 74, 81], "proceed": 74, "process": [1, 21, 36, 37, 42, 44, 52, 53, 56, 66, 68, 69, 76, 79, 80, 81], "produc": [74, 79, 81], "product": [71, 79], "programmat": 73, "progress": [68, 71, 76], "propag": [0, 17, 59, 68, 69, 73, 80, 81], "propens": [67, 74], "properti": [1, 68], "proport": 69, "propos": 62, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 58, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "proxim": 68, "pseudo": [13, 69, 74], "psi": [11, 35, 47, 71], "psychiatri": [65, 66, 73, 74, 80], "psycholog": 73, "pt": [71, 74, 79, 81], "public": [1, 11, 71], "publish": [1, 57, 82], "pulcu": [79, 82], "punish": [66, 82], "purpos": [67, 73, 78], "put": 72, "pv": 82, "pval": 71, "py": [72, 81], "pyhgf": [1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pymc": [0, 2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pyplot": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pytensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "python": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "python3": 81, "pytre": 68, "pytress": 68, "q": [1, 11, 71], "qualiti": 74, "quantiti": [74, 78, 79, 80, 81], "question": 69, "quickli": [72, 81], "quit": 72, "r": [65, 67, 69, 76, 77, 79], "r_a": 69, "r_hat": [2, 73, 81], "rain": 80, "raman": 65, "rand": 69, "randn": 69, "random": [1, 5, 6, 16, 42, 55, 68, 69, 71, 73, 74, 75, 76, 78, 79], "randomli": [67, 75, 81], "rang": [67, 68, 69, 71, 73, 74, 75, 78, 79, 80], "rank": 81, "rate": [42, 65, 67, 69, 70, 72, 73, 78, 79, 80, 81], "rather": 81, "ratio": 69, "ration": 82, "ravel": [69, 79], "raw": 80, "rcparam": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "reach": 68, "react": 72, "read": [28, 29, 80, 81], "read_csv": 80, "reader": 67, "readi": [79, 81], "real": [1, 68, 69, 70, 72, 73, 76, 77, 80, 81], "reanalysi": 82, "reason": [68, 70, 72, 73, 74], "recap": 81, "receiv": [0, 35, 42, 53, 59, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81], "recent": 1, "recommend": [70, 72, 73, 74, 75, 77, 79, 81], "reconstruct": 81, "record": [66, 79, 80], "recov": [0, 66, 79], "recoveri": [66, 73, 81], "recurs": [63, 65], "red": 75, "reduc": 62, "ref": 75, "ref_val": 74, "refer": [1, 7, 8, 11, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 67, 68, 69, 71, 73, 74, 75, 79, 80], "reflect": [68, 80], "regist": [68, 76, 81], "regular": [37, 67, 70, 81], "reinforc": [1, 66, 67, 70, 71], "relat": [1, 73, 77], "relationship": 58, "relax": 78, "releas": 65, "relev": [16, 70, 72, 76], "reli": [67, 69, 74], "reliabl": [74, 75], "remain": [65, 79], "rememb": 81, "remot": 67, "remov": 80, "reparameter": [74, 75, 79, 81], "repeat": [67, 74, 79, 80], "replac": [71, 79], "report": [1, 75], "repres": [1, 5, 6, 16, 42, 67, 68, 69, 71, 73, 74, 76, 80], "requier": [71, 79], "requir": [4, 27, 30, 32, 33, 34, 42, 68, 69, 73, 74, 79, 80, 81], "rescorla": [67, 70, 75], "research": [1, 73], "resembl": 73, "resolut": 1, "respect": [11, 67, 68, 72, 81], "respir": 77, "respond": 81, "respons": [2, 3, 4, 5, 6, 65, 66, 70, 72, 74, 75, 77, 80, 81, 82], "response_funct": [2, 3, 4, 6, 65, 70, 72, 73, 74, 75, 77, 80, 81], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 65, 73, 74, 75, 81], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 65, 70, 73, 74, 75], "rest": 1, "restrict": [68, 72], "result": [1, 2, 65, 68, 70, 71, 72, 73, 74, 77, 79, 80, 81], "retriev": [68, 72, 77, 81], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "revert": [42, 67], "review": [67, 80], "reward": [66, 73, 81, 82], "rf": [69, 74], "rhat": [74, 75], "rho": [67, 76], "rho_1": 67, "rho_2": 76, "rho_3": 76, "rho_a": [42, 76], "rhoa": 80, "right": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 79], "rise": 72, "rl": 1, "robert": 82, "robust": [70, 72, 73, 74, 75, 77, 79, 81], "rocket": 74, "role": [0, 1, 72], "root": [0, 59, 63, 67, 68, 80], "row": 28, "rr": 77, "rr_": 77, "rule": [81, 82], "run": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "runtimewarn": 81, "rust": 65, "rw": 81, "rw_idata": 81, "rw_model": 81, "rw_updat": 81, "s11222": 82, "s_0": 73, "s_1": 73, "sa": [65, 81], "sake": 73, "salient": 72, "same": [1, 2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "sampl": [1, 2, 54, 55, 62, 66, 67, 68, 69, 73, 75, 77, 78, 79, 80], "sampler": [70, 72, 73, 74, 75, 77, 79, 81], "samuel": 82, "sandra": [1, 82], "satellit": 82, "save": [43, 69, 74, 75, 81], "scalar": 69, "scale": [67, 69, 78, 80, 81], "scall": 67, "scan": [17, 59, 79, 81], "scan_fn": 17, "scat": 69, "scat2": 69, "scatter": [68, 69, 73, 75, 79, 81], "scatterplot": 75, "scheme": [1, 68], "schrader": 65, "sch\u00f6bi": 65, "scienc": [1, 13], "scipi": [69, 78], "scope": 67, "scratch": 65, "sd": [2, 73, 81], "se": [74, 81], "seaborn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "seagreen": 79, "seamless": 65, "search": 63, "second": [0, 1, 2, 5, 6, 10, 16, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "section": [66, 67, 70, 71, 72, 74, 80, 81], "see": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "seed": [67, 68, 69, 73, 74, 75, 76, 78, 79, 80], "seen": [67, 80, 81], "select": [73, 79, 80], "self": [71, 79, 81], "send": [67, 68, 72], "sens": [1, 67, 71, 73], "sensori": [1, 65, 67, 80, 81, 82], "sensory_precis": 54, "separ": [69, 74, 75, 81], "septemb": 72, "sequenc": [17, 59, 62, 65, 67, 69, 71, 73, 74, 79, 81], "sequenti": [70, 71, 72, 73, 74, 75, 77, 79, 81], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 57, 64, 65, 67, 68, 69, 70, 71, 72, 74, 77, 80, 81, 82], "serotonin": 1, "session": 66, "set": [16, 24, 28, 29, 58, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "set_minor_loc": 69, "set_offset": 69, "set_palett": 74, "set_titl": [69, 71, 75], "set_xdata": 69, "set_xlabel": [69, 75, 78], "set_ydata": 69, "set_ylabel": [69, 71, 75, 78, 79], "sever": [1, 72, 81], "sfreq": 77, "shad": 28, "shape": [0, 1, 3, 68, 69, 71, 74, 75, 76, 79, 80], "share": [68, 70], "sharei": 79, "sharex": [67, 71, 79], "she": 73, "shoot": 72, "shortwav": 80, "should": [0, 2, 4, 5, 28, 29, 35, 42, 43, 47, 54, 57, 58, 68, 69, 71, 73, 74, 79, 81], "show": [28, 29, 68, 72, 81], "show_heart_r": 77, "show_posterior": [28, 29, 76], "show_surpris": [28, 29, 76], "show_total_surpris": [29, 70, 72], "shown": [67, 69, 76], "side": [68, 73, 74], "sidecar": 81, "sigma": [54, 67, 68, 74, 80], "sigma_1": [67, 80], "sigma_2": [67, 80], "sigma_mu_g0": 55, "sigma_pi_g0": 55, "sigma_temperatur": 74, "sigma_volatil": 74, "sigmoid": [67, 74, 75, 79, 81], "sigmoid_hgf": 73, "sigmoid_hgf_idata": 73, "sigmoid_inverse_temperatur": 75, "signal": [0, 66, 76], "sim": [2, 67, 74, 76, 80], "similar": [38, 39, 70, 72, 77, 79, 81], "similarli": [68, 72], "simpl": [2, 67, 68, 69, 73, 75, 79, 80, 81, 82], "simpler": [67, 68, 81], "simplest": [67, 73], "simplex": 1, "simpli": [0, 68, 69, 74, 75, 80, 81], "simplifi": [76, 80], "simpul": 67, "simul": [1, 54, 55, 67, 68, 69, 73, 76, 80, 81, 82], "simultan": 74, "sin": [68, 69, 76], "sinc": [67, 76], "singl": [6, 68, 79, 81], "sinusoid": [68, 76], "sinusoid_linear_hgf": 76, "sinusoid_nonlinear_hgf": 76, "situat": [1, 67, 68, 71, 73, 74, 79], "size": [1, 5, 67, 68, 70, 72, 74, 75, 78, 80], "skew": 71, "slightli": [72, 73, 81], "slope": [67, 76], "slow": [79, 81], "smaller": [74, 75], "smooth": 66, "smoother": 69, "sn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "snoma": 80, "snow": 80, "so": [68, 70, 72, 73, 76, 80, 81], "sofmax": [30, 31], "softmax": [5, 6, 65, 73, 79], "softwar": 65, "solar": 80, "sole": 79, "solid": 81, "solut": 69, "some": [37, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80], "someth": [67, 68, 73, 76, 78, 81], "sometim": [68, 72, 73, 80, 81], "sort": 69, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "space": [62, 72, 74, 76], "sparsiti": 73, "special": 79, "specif": [1, 42, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79], "specifi": [2, 58, 67, 71, 76, 77, 79], "spike": 72, "spiral": 69, "split": [68, 73], "springer": [57, 82], "sqrt": [13, 28, 69, 78], "squar": 74, "stabil": 1, "stabl": 72, "stable_conting": 79, "stack": 69, "staffel": [80, 82], "standard": [0, 28, 29, 36, 38, 51, 54, 55, 62, 66, 67, 68, 70, 71, 72, 73, 74, 78, 80, 81], "start": [2, 3, 4, 59, 62, 67, 69, 71, 73, 74, 79, 80, 81], "stat": [69, 78], "state": [0, 1, 6, 18, 19, 20, 22, 32, 38, 39, 40, 42, 43, 46, 47, 49, 50, 55, 58, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 74, 79, 80, 81], "static": [44, 52, 56], "statist": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 74, 75, 78, 82], "statproofbook": 11, "std": [76, 78], "steep": 76, "steeper": 76, "stefan": 82, "step": [1, 5, 6, 17, 36, 37, 38, 39, 43, 59, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81], "stephan": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "still": [71, 79], "stim_1": 81, "stim_2": 81, "stimuli": [73, 74, 81], "stimulu": [73, 74, 81], "stochast": [67, 69, 71, 76, 80], "storag": 80, "store": [43, 48, 65, 68, 73, 74], "str": [2, 3, 4, 16, 28, 44, 52, 53, 56, 57, 59, 62], "straight": 67, "straightforward": [67, 69, 79], "straigthforwar": 80, "strenght": 23, "strength": [16, 35, 38, 39, 41, 42, 43, 47, 48, 58, 67, 70, 76], "string": 68, "structur": [0, 16, 17, 28, 29, 35, 41, 47, 48, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81], "student": 69, "studi": [1, 66, 72, 74], "sub": [0, 68, 70], "subject": [1, 81], "subplot": [67, 69, 71, 75, 76, 78, 79, 81], "subtl": 81, "success": 75, "suffici": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 78, 82], "sufficient_statist": 69, "sufficient_stats_fn": 57, "suggest": [69, 81], "suitabl": 79, "sum": [5, 29, 34, 42, 43, 65, 70, 71, 72, 73, 74, 77, 79, 80, 81], "sum_": [11, 38, 39, 43, 71, 73], "summari": [2, 70, 72, 73, 75, 77, 81], "summer": 80, "support": [5, 65, 67, 68], "suppos": 76, "sure": [71, 73, 79, 81], "surfac": 80, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 64, 65, 68, 71, 77, 79, 80, 81], "surprise_fn": 71, "suspect": 72, "swgdn": 80, "swiss": 72, "switch": [69, 70, 81], "swtdn": 80, "sy": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "systol": 77, "t": [1, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81], "t2m": 80, "tailor": [70, 71], "take": [0, 1, 67, 70, 73, 74, 80, 81], "tapa": 65, "target": [59, 65, 69, 80], "target_accept": [74, 75, 79, 81], "task": [65, 66, 68, 70, 73, 74, 77, 81], "techniqu": 75, "tediou": 72, "tem": 80, "temp": 74, "temperatur": [5, 6, 31, 65, 73, 74, 75, 79, 80], "temporari": 53, "ten": 82, "tensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "term": [1, 43, 67, 68, 73, 76, 82], "terminologi": [71, 74], "test": [74, 75], "text": [9, 73, 76], "th": 74, "than": [16, 37, 67, 69, 71, 72, 74, 75, 76], "thank": [74, 81], "thecomput": 66, "thei": [0, 65, 68, 69, 70, 71, 72, 73, 74, 75, 81], "them": [67, 73, 79, 80], "theoret": [66, 80], "theori": [1, 67, 81], "therefor": [32, 67, 68, 69, 71, 72, 73, 74, 76, 79, 80, 81], "thestrup": [1, 82], "theta": [68, 69, 76], "theta_": 68, "theta_1": [68, 76], "theta_2": 76, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 38, 39, 43, 53, 57, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": [71, 74, 80], "think": [67, 73], "third": [1, 5, 6, 68, 70, 72], "those": [65, 68, 69, 70, 73, 74], "three": [0, 5, 6, 16, 28, 29, 67, 68, 71, 78, 79], "three_level_hgf": [72, 77], "three_level_hgf_idata": [70, 72], "three_level_trajectori": 81, "three_levels_binary_hgf": [70, 81], "three_levels_continuous_hgf": 72, "three_levels_continuous_hgf_bi": 72, "three_levels_hgf": [29, 70], "three_levels_idata": 81, "threshold": 76, "through": [0, 65, 66, 67, 68, 73, 74, 76, 80, 81], "thu": [1, 80], "ticker": 69, "tight": 72, "tight_layout": [69, 72], "tile": [67, 79, 80], "tim": 82, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 38, 39, 40, 42, 43, 57, 59, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82], "time_step": [2, 3, 4, 5, 6, 39, 40, 73, 79], "timeseri": [2, 28, 29, 72, 80], "timestep": 76, "titl": [1, 67, 69, 71, 74, 76, 78, 81], "tmp": 72, "to_numpi": [80, 81], "to_panda": [69, 70, 72, 73], "toa": 80, "togeth": [29, 70, 72, 73, 81], "tolist": 75, "tomkin": 77, "tonaic_volatil": 69, "tonic": [2, 5, 6, 16, 42, 43, 67, 72, 74, 75, 76, 78, 79, 80, 81], "tonic_drift": [16, 28, 29, 70, 76, 77], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tonic_volatility_1": [5, 6, 72, 77], "tonic_volatility_2": [2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 81], "tonic_volatility_3": [5, 6, 70, 72], "too": 79, "took": [70, 72, 73, 74, 75, 77, 79, 81], "tool": 74, "toolbox": [65, 67, 72, 73], "top": [0, 28, 29, 65, 67, 70, 72, 73, 78, 80], "total": [42, 43, 67, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "total_gaussian_surpris": [2, 77], "total_surpris": 73, "toussaint": 65, "toward": [79, 81], "trace": 76, "track": [67, 68, 69, 70, 73, 78, 80, 81], "tradition": 73, "trajectori": [0, 6, 26, 28, 29, 64, 65, 69, 73, 74, 75, 77, 78, 79, 80], "trajectories_df": 64, "transform": [23, 67, 68, 70, 73, 74, 76, 81], "transit": [60, 66, 69], "translat": 65, "transmiss": 80, "transpar": 68, "treat": 74, "tree": 68, "tree_util": [71, 79], "tri": [68, 70, 73, 81], "trial": [1, 67, 72, 73, 79, 81], "trigger": [0, 65, 67, 80], "tristan": 76, "trivial": 73, "true": [9, 14, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81], "try": [72, 73, 76, 78, 79, 80, 81], "tue": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tune": [2, 70, 72, 73, 74, 75, 77, 79, 81], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 68, 69, 73, 76, 79], "turn": [66, 67, 80], "tutori": [65, 67, 70, 73, 74, 75, 76, 79, 80, 81], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 59, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80], "two_armed_bandit_hgf": 79, "two_armed_bandit_missing_inputs_hgf": 79, "two_bandits_logp": 79, "two_level_hgf": 72, "two_level_hgf_idata": [70, 72, 74, 75, 81], "two_level_trajectori": 81, "two_levels_binary_hgf": [70, 74, 75, 81], "two_levels_continuous_hgf": [72, 80], "two_levels_hgf": [70, 81], "two_levels_idata": 81, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 55, 56, 57, 58, 61, 62, 68, 69, 71, 73, 74, 79, 81], "typic": 68, "u": [29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "u1": 76, "u2": 76, "u_0": 68, "u_0_prob": 68, "u_1": [67, 68, 76], "u_1_prob": 68, "u_2": [67, 76], "u_loss_arm1": 79, "u_loss_arm2": 79, "u_win_arm1": 79, "u_win_arm2": 79, "ucl": 11, "uk": 11, "uncertain": [1, 68], "uncertainti": [1, 28, 29, 65, 66, 67, 79, 80, 81, 82], "under": [1, 6, 9, 10, 14, 30, 31, 37, 51, 53, 55, 65, 67, 69, 70, 72, 73, 74, 81, 82], "undergo": [73, 74], "underli": [10, 68, 70, 71, 72, 73, 75, 76], "underpin": [67, 69], "understand": [1, 67, 76, 81], "underw": 73, "unexpect": [69, 70, 72], "uniform": [70, 75, 81], "union": [30, 31, 55, 58], "uniqu": [67, 68, 81], "unit": [2, 3, 4, 59, 74], "univari": [8, 57], "univariate_hgf": 69, "univers": [11, 76, 82], "unlik": [67, 72], "unobserv": 79, "until": [71, 76], "up": [28, 29, 65, 67, 72, 80], "updat": [1, 13, 17, 25, 59, 60, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "update_binary_input_par": 41, "update_continuous_input_par": 41, "update_fn": 68, "update_fn1": 68, "update_fn2": 68, "update_sequ": [17, 59, 62, 68, 69, 79], "update_typ": 62, "upon": 67, "upper": [67, 68, 75, 79], "upper_bound": 15, "url": [1, 11, 82], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 38, 39, 42, 43, 55, 65, 67, 68, 74, 75, 76, 77, 78, 79, 80, 81, 82], "usd": [28, 29], "user": [67, 73], "userwarn": 72, "usual": [0, 59, 67, 68, 75, 78], "util": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "v": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "valid": [4, 13, 32, 68, 70, 72, 74, 81, 82], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81], "valuat": 72, "value_children": [18, 20, 22, 23, 24, 65, 68, 69, 72, 76, 78, 79, 80, 81], "value_coupling_children": [16, 41, 48], "value_coupling_par": [16, 41, 48], "value_par": [18, 20, 23, 24, 68], "vape": 67, "var_nam": [2, 70, 73, 74, 75, 81], "vari": [66, 67, 69, 73, 74, 76], "variabl": [1, 13, 42, 59, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "varianc": [5, 6, 16, 65, 66, 67, 68, 72, 80], "variat": [0, 1, 68, 69], "varieti": 68, "variou": [1, 68, 80], "vartheta": 69, "vector": [2, 3, 4, 5, 16, 55, 69, 71, 73, 74, 75, 79, 81], "vectorized_logp": 5, "vehtari": [74, 82], "verbelen": 82, "veri": [1, 67, 72, 74, 77, 80], "versatil": 80, "version": [1, 17, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "via": [67, 68], "view": 79, "visibl": 72, "visual": [0, 27, 28, 29, 65, 69, 78, 80, 81], "vizualis": 69, "vjp": [71, 79], "vjp_custom_op": [71, 79], "vjp_custom_op_jax": [71, 79], "vjp_fn": [71, 79], "vjpcustomop": [71, 79], "vol": 65, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 56, 57, 58, 61, 62, 65, 66, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "volatile_conting": 79, "volatility_children": [18, 20, 23, 24, 68, 69, 72, 78, 80], "volatility_coupl": [16, 28, 29, 35, 47, 70, 77], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 41, 48], "volatility_coupling_par": [16, 41, 48], "volatility_par": [18, 20, 23, 24, 68], "volum": 1, "vopa": 43, "vope": 67, "vstack": 71, "w": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "w_a": 79, "w_b": 79, "wa": [38, 39, 62, 65, 68, 70, 71, 72, 73, 76, 79, 81], "waad": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "wagenmak": [74, 82], "wagner": [67, 70, 75], "wai": [1, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "waic": 82, "walk": [1, 5, 6, 16, 42, 76, 79], "want": [1, 2, 68, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "warmup": 2, "warn": [70, 71, 72, 73, 74, 75, 77, 79, 81], "watermark": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "wave": [68, 76], "we": [0, 1, 2, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "weigh": [69, 80], "weight": [1, 55, 65, 67, 68, 69, 81], "weigth": 55, "well": [1, 59, 68, 75, 80, 81], "were": [67, 70, 73, 74, 75, 79, 81], "what": [68, 71, 72, 73, 76, 79, 80, 81], "when": [2, 4, 5, 6, 32, 42, 53, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 38, 39, 42, 43, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80], "wherea": 77, "whether": 28, "which": [1, 5, 6, 13, 42, 62, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "while": [67, 68, 69, 73, 74, 76, 77, 79, 80, 81], "whole": [67, 69, 79], "wide": [16, 70], "width": [28, 29], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [75, 82], "win": 79, "win_arm1": 79, "win_arm2": 79, "wind": 82, "wine": 79, "wishart": 11, "within": 1, "without": [1, 42, 61, 66, 68, 69, 73, 74, 76], "won": 70, "word": [68, 70, 72, 81], "work": [27, 66, 71, 73, 74, 79, 81], "workflow": [74, 81], "workshop": 80, "world": [67, 69, 73, 81], "worri": [70, 72], "worth": 74, "would": [70, 72, 74, 76, 79, 80], "wpenni": 11, "wrap": [0, 70, 71, 72, 79], "write": [71, 73, 76, 80, 81], "written": 69, "www": [1, 11, 82], "x": [9, 12, 13, 14, 15, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80], "x1": [67, 76], "x2": [67, 76], "x3": 76, "x64": 81, "x_": [67, 70, 80], "x_0": [6, 72], "x_0_expected_mean": 73, "x_0_expected_precis": 73, "x_0_mean": 73, "x_0_precis": 73, "x_0_surpris": [70, 72, 73], "x_0_xis_0": 69, "x_1": [6, 67, 69, 76, 80], "x_1_1": 67, "x_1_2": 67, "x_1_3": 67, "x_1_expected_mean": 73, "x_1_expected_precis": 73, "x_1_mean": 73, "x_1_precis": 73, "x_1_surpris": [70, 72, 73], "x_2": [6, 67, 69, 76, 80], "x_2_1": 67, "x_2_2": 67, "x_2_3": 67, "x_2_surpris": [70, 72], "x_3": [6, 76], "x_b": 42, "x_i": 69, "xaxi": 69, "xflr6": 27, "xi": [13, 57, 68, 69, 71], "xi_": [13, 68, 69], "xi_1": 68, "xi_k": 68, "xi_x": [13, 69], "xlabel": [67, 69, 71, 73, 76, 80, 81], "xlim": 69, "y": [13, 65, 69, 73, 75, 79, 81], "y1": 71, "y2": 71, "yaxi": 69, "ye": 76, "year": [1, 80, 82], "yet": 79, "ylabel": [67, 69, 71, 76, 80, 81], "ylim": 69, "you": [1, 65, 66, 68, 71, 73, 76, 79, 80, 81], "your": [1, 80, 81], "z": [69, 74], "z_": 74, "zero": 76, "zip": [67, 69, 75, 78, 79, 81], "zoom": 76, "zorder": [68, 71, 75], "zurich": 66, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [77, 80], "2": [78, 80], "3": [79, 80], "4": 80, "5": 80, "7": 81, "8": 81, "A": [65, 79], "The": [65, 66, 67, 68, 70, 71, 72, 80, 81], "acknowledg": 65, "activ": 76, "ad": 67, "adapt": 69, "add": [70, 72], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 58, "add_ef_st": 22, "api": 0, "applic": 81, "arm": [75, 79], "ascend": 68, "assign": 68, "attribut": 68, "autoregress": 67, "bandit": [75, 79], "bayesian": [69, 74, 77, 79], "behavior": 73, "behaviour": [75, 81], "belief": [67, 79, 81], "beliefs_propag": 59, "between": [76, 80], "bias": 81, "binari": [0, 40, 45, 46, 68, 70, 73, 81], "binary_finite_state_node_prediction_error": 45, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 40, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 69, "cardiac": 77, "case": [66, 68], "categor": [0, 35, 47, 71], "categorical_state_prediction_error": 47, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 51, "code": 65, "collect": 69, "comparison": [74, 81], "comput": [74, 75], "configur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "content": 0, "continu": [0, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 68, 72, 76], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 41, "continuous_node_prediction_error": 48, "continuous_node_value_prediction_error": 49, "continuous_node_volatility_prediction_error": 50, "correl": 72, "coupl": [67, 68, 76, 80], "cpc": [80, 81], "creat": [68, 70, 71, 72, 73], "create_clust": 52, "custom": [68, 73], "data": [70, 72], "dataset": [71, 74, 79], "decis": [73, 79], "deriv": 77, "descend": 68, "detail": 68, "differ": 81, "dirichlet": [0, 44, 51, 52, 53, 54, 55, 56], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 44, "dirichlet_node_prediction_error": 53, "distribut": [0, 2, 3, 4, 5, 6, 69, 74, 78], "doe": 65, "drift": 67, "dynam": [67, 68, 69], "edg": 68, "error": [0, 67], "estim": 78, "exampl": [77, 78, 79], "exercis": [66, 80, 81], "exponenti": 57, "fill_categorical_state_nod": 60, "filter": [65, 66, 67, 69, 70, 71, 72, 77, 80], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [65, 70, 71, 72, 81], "fix": [69, 70, 72], "forward": 71, "frequenc": 76, "from": [69, 73, 75, 79], "function": [0, 68, 73, 76], "gaussian": [65, 66, 67, 69, 70, 71, 72, 78, 80], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [65, 67, 80], "generalis": [67, 69, 80], "get": 65, "get_candid": 54, "get_coupl": 23, "get_input_idx": 61, "get_update_sequ": 62, "glossari": [67, 73], "go": 81, "graph": 74, "group": 74, "heart": 77, "hgf": [16, 70, 72, 73, 81], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [65, 66, 67, 69, 70, 71, 72, 74, 80], "how": [1, 65], "i": 80, "ii": 81, "implement": 68, "import": 70, "independ": 79, "infer": [71, 74, 75, 79], "input": 68, "insert_nod": 24, "instal": 65, "instantan": 77, "introduct": [67, 80], "invers": 80, "known": 78, "kown": 78, "learn": [66, 69, 70, 72, 81], "level": [70, 72, 74, 81], "librari": 65, "likely_cluster_propos": 55, "linear": 76, "list_branch": 63, "load": 77, "logp": 6, "manipul": 68, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [70, 71, 72], "mean": 78, "miss": 68, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 65, 67, 70, 71, 72, 73, 74, 77, 80, 81], "modifi": 68, "multi": 79, "multivari": 68, "multivariatenorm": 7, "network": [17, 65, 67, 68, 71, 74], "neural": [65, 74], "new": 73, "next": 81, "node": [0, 67, 68, 71, 76, 80], "non": [69, 76], "normal": [8, 69], "nu": 69, "observ": [73, 75], "one": 75, "optim": 81, "paramet": [70, 72, 73, 75, 79, 81], "particip": 79, "physiolog": 77, "plot": [0, 26, 27, 28, 29, 70, 72, 74, 77], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 74, 81], "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 80, "precis": 78, "predict": [0, 40, 41, 42, 43, 44, 65, 67, 76, 81], "predict_mean": 42, "predict_precis": 43, "prediction_error": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "prediction_error_update_exponential_famili": 57, "preprocess": 77, "probabilist": [68, 71, 74, 80], "process": [0, 67], "propag": 67, "punish": 79, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "random": [67, 80, 81], "rate": 77, "real": 79, "record": 77, "recov": [73, 75], "recoveri": [75, 79], "rectifi": 76, "refer": [65, 82], "reinforc": [69, 81], "relu": 76, "rescorla": 81, "respons": [0, 30, 31, 32, 33, 34, 73, 79], "reward": 79, "rl": 81, "rule": [73, 79], "sampl": [70, 71, 72, 74, 81], "sequenc": 68, "sigmoid": 15, "signal": 77, "simul": [71, 74, 75, 79], "solut": [80, 81], "start": 65, "state": [71, 76], "static": 68, "stationari": 69, "statist": 69, "step": 0, "structur": 79, "suffici": 69, "surpris": [70, 72, 73], "system": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tabl": 0, "task": [75, 79], "theori": [66, 68], "three": [70, 72, 81], "through": 69, "time": [68, 78, 79], "to_panda": 64, "total_gaussian_surpris": 34, "track": 76, "trajectori": [70, 72, 81], "transit": 71, "tutori": 66, "two": [70, 72, 81], "unit": 76, "univari": 69, "unknown": 78, "unkown": 78, "unobserv": 68, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 67, 68, 79], "update_clust": 56, "update_paramet": 25, "us": [66, 69, 70, 71, 72, 73], "util": [0, 58, 59, 60, 61, 62, 63, 64], "valu": [67, 68, 76, 80], "vari": [68, 78], "visual": [68, 70, 72, 74, 75], "volatil": [67, 68, 77, 80], "wagner": 81, "walk": [67, 80], "weather": 80, "where": 81, "work": [65, 68], "world": 80, "zurich": [80, 81]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[80, "exercise1.1"], [80, "exercise1.2"], [80, "exercise1.3"], [80, "exercise1.4"], [80, "exercise1.5"], [80, "exercise1.6"], [81, "exercise2.1"], [81, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[65, "acknowledgments"]], "Add data": [[70, "add-data"], [70, "id4"], [72, "add-data"], [72, "id3"]], "Adding a drift to the random walk": [[67, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[67, "autoregressive-processes"]], "Bayesian inference": [[79, "bayesian-inference"]], "Beliefs trajectories": [[81, "beliefs-trajectories"]], "Biased random": [[81, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[69, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[68, "continuous-value-coupling"]], "Continuous volatility coupling": [[68, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[68, "coupling-with-binary-nodes"]], "Create the model": [[70, "create-the-model"], [70, "id3"], [72, "create-the-model"], [72, "id2"]], "Creating a new response function": [[73, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[73, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[68, null]], "Creating custom update functions": [[68, "creating-custom-update-functions"]], "Creating custom update sequences": [[68, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[68, "creating-probabilistic-nodes"]], "Creating the decision rule": [[73, "creating-the-decision-rule"]], "Creating the model": [[70, "creating-the-model"], [70, "id7"], [72, "creating-the-model"], [72, "id5"]], "Creating the probabilistic network": [[71, "creating-the-probabilistic-network"]], "Decision rule": [[79, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[68, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[67, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[77, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[78, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[79, null]], "Exercises": [[66, "exercises"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[81, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[70, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[72, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[71, "fitting-the-model-forwards"]], "Frequency tracking": [[76, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[69, null]], "Gaussian Random Walks": [[67, "gaussian-random-walks"], [80, "gaussian-random-walks"]], "Getting started": [[65, "getting-started"]], "Glossary": [[67, "glossary"], [73, "glossary"]], "Group-level inference": [[74, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[74, null]], "How does it work?": [[65, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[70, "imports"]], "Inference from the simulated behaviours": [[75, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[71, "inference-using-mcmc-sampling"]], "Installation": [[65, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[67, null]], "Kown mean, unknown precision": [[78, "kown-mean-unknown-precision"]], "Learn": [[66, null]], "Learning parameters with MCMC sampling": [[70, "learning-parameters-with-mcmc-sampling"], [72, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[77, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [77, "model"]], "Model comparison": [[74, "model-comparison"], [81, "model-comparison"]], "Model fitting": [[65, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[80, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[68, "modifying-the-attributes"]], "Modifying the edges": [[68, "modifying-the-edges"]], "Multivariate coupling": [[68, "multivariate-coupling"]], "Non-linear predictions": [[76, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[76, null]], "Parameter recovery": [[79, "parameter-recovery"]], "Parameters optimization": [[81, "parameters-optimization"]], "Plot correlation": [[72, "plot-correlation"]], "Plot the computational graph": [[74, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[77, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[70, "plot-trajectories"], [70, "id5"], [72, "plot-trajectories"], [72, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[81, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[80, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[77, "preprocessing"]], "Probabilistic coupling between nodes": [[80, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[65, null]], "ReLU (rectified linear unit) activation function": [[76, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[79, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[73, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[75, null]], "References": [[65, "references"], [82, null]], "Rescorla-Wagner": [[81, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[70, "sampling"], [70, "id9"], [72, "sampling"], [72, "id7"], [74, "sampling"]], "Simulate a dataset": [[74, "simulate-a-dataset"], [79, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[75, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[79, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[71, "simulating-a-dataset"]], "Solution to Exercise 1": [[80, "solution-exercise1.1"]], "Solution to Exercise 2": [[80, "solution-exercise1.2"]], "Solution to Exercise 3": [[80, "solution-exercise1.3"]], "Solution to Exercise 4": [[80, "solution-exercise1.4"]], "Solution to Exercise 5": [[80, "solution-exercise1.5"]], "Solution to Exercise 7": [[81, "solution-exercise2.1"]], "Solution to Exercise 8": [[81, "solution-exercise2.2"]], "Solutions": [[80, "solutions"], [81, "solutions"]], "Static assignation of update sequences": [[68, "static-assignation-of-update-sequences"]], "Surprise": [[70, "surprise"], [70, "id6"], [72, "surprise"]], "System configuration": [[67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[79, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[65, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[66, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[67, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[81, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[70, null]], "The case of multivariate ascendency": [[68, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[68, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[71, null]], "The categorical state node": [[71, "the-categorical-state-node"]], "The categorical state-transition node": [[71, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[72, null]], "The generative model": [[67, "the-generative-model"], [80, "the-generative-model"]], "The propagation of prediction and prediction errors": [[67, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[70, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[72, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[70, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[72, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[66, "theory"]], "Theory and implementation details": [[68, "theory-and-implementation-details"]], "Three-level HGF": [[81, "three-level-hgf"]], "Three-level model": [[70, "three-level-model"], [72, "three-level-model"]], "Time-varying update sequences": [[68, "time-varying-update-sequences"]], "Tutorials": [[66, "tutorials"]], "Two-level HGF": [[81, "two-level-hgf"]], "Two-level model": [[70, "two-level-model"], [72, "two-level-model"]], "Univariate normal distribution": [[69, "univariate-normal-distribution"]], "Unkown mean, known precision": [[78, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[78, "unkown-mean-unknown-precision"]], "Update functions": [[68, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[66, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[69, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[69, "using-a-fixed-nu"]], "Using custom response models": [[73, null]], "Using the learned parameters": [[70, "using-the-learned-parameters"], [70, "id10"], [72, "using-the-learned-parameters"], [72, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[67, "value-coupling"], [68, "value-coupling"], [80, "value-coupling"]], "Visualization of the posterior distributions": [[74, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[75, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[68, "visualizing-probabilistic-networks"]], "Visualizing the model": [[70, "visualizing-the-model"], [70, "id8"], [72, "visualizing-the-model"], [72, "id6"]], "Volatility coupling": [[67, "volatility-coupling"], [68, "volatility-coupling"], [80, "volatility-coupling"]], "Where to go next?": [[81, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[68, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[80, null]], "Zurich CPC II: Application to reinforcement learning": [[81, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[40, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[42, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[43, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[44, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[56, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family": [[57, null]], "pyhgf.utils.add_edges": [[58, null]], "pyhgf.utils.beliefs_propagation": [[59, null]], "pyhgf.utils.fill_categorical_state_node": [[60, null]], "pyhgf.utils.get_input_idxs": [[61, null]], "pyhgf.utils.get_update_sequence": [[62, null]], "pyhgf.utils.list_branches": [[63, null]], "pyhgf.utils.to_pandas": [[64, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[58, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "beliefs_propagation() (in module pyhgf.utils)": [[59, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[45, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[40, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[47, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[51, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[41, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[48, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[73, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[44, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[60, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[67, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[61, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[62, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[63, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[67, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[73, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[38, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[39, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[67, "term-Prediction", true]], "prediction error": [[67, "term-Prediction-error", true]], "prediction_error_update_exponential_family() (in module pyhgf.updates.prediction_error.exponential)": [[57, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", false]], "response function": [[73, "term-Response-function", true]], "response model": [[73, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[64, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[67, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[67, "term-VAPE", true]], "vope": [[67, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 2, 1, "", "posterior_update_mean_continuous_node"], [39, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.prediction.binary": [[40, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[41, 2, 1, "", "continuous_node_prediction"], [42, 2, 1, "", "predict_mean"], [43, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[44, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[45, 2, 1, "", "binary_finite_state_node_prediction_error"], [46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[47, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[48, 2, 1, "", "continuous_node_prediction_error"], [49, 2, 1, "", "continuous_node_value_prediction_error"], [50, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[51, 2, 1, "", "clusters_likelihood"], [52, 2, 1, "", "create_cluster"], [53, 2, 1, "", "dirichlet_node_prediction_error"], [54, 2, 1, "", "get_candidate"], [55, 2, 1, "", "likely_cluster_proposal"], [56, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[57, 2, 1, "", "prediction_error_update_exponential_family"]], "pyhgf.utils": [[58, 2, 1, "", "add_edges"], [59, 2, 1, "", "beliefs_propagation"], [60, 2, 1, "", "fill_categorical_state_node"], [61, 2, 1, "", "get_input_idxs"], [62, 2, 1, "", "get_update_sequence"], [63, 2, 1, "", "list_branches"], [64, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 42, 58, 59, 62, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 79, 80, 81], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 42, 55, 58, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "00": [77, 80, 81], "000000": 81, "000000e": 81, "00039": [1, 65, 82], "0046": 70, "00825": [1, 65, 82], "01": [69, 73, 74, 75, 76, 77, 80], "013": 81, "013498": 81, "015": 73, "016": 82, "016216": 73, "017": 81, "017940": 81, "018": 80, "0183": 72, "02": [69, 77, 80], "027": 2, "03": [76, 77, 80], "030": [13, 57], "0359": 72, "038": 2, "04": [28, 29, 72, 77, 80], "043996": 81, "05": [68, 76, 79, 81], "060": 82, "061": 80, "063": 73, "064361": 73, "065": 2, "067450": 73, "068": 82, "068983": 73, "077038": 73, "08": [74, 82], "08008": [74, 75], "09045": 70, "09206": [1, 65], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 53, 57, 58, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82], "10": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 71, 72, 74, 76, 77, 78, 79, 81, 82], "100": [69, 74, 75, 77], "1000": [2, 67, 68, 69, 74, 76, 77, 78, 80], "10000": [16, 67], "1007": [13, 57, 82], "101162": 81, "1016": [65, 82], "1017": 82, "105838": 81, "1063": 73, "1078": 72, "109": 81, "10937": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "11": [2, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "1106": 72, "1118": 72, "112": 81, "113": 81, "114": 82, "117590": [65, 82], "12": [2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1224": 82, "123": [67, 68, 69, 74, 75, 78, 79, 80, 81], "1239": 82, "124": 80, "125": [67, 80], "1251": 82, "1265": 82, "128": [69, 80], "13": [28, 29, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "138": 65, "14": [2, 73], "1413": 82, "1432": 82, "147": 80, "1476": 73, "15": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "150": 71, "1500": 68, "152497": 81, "157368e": 81, "16": [2, 69], "1662": 1, "16625161": 1, "17": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "18": [28, 29, 73], "185465": 73, "1903": [74, 75], "1910": 72, "1938": 74, "196": 80, "1_000": [70, 72, 73, 74, 75, 77, 79, 81], "1d": [2, 4], "1e1": [28, 29, 70, 72, 77], "1e2": 80, "1e4": [16, 28, 29, 68, 70, 72, 73, 77, 78, 80], "1i": [11, 71], "1rst": 70, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 38, 39, 50, 53, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "20": [1, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "200": [67, 68, 69, 80], "2000": [68, 74, 75], "20000": [54, 55], "2001": 11, "2010": 72, "2011": [1, 65, 67, 68, 72, 82], "2013": 65, "2014": [1, 65, 67, 68, 74, 80, 82], "2016": [74, 80, 82], "2017": [79, 82], "2019": [75, 80, 82], "202": 70, "2020": [13, 57, 65, 69, 82], "2021": [65, 70, 73, 81, 82], "2023": [0, 1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 80, 82], "2024": [1, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "203": 70, "205": 73, "206": 70, "21": 71, "21596": 70, "21629826": 1, "22": 81, "222": 81, "224": 80, "2252": 74, "226": [65, 82], "2285": 74, "2305": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "230946": 73, "231360": 81, "232583": 73, "233799": 73, "234603": 73, "235004": 73, "24": 80, "2410": [1, 65], "244": 80, "245": 80, "247": 80, "249": 80, "25": [69, 71, 74, 78, 79, 81], "250": [67, 68, 71, 76, 78, 80], "251322": 81, "2516081684": 72, "256": 69, "26": [67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "260191": 73, "2633": 70, "2679": 72, "27": [73, 82], "270900": 73, "27879": 82, "28": 74, "283697": 73, "29": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "296556": 73, "2_000": [70, 72, 73, 74, 75, 77, 79, 81], "2_i": 74, "2a2a2a": 71, "2i": [11, 71], "2nd": 70, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 57, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82], "30": [67, 68, 69, 80, 82], "301674": 73, "304ea45": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "308": 80, "30963": 72, "31": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "32": 69, "3200": 74, "3389": [1, 65, 82], "345": 81, "345082": 81, "345825": 81, "35": 69, "350": 76, "351889": 81, "35667497": 9, "358": 81, "387": 80, "389923": 73, "4": [1, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "40": 79, "400": [68, 69, 76], "4093": 72, "416410": 73, "42": [55, 76], "43": 76, "45": 68, "458906": 73, "466356": 73, "471469": 73, "472": 80, "474077": 73, "48": 75, "485": 73, "48550": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65], "49547": 82, "499132": 81, "4c72b0": [67, 68, 73, 80, 81], "5": [0, 1, 2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "50": [77, 78], "500": [74, 78], "500000": 73, "506": 81, "506923": 73, "510971": 73, "512": 69, "515": 74, "5161": 1, "518301": 73, "52": [13, 57, 82], "520583": 73, "521962": 81, "52975": 70, "530355": 73, "530717": 73, "53662109": 74, "536678": 73, "5377": 80, "54": 73, "540697": 73, "55": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "550": 76, "551": 70, "55585": 70, "55a868": [67, 75, 81], "566859": 73, "57": 74, "58": [13, 57, 82], "582766": [69, 78], "588": 81, "5d1e51": 81, "6": [29, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82], "60": [75, 77], "600": [68, 69, 76], "602030": 81, "602961": 73, "6174": 72, "619970": 81, "622459": 73, "624085": 73, "627284": 73, "63": 74, "631975": 73, "635": 80, "638038": 73, "64": [69, 74], "64919": [13, 57], "650": 76, "66": 81, "680811": 65, "692544": 81, "698": 72, "7": [9, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "70": 74, "701": 80, "71": 74, "731660": 73, "745316": 73, "749859": 81, "750": 68, "7554": 82, "766": 2, "776": 2, "79": 74, "7_7": [13, 57], "7f7f7f": 71, "8": [1, 11, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "80": 79, "800": [68, 69], "806": 2, "828": 72, "834867": 73, "850": 76, "855175": 81, "865": 80, "874": 81, "87854": 73, "879": 73, "886": 72, "897894": 81, "8992462158203": 65, "9": [11, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "90": 68, "900": 68, "903": 72, "907825e": 81, "910": 72, "913": 74, "9189386": 14, "9297": 72, "931": 80, "938": 2, "943988": 81, "944": 2, "950": 76, "958": 73, "964": 72, "965": 72, "9696": 82, "978": [13, 57], "999": 69, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 55, 59, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82], "And": 73, "As": [68, 74, 79], "At": [66, 67, 80], "Being": 73, "But": [68, 72, 73, 74, 80], "By": [2, 3, 4, 37, 42, 65, 72, 73], "For": [1, 6, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 61, 67, 68, 69, 73, 75, 76, 80, 81], "If": [1, 2, 3, 4, 16, 28, 29, 38, 42, 58, 63, 67, 71, 73, 74, 76, 79, 81], "In": [1, 13, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "It": [1, 16, 35, 47, 58, 67, 68, 69, 72, 73, 75, 76, 78, 79, 81], "NOT": 81, "OR": 80, "On": 73, "One": [68, 70, 72, 81], "Or": 80, "Such": [67, 69, 81], "That": 81, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 69, 73, 74, 75, 76, 77, 78, 79, 82], "Then": [76, 80], "There": [73, 74, 75, 80, 81], "These": [1, 65, 67, 70], "To": [67, 70, 72, 73, 74, 76, 80, 81], "With": [67, 76], "_": [29, 31, 38, 39, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81], "_1": [73, 74], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [40, 42, 43], "_b": [38, 39, 40], "_i": 67, "_j": [38, 39, 49, 50], "a_custom_hgf": 68, "aarhu": [76, 80], "aarhus_weather_df": 80, "ab": [1, 74, 75], "aberr": 72, "abil": 75, "abl": [70, 73, 74, 76], "about": [1, 66, 67, 68, 69, 70, 71, 72, 73, 79, 80, 81], "abov": [63, 67, 68, 69, 72, 73, 76, 79, 80, 81], "absenc": [75, 79], "abstract": [1, 69, 82], "ac": 11, "acceler": 72, "accept": [70, 72, 76], "access": [2, 3, 4, 68, 73], "accommod": 1, "accord": [0, 73, 76], "accordingli": [5, 67, 70, 72, 79, 80], "account": [1, 67, 68, 79], "accumul": 59, "accur": [75, 81], "acetylcholin": 1, "achiev": 69, "across": [29, 34, 67, 69, 70, 72, 79], "act": [70, 72, 73, 74], "action": [65, 73, 74, 81], "actionmodel": 73, "activ": [13, 57, 65, 73, 81, 82], "actual": [65, 68, 71, 79, 81], "acycl": 68, "ad": [70, 71, 72, 76, 78, 79, 80], "adapt": [1, 65, 66, 67, 72, 73, 81], "adapt_diag": [70, 72, 73, 74, 75, 77, 79, 81], "add": [18, 19, 20, 21, 22, 58, 65, 67, 76, 79, 80, 81], "add_group": [74, 81], "add_nod": [2, 3, 4, 65, 68, 69, 71, 72, 76, 78, 79, 80, 81], "addit": [2, 3, 4, 5, 6, 68, 69, 72, 73], "addition": [65, 75, 81], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 68, "adjacencylist": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 68], "adjust": [65, 81], "adopt": [70, 72], "advanc": 66, "advantag": [67, 68, 81], "aesara": [70, 72], "affect": [5, 6, 16, 72, 79, 82], "after": [0, 17, 28, 35, 36, 37, 45, 59, 69, 70, 74, 75, 80, 81], "afterward": [2, 3, 4, 16], "again": [71, 72], "against": 72, "agent": [1, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "agnost": 1, "ai": 1, "aim": 72, "air": 80, "aki": 82, "al": [0, 65, 67, 68, 70, 73, 74, 80, 81], "algorithm": [1, 65, 67, 70, 77, 80], "align": [67, 69, 73], "alin": [1, 82], "all": [0, 1, 2, 5, 16, 29, 32, 58, 61, 62, 63, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "alloc": 53, "allow": [1, 65, 68, 70, 72, 73, 76, 79, 80], "alon": 80, "along": [5, 81], "alpha": [68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "alpha_": [11, 71, 76], "alpha_1": 11, "alpha_2": 11, "alreadi": [63, 68, 73, 74], "also": [1, 16, 28, 41, 43, 48, 63, 65, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81], "altern": [59, 62, 68, 72, 73, 79, 81], "alternative\u00e6li": 74, "alwai": [53, 71, 74, 75, 79, 80, 81], "among": 73, "amount": 72, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 48, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "analys": [1, 81], "analyt": 1, "andrew": 82, "ani": [0, 1, 36, 37, 45, 61, 63, 66, 67, 69, 70, 71, 72, 73, 74, 76], "anim": 69, "ann": 82, "anna": [1, 82], "anoth": [67, 71, 72, 76, 78, 80, 81], "another_custom_hgf": 68, "answer": 75, "anymor": [42, 67, 69], "anyth": [67, 71], "api": [65, 70, 71, 72, 73, 74, 75, 77, 79, 81], "apont": 65, "appar": 67, "appear": [68, 76], "append": [28, 67, 69, 74, 75, 79, 80, 81], "appli": [17, 59, 62, 66, 68, 69, 71, 73, 74, 75, 79, 80, 81], "applic": [1, 6, 65, 66, 68, 69, 72, 73, 75], "apply_along_axi": 69, "approach": [67, 69, 70, 71, 74, 75], "appropri": 78, "approxim": [1, 37, 65, 67, 68, 80], "april": [72, 82], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 59, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ar1": [67, 79], "arang": [68, 69, 71, 73, 76, 79, 81], "arbitrari": [2, 68, 73, 76, 80], "area": [28, 80], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 53, 57], "argument": [2, 3, 4, 68, 70, 72, 73, 76], "arm": [66, 73, 74, 81], "around": [28, 29, 66, 67, 68, 72, 73, 81], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 42, 43, 46, 49, 51, 54, 55, 59, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "arrang": 80, "arriv": 67, "articl": [1, 82], "artifici": [1, 76], "arviz": [2, 70, 72, 73, 74, 75, 77, 79, 81], "arxiv": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 74, 75, 82], "as_tensor_vari": [71, 79, 81], "asarrai": [71, 79], "ask": [1, 72], "aspect": 71, "assert": [68, 70, 72], "assess": [53, 70, 72, 81], "assign": [59, 70, 71, 72, 73, 74, 75, 77, 79, 81], "associ": [2, 3, 4, 5, 6, 62, 65, 71, 73, 74, 75, 76, 79, 81, 82], "assum": [1, 36, 37, 57, 58, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81], "assumpt": [78, 81], "astyp": [76, 79], "atmospher": 80, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 65, 69, 71, 74, 75, 78, 79], "au": 76, "august": [72, 82], "author": [1, 76], "auto": [70, 71, 72, 73, 74, 75, 77, 79, 81], "autoconnect": [42, 67, 76], "autoconnection_strength": [76, 78], "autocorrel": 76, "autom": 80, "automat": [68, 70, 72, 74], "autoregress": 42, "avail": [0, 65, 80], "averag": [70, 80, 81], "avoid": 75, "awai": 69, "ax": [26, 28, 29, 67, 68, 69, 71, 75, 76, 78, 79, 81], "axi": [5, 67, 69, 74], "axvlin": 79, "az": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "b": [38, 39, 40, 42, 65, 69, 76, 79], "back": [42, 67, 74], "backgroud": 28, "backslash": 1, "backward": 68, "bad": 74, "badg": 66, "bandit": [66, 73, 74, 81], "bank": 72, "base": [1, 55, 67, 70, 71, 72, 73, 74, 75, 77, 79, 81], "batch": [5, 79], "bay": 1, "bayesian": [1, 65, 66, 67, 70, 71, 72, 73, 81, 82], "becaus": [67, 68, 70, 71, 72, 76, 79, 80], "becom": 67, "been": [62, 67, 68, 69, 71, 72, 73, 74, 80, 81], "befor": [0, 28, 39, 62, 67, 68, 69, 72, 73, 74, 75, 79, 80], "beforehand": [38, 72, 81], "begin": [9, 13, 66, 67, 69, 73, 76, 81], "behav": [1, 70, 72, 76, 80], "behavior": [1, 81, 82], "behaviour": [5, 6, 65, 66, 67, 70, 72, 73, 74, 76, 77, 79], "behind": [66, 67, 80], "being": [67, 68, 70, 74, 76, 77, 81], "belief": [0, 6, 17, 28, 55, 59, 65, 66, 68, 69, 72, 73, 74, 75, 76, 80], "beliefs_propag": [17, 69, 79], "belong": [63, 69], "below": [0, 67, 70, 71, 73, 76, 79, 80, 81], "bernoulli": [9, 81], "best": [1, 54, 72, 76, 77, 81], "beta": [79, 81], "better": [37, 72, 73, 74, 75, 80, 81], "between": [0, 1, 5, 6, 11, 16, 38, 39, 40, 58, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81], "beyond": 67, "bia": [74, 81, 82], "biased_random": 81, "biased_random_idata": 81, "biased_random_model": 81, "big": 67, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 47, 60, 65, 66, 67, 69, 71, 72, 74, 75, 79], "binary_hgf": 81, "binary_input_upd": [35, 47], "binary_paramet": [60, 71], "binary_precis": [16, 29, 70], "binary_softmax": [73, 81], "binary_softmax_inverse_temperatur": [65, 74, 75], "binary_states_idx": 60, "binary_surpris": [73, 79], "bind": [65, 68], "binomi": [68, 73, 74, 75, 79], "bio": 1, "biolog": [1, 65], "bit": [72, 74], "bivariate_hgf": 69, "bla": [70, 71, 72, 73, 74, 75, 77, 79, 81], "blackjax": 73, "blank": 71, "block": [67, 70, 72, 79], "blog": 71, "blue": [73, 76], "bollmann": 65, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 51, 54, 55, 59], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "boolean": [35, 59, 71, 72, 81], "boom": 82, "both": [1, 42, 66, 67, 68, 71, 73, 74, 76, 78, 79, 80, 81], "bottom": [29, 65, 67, 80], "brain": 1, "branch": [53, 63, 65, 73, 79], "branch_list": 63, "break": 80, "briefli": 81, "broad": 71, "broadcast": [5, 74], "broader": 69, "brodersen": [1, 65, 82], "broken": 72, "brown": [79, 82], "bucklei": 82, "build": [66, 67, 70, 72, 76, 80], "built": [65, 68, 70, 72, 80, 81], "burst": 68, "bv": 65, "c": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82], "c44e52": [67, 69, 73, 75, 81], "ca": 76, "calcul": [74, 76], "call": [0, 35, 67, 69, 70, 72, 73, 74, 79, 80, 81], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 57, 58, 59, 62, 73], "cambridg": 82, "can": [0, 1, 2, 3, 4, 5, 6, 16, 38, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "candid": [51, 53, 54, 55, 79], "cannot": [16, 68, 69, 79], "capabl": [67, 76], "capitalis": 67, "captur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "capture_output": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "cardiac": [66, 72], "carlo": [1, 70, 72, 81], "carri": 81, "carryov": 59, "case": [9, 13, 67, 69, 71, 72, 73, 74, 76, 77, 79, 81], "categor": [16, 19, 60, 66, 69, 74, 79], "categori": [10, 69, 71, 79], "categorical_hgf": 71, "categorical_idata": 71, "categorical_surpris": 71, "caus": 37, "cbo9781139087759": 82, "cdot": 76, "cedric": 82, "cell": [67, 72, 80], "censor": 75, "censored_volatil": 75, "centr": [71, 72], "central": [67, 68, 72, 76, 81], "certain": [1, 67, 68], "chain": [1, 2, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "cham": 82, "chanc": 79, "chance_conting": 79, "chang": [67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "channel": 77, "chaotic": 79, "check": [72, 74], "chf": [28, 29], "child": [0, 38, 39, 53, 61, 67, 68, 69, 76, 80], "children": [0, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 76], "children_idx": 58, "children_input": 28, "choic": 68, "cholinerg": [65, 82], "choos": [69, 72, 79], "chose": [31, 53, 69, 73, 79], "chosen": 79, "chri": 1, "christoph": [1, 82], "chunck": 76, "ci": [28, 29], "circl": 73, "circumst": 37, "citi": 80, "clarifi": 74, "clariti": [72, 81], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 57, 68, 69, 70, 71, 72, 73, 74, 79, 81], "classic": [72, 81], "cldtot": 80, "clear": [73, 80], "clearli": [68, 73], "clock": 76, "close": [73, 75], "closer": 76, "cloud": 80, "cloudi": 80, "cluster": [51, 52, 53, 54, 55, 56], "cm": 78, "cmap": [71, 75], "co": 69, "code": [1, 17, 66, 67, 68, 69, 73, 74, 76, 80, 81], "coeffici": [67, 75], "cognit": [1, 65, 77, 82], "colab": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "collect": [0, 71], "colleg": 11, "collin": [75, 82], "color": [28, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "column": 59, "column_stack": [69, 79], "com": [65, 80], "combin": [1, 42, 67, 68], "come": [1, 67, 69, 73, 74, 76, 80], "command": 81, "common": [1, 68, 71], "commonli": [73, 76, 80], "commun": [13, 67], "compar": [1, 65, 72, 74, 81], "compare_df": 81, "comparison": [4, 66, 75], "compat": [2, 68, 70, 71, 72, 73, 74], "compil": 65, "complet": [67, 80, 81], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59, 66, 67, 68, 73, 80], "complexifi": 67, "compli": 73, "complic": 1, "compon": [67, 68, 72, 74, 79], "compromis": 68, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 38, 39, 42, 43, 46, 49, 50, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82], "computation": 1, "computationalpsychiatri": 65, "concaten": 79, "concentr": 11, "concept": [67, 74, 80], "concern": 67, "concis": 80, "cond": 76, "condit": 81, "connect": [1, 6, 16, 67, 68, 73, 76, 80], "consequ": [67, 68], "consid": [62, 67, 68, 70, 72, 73, 76, 79, 80, 81], "consider": 1, "consist": [17, 59, 67, 68, 69, 71, 73, 75, 76, 79, 81], "constand": 76, "constant": [14, 67, 69, 76], "constitud": 67, "constitut": [76, 80], "constrained_layout": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 42, 43, 53, 59, 65, 67, 68, 74, 77, 80], "context": [2, 4, 59, 69, 70, 72, 73, 79, 80, 81], "contextu": 1, "contin": 3, "conting": [68, 71, 73, 79, 81], "contingencylist": 68, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 45, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81], "continuous_input_upd": [35, 47], "continuous_node_prediction_error": [49, 50], "continuous_node_value_prediction_error": [38, 39, 48, 50], "continuous_node_volatility_prediction_error": [38, 48, 49], "continuous_precis": 16, "contrari": 68, "control": [1, 67, 68, 74, 80, 81], "conveni": [67, 73], "converg": [70, 72, 73, 74, 75, 77, 79, 81], "convert": [28, 29, 67, 70, 71, 77, 79, 81], "copyright": 1, "core": [2, 17, 65, 68, 70, 72, 73, 74, 75, 77, 79, 81], "correct": [69, 82], "correctli": [27, 75], "correl": [0, 26, 75], "correspond": [16, 28, 29, 69, 70, 73, 74, 75, 76, 79, 80], "cost": 79, "could": [32, 33, 34, 68, 71, 72, 73, 76, 79, 81], "count": [13, 69, 74], "counterpart": [68, 70], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 38, 39, 41, 42, 43, 47, 48, 58, 62, 65, 66, 70, 78, 79, 81], "coupling_fn": [20, 24, 58, 68, 76], "coupling_strength": 58, "cours": [66, 80], "covari": 69, "cover": [67, 80, 81], "cpc": 66, "cpython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "creat": [0, 2, 3, 4, 16, 28, 29, 52, 53, 65, 66, 69, 74, 75, 76, 77, 79, 80, 81], "create_belief_propagation_fn": 79, "creation": [68, 73, 80, 81], "creativ": 1, "crisi": 72, "critic": [1, 68, 73], "cross": [4, 74, 81, 82], "crucial": 74, "csv": 80, "cumsum": [67, 76, 80], "currenc": 72, "current": [0, 1, 40, 58, 65, 67, 68, 69, 73, 80, 82], "current_belief": 81, "curv": 28, "custom": [16, 66, 70, 71, 74, 79, 80, 81], "custom_op": [71, 79], "customdist": [74, 81], "customis": 66, "customop": [71, 79], "d": [1, 11, 65, 69, 82], "dai": 80, "dark": 80, "dash": 67, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 59, 64, 65, 67, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "data2": 69, "databas": 80, "datafram": 64, "dataset": [73, 77, 80, 81], "daugaard": [1, 65], "daunizeau": [1, 65, 82], "de": 82, "deadlock": 81, "deal": [1, 79], "debug": 80, "dec": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "decid": [67, 72, 73, 81], "decis": [1, 6, 30, 31, 65, 70, 71, 74, 75, 81], "declar": [68, 74, 76], "decreas": 79, "dedic": 72, "deeper": 65, "def": [68, 69, 71, 73, 74, 76, 79, 81], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 39, 59, 61, 62, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81], "default_paramet": 25, "defin": [12, 16, 17, 28, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 81], "definit": [62, 73], "degre": [69, 70, 72, 76], "deliv": 80, "delta": [69, 76], "delta_j": [38, 39, 49, 50], "demonstr": [1, 65, 69, 70, 73, 75, 77, 78], "denmark": 76, "denot": 67, "densiti": [0, 2, 11, 12, 13, 70, 72, 74, 78, 80], "depend": [5, 38, 40, 67, 70, 72, 73, 74, 76, 80], "depict": [29, 67, 81], "deriv": [1, 67, 69, 76], "describ": [0, 65, 66, 67, 68, 69, 70, 73, 80], "descript": [1, 67, 80], "design": [65, 66, 68, 71, 73, 74, 79, 80, 81], "despin": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "detail": [67, 74, 75, 79, 80], "detect": 77, "determin": 1, "determinist": [1, 74, 81], "dev0": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "develop": [65, 68, 81], "deviat": [28, 29, 51, 54, 55, 74, 77], "df": [69, 70, 72], "diagnos": 81, "diagnost": [70, 72, 73, 74, 75, 77, 79, 81], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60], "dictionari": [16, 59, 65, 68, 70, 72, 80], "dictonari": 25, "did": [72, 74], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 45, 58, 67, 68, 69, 70, 72, 73, 74, 76, 79, 80], "differenti": [65, 69, 70, 72, 76], "difficult": [1, 69, 80], "diffus": [65, 68], "dimens": [3, 5, 6, 67, 68, 74], "dimension": [69, 79], "dir": 11, "direct": [67, 68], "directli": [35, 68, 70, 72, 73, 74, 76, 79], "dirichlet": [11, 21, 35, 69, 71], "dirichlet_nod": 44, "disambigu": 68, "disappear": 76, "discrep": [70, 72], "discret": [1, 71, 81], "discuss": [1, 67, 79, 81], "displai": [69, 74, 76, 81], "dissoci": [0, 68], "dist": 75, "dist_mean": 78, "dist_std": 78, "distanc": 69, "distant": 69, "distinguish": [74, 80], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 55, 57, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81], "dive": [67, 68], "diverg": [0, 11, 71, 74, 75, 81], "dk": 76, "do": [65, 68, 70, 71, 72, 73, 74, 76, 80, 81], "documatt": 68, "document": [65, 71, 80, 81], "doe": [69, 71, 73, 80, 81], "doesn": 76, "doi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 82], "dollar": 72, "domain": [72, 81], "don": [67, 80], "done": 68, "dopamin": 1, "dopaminerg": [65, 82], "dot": 72, "down": [0, 65, 67, 69, 80], "download": [65, 77, 80], "drag": 72, "drai": 70, "draw": [1, 28, 29, 70, 72, 73, 74, 75, 77, 79, 81], "drift": [5, 6, 16, 42, 68, 76, 80], "dse": 81, "dtype": [9, 14, 55, 69, 70, 71, 72, 73, 79, 80, 81], "due": 68, "duplic": [74, 75], "dure": [0, 17, 43, 55, 65, 68, 72, 74, 75, 76, 82], "dx": 82, "dynam": [17, 65, 66, 73, 76, 77, 80, 81], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 58, 59, 63, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82], "e49547": 82, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 55, 56, 57, 59, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "eas": 65, "easili": [68, 71, 73, 80, 81], "ecg": 77, "ecg_peak": 77, "ecosystem": 65, "edg": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 69, 79], "edgecolor": [68, 69, 73, 75, 79, 81], "editor": 82, "ef": 69, "effect": [38, 39, 43, 65, 72, 74, 75, 82], "effective_precis": 43, "effici": [1, 65, 67], "ehgf": [37, 38, 62], "either": [53, 68, 73, 74, 76, 80], "ekaterina": [1, 82], "elaps": [39, 67, 79], "electrocardiographi": 77, "electron": 1, "element": 76, "elicit": 14, "elif": 82, "ellicit": 9, "elpd": 74, "elpd_diff": 81, "elpd_loo": [74, 81], "els": [75, 79], "elsevi": 65, "emb": [70, 72], "embed": [0, 66, 70, 72, 74], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [71, 79], "encod": [1, 65, 67, 71, 73, 75, 80, 81], "end": [9, 13, 67, 69, 73, 76], "endogen": 43, "energi": [1, 82], "enhanc": 65, "enlarg": 69, "enno": [1, 82], "ensur": [62, 70, 72, 74, 75, 79, 80], "enter": 67, "entir": 68, "entri": 16, "enumer": [67, 69, 81], "environ": [1, 67, 68, 73, 74, 80, 81], "environment": [1, 68, 75], "eq": 11, "equal": [1, 3, 37, 59, 76], "equat": [1, 11, 67, 70, 71, 72, 73, 76, 79, 80], "equival": [69, 73], "erdem": 82, "eric": 82, "error": [1, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 65, 68, 69, 72, 76, 77, 80, 81, 82], "especi": [67, 74, 79, 81], "ess": [74, 75], "ess_bulk": [2, 73, 81], "ess_tail": [2, 73, 81], "estim": [0, 1, 2, 28, 29, 66, 67, 69, 73, 74, 75, 79, 80, 81], "et": [0, 65, 67, 68, 70, 73, 74, 80, 81], "eta": 69, "eta0": [10, 16, 29, 70], "eta1": [10, 16, 29, 70], "etc": 68, "euro": 72, "european": 82, "eval": 74, "evalu": [13, 67, 71, 73, 79, 82], "even": [1, 67, 76], "event": [1, 72, 78], "everi": [66, 67, 68, 71, 74, 79, 80, 81], "everyth": 73, "evid": [6, 69, 81], "evidenc": 69, "evolut": [67, 70, 72, 73, 80, 81], "evolutionari": 1, "evolv": [66, 67, 79], "exact": [67, 73, 80], "exactli": [67, 71, 73, 74], "exampl": [1, 2, 9, 14, 28, 29, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "excel": 73, "except": [38, 39, 70, 72, 73, 81], "exchang": 72, "exclud": [63, 79], "exclus": 63, "execut": [0, 68], "exert": [67, 68], "exhibit": [70, 72], "exist": [51, 53, 54, 55, 56, 68], "exogen": 43, "exot": 71, "exp": [43, 67, 69, 74, 79, 80], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 38, 39, 40, 41, 42, 43, 54, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "expected_mean": [9, 10, 14, 42, 51, 54, 55, 67, 68, 69, 73, 74, 75, 78, 79, 81], "expected_precis": [10, 14, 43, 68, 78], "expected_sigma": [51, 54, 55], "experi": [73, 81], "experiment": [1, 66, 73, 74, 75, 79, 81], "explain": [74, 80, 81], "explan": 81, "explicit": 73, "explicitli": [1, 68, 74, 77], "explor": 81, "exponenti": [7, 8, 13, 22, 66, 67, 69, 80], "exponential_famili": [7, 8], "export": [64, 73], "express": [1, 68, 69, 71, 72, 76, 79, 80], "extend": [68, 69, 70, 72, 74], "extens": [1, 66, 81], "extract": [70, 72, 77, 78, 81], "extrem": [1, 72, 79], "f": [42, 65, 67, 68, 76, 80], "f_1": 68, "f_i": 68, "f_n": 68, "f_x": 69, "facilit": 68, "fact": [76, 79], "fail": 37, "fairli": 75, "fall": 72, "fals": [28, 29, 76, 81], "famili": [7, 8, 13, 22, 57, 66, 67, 69, 80], "familiar": 73, "far": [68, 72, 73, 80, 81], "fashion": 1, "fast": [76, 79, 81], "featur": [68, 74, 77, 80], "februari": 82, "fed": 74, "feed": [28, 29, 79], "fewer": 78, "field": [1, 68, 73, 81], "fig": [69, 71, 75, 76, 78], "figsiz": [28, 29, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "figur": [28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "fil": 11, "file": 1, "filer": 1, "fill": 75, "fill_between": [71, 78, 79], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 78, 79, 81, 82], "final": [1, 80, 81], "find": [54, 65, 66, 68, 72, 73, 80], "finit": [10, 45], "fir": 77, "firebrick": 79, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "first_level_binary_surpris": [70, 81], "first_level_gaussian_surpris": [72, 77, 80], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 74, 75, 76, 79, 80], "fix": [2, 57, 67, 73, 74, 76, 80, 81], "flatten": 74, "flexibl": [1, 65, 71, 80, 81], "flexibli": 69, "flight": 72, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 51, 54, 55, 58, 59, 74, 79], "float32": [9, 14, 70, 72, 73, 80, 81], "float64": [71, 79], "floor": 72, "fluctuat": 67, "flux": 80, "fn": 81, "fnhum": [1, 65, 82], "fo": 1, "focus": [68, 79], "folder": 65, "follow": [1, 11, 62, 65, 67, 68, 69, 70, 71, 72, 76, 79, 80, 81], "forc": 79, "fork": [70, 81], "form": [1, 67, 68, 69, 74, 76, 80], "formal": 67, "formul": 1, "forward": [65, 67, 70, 72, 74, 75, 79, 80, 81], "found": [1, 67, 68, 70, 72, 80], "foundat": [1, 65, 80, 82], "four": [1, 68, 79, 81], "fpsyt": 65, "frac": [11, 13, 14, 28, 31, 38, 39, 40, 42, 43, 50, 57, 67, 69, 71, 74, 79], "fraction": 80, "frame": [64, 67, 69, 77, 80], "framework": [1, 65, 66, 67, 68, 69], "franc": 72, "free": [1, 65, 70, 73, 75], "freedom": 69, "friston": [1, 65, 82], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 38, 39, 47, 59, 62, 63, 65, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81], "frontier": [1, 65, 82], "frontiersin": [1, 82], "fry": 55, "fr\u00e4ssle": 65, "full": [1, 6, 69], "fulli": [67, 80], "func": 69, "funcanim": 69, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81], "fundament": 67, "fundat": 1, "further": [65, 67, 68, 74, 78, 79], "fusion": 73, "futur": [0, 67, 82], "g": [1, 5, 6, 38, 39, 65, 67, 73, 75, 76, 81], "g_": [69, 76], "gabri": 82, "gamma": [11, 13, 69, 71], "gamma_a": 43, "gamma_j": [38, 39], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 76, 77, 79, 81, 82], "gaussian_predictive_distribut": 69, "gcc": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ge": 82, "gelman": 82, "gener": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 60, 62, 66, 68, 69, 70, 71, 73, 74, 75, 76, 79, 81, 82], "generalis": [1, 66, 71, 73], "generalised_filt": 69, "get": [40, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81], "get_legend_handles_label": [67, 81], "get_network": [69, 79], "get_update_sequ": 68, "ghgf": [65, 80, 81], "gif": 69, "git": 65, "github": [11, 65], "githubusercont": 80, "give": [70, 72, 73, 76, 79, 81], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 38, 39, 42, 43, 45, 49, 50, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 79, 80, 81], "global": [1, 72], "go": [67, 70, 72, 73, 74, 79, 80], "goe": 71, "good": [73, 74, 75, 79], "googl": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "grad": [71, 79], "gradient": [3, 71, 79], "grai": 79, "grandpar": 68, "graph": [59, 66, 68, 71, 79], "graphviz": [27, 70, 72], "greater": 68, "greatli": 69, "greec": 72, "green": [75, 76], "grei": [28, 67, 69, 72, 75, 78], "grid": [67, 69, 75, 76, 78, 80, 81], "ground": 80, "group": [66, 67, 75, 81], "grow": 71, "grw": [67, 80], "grw_1": 80, "grw_2": 80, "guid": 67, "gz": [71, 79], "h": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 69, 81, 82], "ha": [1, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81], "had": [73, 74, 81], "halfnorm": 74, "hamiltonian": [70, 72, 81], "hand": [39, 66, 73], "handi": 76, "handl": [66, 67, 69, 71, 73, 74, 81], "happen": [67, 73, 76, 80], "harrison": [65, 82], "hat": [9, 14, 28, 31, 38, 39, 40, 42, 43, 49, 50, 67, 73, 74, 76], "have": [1, 35, 47, 62, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "hdi_3": [2, 73, 81], "hdi_97": [2, 73, 81], "he": 73, "head": [73, 80], "heart": [0, 67, 68], "heartbeat": 77, "heatmap": 26, "heavi": 68, "hedvig": [1, 82], "height": [28, 29, 80], "heinzl": 65, "help": [72, 74, 80], "her": 73, "here": [1, 2, 30, 31, 32, 33, 34, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 60, 65, 66, 67, 68, 69, 71, 74, 75, 76, 77, 78, 79, 80], "hgf_loglik": [70, 72, 73, 75, 77, 81], "hgf_logp_op": [2, 70, 72, 73, 74, 75, 77, 81], "hgf_logp_op_pointwis": [74, 81], "hgf_mcmc": [70, 72], "hgfdistribut": [70, 71, 72, 73, 74, 75, 77, 81], "hgfpointwis": [74, 81], "hhgf_loglik": 2, "hidden": [1, 67, 79, 80, 81], "hide": 79, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 75, 77, 78, 79, 81, 82], "hierarchi": [0, 1, 2, 3, 4, 16, 65, 67, 68, 70, 72, 80], "hierarchicalgaussianfilt": 73, "high": [78, 79], "high_nois": 76, "high_prob": 79, "higher": [67, 70, 72, 74, 75, 76, 80, 81], "highest": 1, "highli": [1, 72, 81], "hist": 79, "hold": [67, 73], "home": 1, "hood": 69, "hostedtoolcach": 81, "hour": [66, 80], "hourli": [80, 82], "how": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "howev": [1, 67, 68, 69, 71, 72, 73, 74, 76, 77, 81], "html": 11, "http": [1, 7, 8, 11, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 80, 82], "human": [1, 65, 82], "hyper": 74, "hyperparamet": [13, 57, 69], "hyperprior": [74, 75], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "iain": 82, "idata": [2, 77, 79, 81], "idata_kwarg": 81, "idea": [67, 68, 72, 73, 75], "ident": 76, "identifi": 75, "idx": [71, 75], "iglesia": [1, 65, 70, 73, 81, 82], "ignor": [5, 6], "ii": [1, 66], "iii": 1, "ilabcod": 80, "illustr": [1, 67, 68, 71, 72, 73, 76, 77, 79, 80, 81], "imagin": 76, "impact": 79, "implement": [0, 16, 42, 57, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "impli": [35, 60, 67, 69, 71, 72, 79, 80], "implicitli": 73, "import": [1, 2, 9, 14, 28, 29, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "import_dataset1": 77, "importantli": [67, 68], "imposs": 62, "improv": [62, 81], "imshow": 71, "includ": [5, 6, 16, 67, 68, 69, 70, 72, 73, 74, 76, 77, 81], "incom": [67, 80], "incompat": 81, "incorpor": [16, 41, 48, 69, 73, 74], "incorrect": 76, "increas": [69, 70, 72, 74, 75, 76, 79, 80, 81], "increment": [59, 67], "inde": 74, "independ": [66, 69, 75], "index": [17, 23, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68], "indic": [58, 67, 72, 73, 74, 75, 76, 77, 79, 81], "individu": [1, 65, 75, 82], "inf": [5, 16, 29, 32, 33, 34, 70, 71, 74, 79], "infer": [0, 1, 5, 6, 13, 57, 59, 65, 66, 67, 68, 72, 73, 78, 81, 82], "inferred_paramet": 75, "infin": 80, "infinit": [71, 79], "influenc": [0, 1, 42, 67, 68, 69, 70, 72, 74, 76, 79, 80, 81], "inform": [1, 13, 17, 59, 68, 69, 70, 71, 72, 74, 76, 79, 80, 81], "infti": 72, "ingredi": 73, "inherit": [5, 6, 65, 67, 80], "initi": [2, 3, 4, 16, 17, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "initial_belief": 81, "initial_mean": [16, 28, 29, 70, 72, 73, 74, 75, 77, 81], "initial_precis": [16, 28, 29, 70, 72, 73, 77, 81], "initv": 75, "inplac": 71, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 45, 47, 48, 52, 53, 54, 56, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_convers": 77, "input_data": [2, 3, 4, 5, 6, 28, 29, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_idx": [59, 69, 79], "input_nodes_idx": 44, "input_precis": [5, 6], "input_typ": 77, "insert": [24, 67], "insid": [73, 76, 79, 81], "inspir": [65, 67, 68], "instal": [27, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 60, 62, 65, 68, 70, 72, 73, 74, 80], "instanti": [71, 79], "instead": [2, 3, 4, 38, 39, 72, 79, 80, 81], "instruct": 68, "instrument": 76, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 69, 71, 76, 79], "int32": 81, "integ": [2, 3, 4, 68], "integr": [1, 65, 69, 81], "intellig": 1, "inter": 1, "interact": [66, 67, 81], "intercept": 67, "interest": [67, 74, 75, 79, 80], "interestingli": 69, "interfac": 73, "interleav": [0, 69, 79], "intern": [1, 57, 66, 71, 73, 74, 76, 80, 82], "interocept": 66, "interpol": 71, "interpret": 1, "intersect": 66, "interv": [40, 69, 76, 77], "interven": 72, "intervent": 72, "introduc": [1, 66, 67, 71, 80, 81], "introduct": [65, 66], "introductori": 80, "intuit": [1, 66, 73], "invers": [1, 5, 6, 31, 65, 66, 67, 73, 74, 75, 79], "inverse_temperatur": [74, 75], "invert": [1, 80, 81], "involv": 1, "io": [11, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ion": 11, "ipykernel_2782": 72, "ipython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "irrespect": 55, "isbn": 1, "isclos": [70, 72], "isnan": [71, 79], "issn": 1, "item": [2, 3, 4], "iter": [67, 70, 72, 73, 74, 75, 77, 78, 79, 81], "its": [1, 40, 42, 53, 58, 65, 66, 67, 68, 70, 72, 73, 74, 76, 77, 80, 81], "itself": [67, 68, 70, 76, 80], "iv": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "j": [1, 38, 39, 43, 50, 65, 82], "jacobian": [71, 79], "jan": 82, "jax": [0, 5, 17, 29, 30, 31, 55, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jaxlib": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jean": [1, 82], "jit": [65, 71, 79], "jitted_custom_op_jax": [71, 79], "jitted_vjp_custom_op_jax": [71, 79], "jitter": [70, 72, 73, 74, 75, 77, 79, 81], "jl": 73, "jnp": [16, 29, 32, 33, 34, 69, 70, 71, 72, 73, 75, 76, 79], "job": [70, 72, 73, 74, 75, 77, 79, 81], "joint": [68, 69], "jonah": 82, "journal": [1, 82], "julia": [65, 68, 73], "jump": 67, "just": [73, 74, 75, 76, 80, 81], "k": [1, 11, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "kai": [1, 82], "kalman": [67, 73], "kappa": 67, "kappa_1": 67, "kappa_j": [38, 39, 43], "karl": [1, 82], "kasper": [65, 82], "kdeplot": 75, "keep": [76, 80], "kei": [1, 55, 67, 68, 81], "keyword": [1, 25, 68, 73], "kg": 80, "khodadadi": [1, 65], "kind": [38, 58, 65, 67, 68, 69, 71, 72, 74, 76, 79, 80, 81], "kl": [11, 71], "kl_diverg": 71, "klaa": [1, 82], "knew": [70, 72], "know": [67, 73, 76, 81], "knowledg": 80, "known": 76, "kora": 76, "kullback": [11, 71], "kwarg": [7, 8], "l": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 81, 82], "l_a": 79, "l_b": 79, "label": [67, 68, 69, 71, 73, 74, 78, 79, 80, 81], "laew": 1, "lambda": [67, 74, 76], "lambda_1": 67, "lambda_2": [67, 76], "lambda_2x_2": 76, "lambda_3": [67, 76], "lambda_a": [42, 67, 76], "land": 80, "lanillo": 82, "lar": 82, "larg": [68, 69, 80], "larger": [68, 69, 74, 75, 80], "last": [59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "latent": 67, "later": [43, 65, 67, 74, 81], "latter": 79, "lax": [17, 59, 76, 79], "layer": [5, 67, 72, 80, 81], "layout": 72, "lead": [67, 72, 81], "learn": [1, 65, 67, 71, 75, 76, 78, 80, 82], "learning_r": 81, "learnt": 76, "least": [0, 70, 72, 73, 74, 75, 77, 79, 81], "leav": [0, 59, 67, 74, 80, 81, 82], "lee": [74, 82], "left": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 80], "leftarrow": [57, 69], "legend": [67, 68, 69, 73, 74, 76, 78, 79, 80, 81], "legrand": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 76, 82], "leibler": [11, 71], "len": [71, 73, 79, 81], "length": [2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 59, 61, 73, 74], "leq": 76, "less": [16, 68, 73], "let": [67, 68, 69, 71, 73, 76, 80, 81], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 65, 66, 67, 68, 69, 73, 75, 76, 77, 78, 79, 80], "leverag": 74, "lg": 1, "li": 67, "lib": 81, "librari": [0, 1, 68, 70, 72, 81], "like": [55, 70, 71, 72, 73, 74, 76, 80, 81], "likelihood": [51, 53, 72, 73, 74, 81], "lilian": [1, 82], "limit": [1, 37, 67, 69, 73, 76, 79, 81], "line": [67, 68, 72, 73, 76], "linear": [38, 39, 58, 66], "linear_hgf": 76, "linearli": 69, "linestyl": [67, 68, 69, 73, 75, 76, 78, 81], "linewidth": [67, 69, 71, 80, 81], "link": [1, 58, 65, 68, 74], "linspac": [74, 75, 78], "list": [2, 3, 4, 5, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68, 71, 73, 74, 79, 80], "lit": 1, "ln": [11, 71], "load": [65, 80, 81], "load_data": [2, 28, 29, 65, 70, 72, 73, 74, 75, 80, 81], "load_ext": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "loc": [67, 69, 71, 78, 79, 80], "log": [2, 4, 5, 6, 9, 14, 28, 65, 70, 72, 73, 74, 79, 80, 81], "log_likelihoo": 81, "log_likelihood": [74, 81], "log_prob": 5, "logist": 15, "logit": [70, 81], "lognorm": 74, "logp": [5, 74, 81], "logp_fn": 79, "logp_pointwis": [74, 81], "lomakina": [1, 65, 82], "london": 11, "long": [76, 82], "loo": 74, "loo_hgf": 74, "look": [70, 71, 72, 76, 81], "loop": [67, 79, 80, 81], "loos": 79, "loss": 79, "loss_arm1": 79, "loss_arm2": 79, "lot": 70, "low": [78, 79], "low_nois": 76, "low_prob": 79, "lower": [67, 68, 69, 70, 71, 75], "lower_bound": 15, "lowest": 65, "luckili": 74, "m": [1, 65, 67, 68], "m2": 80, "m3": 80, "m_1": 67, "m_a": 42, "machin": 1, "made": [16, 68, 73, 74, 79, 80, 81], "magic": 80, "mai": [1, 71, 82], "main": [0, 27, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "major": 1, "make": [1, 65, 67, 68, 70, 71, 73, 74, 78, 79, 80, 81], "make_nod": [71, 79], "manag": 76, "mani": [1, 2, 67, 68, 71, 73, 74], "manipul": [0, 17, 65, 66, 70, 73, 74, 79, 80], "manka": [65, 82], "manual": [68, 69, 74, 76, 81], "many_binary_children_hgf": 68, "many_value_children_hgf": 68, "many_value_parents_hgf": 68, "many_volatility_children_hgf": 68, "many_volatility_parents_hgf": 68, "map": 74, "marker": 76, "market": 72, "markov": 1, "mask": [59, 69, 79], "master": 65, "match": [5, 68, 76, 81], "math": [2, 42, 57, 69, 75, 79], "mathcal": [2, 13, 67, 68, 69, 73, 74, 80], "mathemat": [1, 14, 67, 80], "mathi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "matlab": [65, 67, 72], "matplotlib": [26, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "matrix": [74, 79], "matter": [73, 81], "maxim": 72, "mayb": 74, "mcmc": [2, 66, 81], "mcse_mean": [2, 73, 81], "mcse_sd": [2, 73, 81], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 42, 51, 54, 55, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "mean_1": [2, 5, 6, 72], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 78, "mean_mu_g0": 55, "mean_precision_hgf": 78, "measur": [71, 73, 75, 76, 77, 80], "mechan": 1, "media": 65, "mention": 67, "mere": 73, "messag": [65, 68], "meta": [68, 72], "meter": 80, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 57, 65, 68, 70, 72, 73, 74, 77, 80], "metric": 73, "michael": 82, "might": [2, 3, 4, 16, 73, 81], "miku\u0161": [1, 65], "min": 71, "mind": 81, "minim": [1, 68, 70, 72, 80, 81], "minimis": 77, "misc": 1, "miss": [76, 79], "missing_inputs_u": 79, "mix": 80, "mm": 80, "modal": 77, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 60, 62, 66, 68, 69, 75, 76, 78, 79, 82], "model_to_graphviz": [70, 72, 74, 77, 81], "model_typ": [2, 3, 4, 16, 28, 29, 32, 68, 70, 72, 73, 74, 75, 77, 81], "modifi": 73, "modul": [0, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "modular": [65, 67, 68, 81], "mojtaba": 1, "mont": [1, 70, 72, 81], "montemagno": 76, "month": 80, "more": [66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 80, 81], "moreov": 74, "most": [16, 67, 68, 69, 70, 71, 72, 73, 79, 80], "mostli": 79, "move": [67, 74, 81], "mu": [9, 14, 31, 38, 39, 40, 42, 49, 67, 70, 72, 73, 74, 80], "mu_1": [67, 72, 76, 80], "mu_2": [67, 76], "mu_3": 76, "mu_a": [42, 43, 76], "mu_b": [38, 39, 76], "mu_i": 67, "mu_j": [38, 39, 49], "mu_temperatur": 74, "mu_volatil": 74, "much": [68, 69, 72, 80, 81], "multi": [66, 74, 75], "multiarm": 66, "multilevel": [66, 74, 81], "multinomi": 71, "multipl": [1, 5, 28, 58, 68, 71, 73, 74, 76, 77, 79], "multipleloc": 69, "multipli": 68, "multiprocess": 81, "multithread": 81, "multivari": [7, 69], "multivariatenorm": 69, "must": [58, 76], "m\u00f8ller": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "m\u00fcller": 65, "n": [1, 2, 4, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "n1662": 1, "n_": [38, 39, 43], "n_1": 68, "n_categori": 71, "n_j": 68, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 68, 70, 72, 73, 74, 75, 77, 81], "n_node": [18, 19, 20, 21, 22, 24, 68, 69, 76, 79], "n_sampl": [54, 55], "nace": 1, "name": 67, "nan": [2, 3, 4, 5, 81], "nativ": [70, 72, 74, 76], "natur": [1, 67, 69], "nc": 1, "ncol": [67, 75], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 45, 47, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "neg": [5, 6, 28, 37, 70, 72, 73, 76, 79, 80], "nelder": 1, "nest": [71, 73, 79, 80], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 42, 43, 44, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81], "neural": [0, 1, 17, 44, 52, 53, 56, 58, 62, 66, 67, 68, 76, 81], "neuroimag": [65, 82], "neuromodel": 65, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 65, 70, 72, 74, 82], "new": [0, 28, 29, 38, 39, 40, 42, 43, 51, 52, 53, 54, 55, 59, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 79, 80, 81], "new_attribut": 68, "new_belief": 81, "new_input_precision_1": 68, "new_input_precision_2": 68, "new_mean": 69, "new_mu": 55, "new_observ": 81, "new_sigma": 55, "newaxi": [2, 70, 72, 73, 74, 77, 81], "next": [1, 67, 70, 72, 73, 80], "nicola": [1, 76, 82], "nodal": 77, "nodalis": 80, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 74, 77, 78, 79, 81], "node_idx": [28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 60, 63, 68, 71, 79], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 68, 69], "node_precis": 38, "node_trajectori": [17, 69, 71, 73, 74, 75, 78, 79, 81], "node_typ": [24, 68], "nois": [1, 68, 76], "noisi": [68, 69, 76], "noisier": [76, 81], "non": [38, 39, 52, 56, 66], "non_sequ": 81, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 58, 67, 68, 70, 71, 73, 74, 76], "nonlinear_hgf": 76, "noon": 80, "norm": [69, 78], "normal": [1, 2, 7, 10, 11, 57, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "note": [16, 27, 35, 38, 39, 41, 47, 48, 58, 67, 70, 72, 73, 74, 76, 79, 80, 81], "notebook": [66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 81], "notic": 76, "notion": [67, 68], "nov": 82, "novel": 1, "novemb": 82, "now": [67, 68, 70, 72, 73, 74, 76, 79, 80, 81], "np": [2, 5, 13, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nrow": [67, 69, 71, 79], "nu": [13, 57], "nu_": 69, "num": 75, "num_sampl": 81, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 81], "numer": [1, 71, 79], "numpi": [2, 4, 5, 29, 30, 31, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nut": [70, 72, 73, 74, 75, 77, 79, 81], "nutshel": 73, "o": [65, 80, 81], "o_": 73, "object": [75, 81], "observ": [0, 9, 10, 13, 14, 28, 35, 38, 39, 47, 51, 53, 54, 55, 59, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81], "obtain": 73, "occur": [37, 71, 74], "oct": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "octob": 82, "offer": [1, 67], "offici": [65, 71], "often": [37, 67, 68, 73, 74, 75], "omega": [70, 71, 72, 74, 77, 79, 80], "omega_": [70, 72, 74], "omega_1": [67, 72, 80], "omega_2": [2, 67, 70, 71, 72, 73, 77, 81], "omega_3": [70, 72], "omega_a": 43, "omega_j": [38, 39], "onc": [67, 68, 81], "one": [1, 2, 3, 4, 28, 38, 39, 42, 57, 67, 68, 69, 73, 74, 79, 80, 81, 82], "ones": [69, 71, 75, 76, 79], "onli": [0, 6, 16, 29, 32, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80], "onlin": 1, "oop": 80, "op": [3, 71, 79], "open": [65, 77], "oper": [65, 69, 71, 73, 79, 80], "operand": [52, 56], "opt": 81, "optim": [1, 62, 65, 67, 68, 70, 72, 79], "optimis": [70, 72, 73], "option": [31, 42, 72, 73], "orang": 72, "order": [58, 65, 67, 68, 69, 70, 72, 73, 76, 81], "org": [1, 7, 8, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 82], "organ": 0, "origin": [62, 65, 76], "orphan": 67, "oscil": 76, "oscillatori": 76, "other": [1, 38, 39, 63, 65, 67, 68, 70, 72, 73, 76, 79, 80, 81], "otherwis": 79, "our": [1, 67, 69, 70, 72, 73, 74, 76, 77, 79, 81], "ourselv": [70, 72], "out": [67, 74, 81, 82], "outcom": [9, 14, 65, 66, 68, 70, 73, 74, 79, 81], "outcome_1": 81, "outcome_2": 81, "output": [71, 73, 79, 82], "output_gradi": [71, 79], "output_typ": 77, "outputs_info": 81, "outsid": 76, "over": [2, 5, 6, 13, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81], "overal": [1, 72, 73], "overcom": 76, "overfit": [72, 79], "overlai": 55, "overtim": 78, "overview": 67, "own": [42, 67, 80], "p": [1, 11, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "p1": 71, "p2": 71, "p3": 71, "p_a": [42, 76, 79], "p_loo": [74, 81], "pablo": 82, "packag": [1, 65, 68, 73], "page": 1, "pair": 67, "pan": 77, "panda": [64, 73, 77, 80], "panel": [29, 68, 72, 73], "paper": [1, 65, 67], "paralel": 69, "parallel": [3, 5, 6, 74], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 74, 76, 77, 80], "parameter": [16, 67], "parameter_structur": 59, "parametr": [11, 13, 17, 31, 51, 53, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 81], "parametris": [24, 79, 80, 81], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80], "parent_idx": 58, "pareto": 74, "part": [5, 6, 16, 65, 67, 68, 71, 72, 73, 74, 76, 80, 81], "partial": [71, 75, 79], "particip": [73, 74, 75, 77, 81], "particular": [67, 80], "pass": [2, 3, 4, 5, 6, 17, 35, 47, 65, 67, 68, 69, 70, 72, 73, 76, 79, 80], "past": [69, 73], "patholog": 1, "pattern": 82, "pct": 74, "pd": 80, "pdf": [1, 69, 78], "peak": 77, "penni": 11, "per": [74, 75], "percept": [1, 65, 82], "perceptu": [1, 2, 3, 4, 16, 73, 74, 75], "pereira": 65, "perform": [1, 5, 6, 37, 42, 59, 62, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 80, 81], "perspect": [70, 72], "peter": [1, 82], "petzschner": 65, "pfenning": [80, 82], "phasic": [5, 6, 16, 42, 43, 67, 80], "phenomena": 68, "phenomenon": 76, "phi": 67, "physio_df": 77, "physiolog": [66, 72], "pi": [13, 14, 28, 38, 39, 40, 43, 50, 67, 69, 70, 72, 76], "pi_1": 67, "pi_a": 43, "pi_b": [38, 39], "pi_i": 67, "pi_j": [38, 39, 50], "pid": 81, "piec": 81, "pip": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pjitfunct": 5, "place": [67, 68, 74, 79], "plai": [1, 72], "plausibl": 65, "pleas": [1, 74], "plot": [67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "plot_compar": 81, "plot_correl": 72, "plot_network": [68, 69, 70, 71, 72, 76, 78, 79, 80, 81], "plot_nod": [68, 71, 76, 79], "plot_posterior": [74, 79], "plot_raw": 77, "plot_trac": [70, 71, 72, 73, 77, 81], "plot_trajectori": [65, 68, 70, 72, 76, 77, 80, 81], "plt": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "plu": 79, "pm": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pmid": 1, "point": [13, 32, 33, 34, 40, 59, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80], "pointer": [35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57], "pointwis": [4, 74, 81], "pointwise_loglikelihood": [74, 81], "pool": 75, "poor": 80, "popen_fork": 81, "popul": 74, "popular": 81, "posit": [68, 73, 74, 80], "possess": 76, "possibl": [10, 42, 61, 66, 68, 69, 71, 73, 74, 76, 77, 80, 81], "post": 71, "post1": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "posterior": [1, 2, 28, 29, 45, 59, 62, 65, 66, 67, 69, 80], "posterior_mean": 38, "posterior_precis": 39, "posterior_update_mean_continuous_nod": [36, 37, 39], "posterior_update_precision_continuous_nod": [36, 37, 38], "posteriori": 74, "potenti": [2, 70, 71, 72, 73, 75, 77, 79, 81], "power": [81, 82], "pp": [13, 57], "ppg": 77, "pr": [70, 73], "practic": [66, 68, 69, 73, 82], "pre": [16, 17, 51, 53, 55, 70, 71, 72, 81], "precipit": 80, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 43, 45, 46, 54, 62, 65, 66, 67, 68, 69, 70, 71, 72, 76, 79, 80], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 80, "prectotland": 80, "predict": [1, 13, 14, 17, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 66, 68, 69, 72, 73, 74, 77, 79, 80, 82], "predict_precis": 38, "prediction_error": [38, 39], "prediction_sequ": 62, "presenc": 75, "present": [65, 66, 67, 68, 70, 72, 73, 74, 79, 80], "press": 82, "previou": [0, 1, 39, 40, 53, 54, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "previous": [67, 73, 80], "principl": [1, 62, 67, 68, 69, 73, 80, 81], "print": [2, 65], "prior": [2, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 61, 65, 66, 67, 69, 72, 73, 77, 79, 81], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 51, 57, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81], "problem": [66, 74, 75], "procedur": [68, 74, 81], "proceed": 74, "process": [1, 21, 36, 37, 42, 44, 52, 53, 56, 66, 68, 69, 76, 79, 80, 81], "produc": [74, 79, 81], "product": [71, 79], "programmat": 73, "progress": [68, 71, 76], "propag": [0, 17, 59, 68, 69, 73, 80, 81], "propens": [67, 74], "properti": [1, 68], "proport": 69, "propos": 62, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 58, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "proxim": 68, "pseudo": [13, 69, 74], "psi": [11, 35, 47, 71], "psychiatri": [65, 66, 73, 74, 80], "psycholog": 73, "pt": [71, 74, 79, 81], "public": [1, 11, 71], "publish": [1, 57, 82], "pulcu": [79, 82], "punish": [66, 82], "purpos": [67, 73, 78], "put": 72, "pv": 82, "pval": 71, "py": [72, 81], "pyhgf": [1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pymc": [0, 2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pyplot": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pytensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "python": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "python3": 81, "pytre": 68, "pytress": 68, "q": [1, 11, 71], "qualiti": 74, "quantiti": [74, 78, 79, 80, 81], "question": 69, "quickli": [72, 81], "quit": 72, "r": [65, 67, 69, 76, 77, 79], "r_a": 69, "r_hat": [2, 73, 81], "rain": 80, "raman": 65, "rand": 69, "randn": 69, "random": [1, 5, 6, 16, 42, 55, 68, 69, 71, 73, 74, 75, 76, 78, 79], "randomli": [67, 75, 81], "rang": [67, 68, 69, 71, 73, 74, 75, 78, 79, 80], "rank": 81, "rate": [42, 65, 67, 69, 70, 72, 73, 78, 79, 80, 81], "rather": 81, "ratio": 69, "ration": 82, "ravel": [69, 79], "raw": 80, "rcparam": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "reach": 68, "react": 72, "read": [28, 29, 80, 81], "read_csv": 80, "reader": 67, "readi": [79, 81], "real": [1, 68, 69, 70, 72, 73, 76, 77, 80, 81], "reanalysi": 82, "reason": [68, 70, 72, 73, 74], "recap": 81, "receiv": [0, 35, 42, 53, 59, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81], "recent": 1, "recommend": [70, 72, 73, 74, 75, 77, 79, 81], "reconstruct": 81, "record": [66, 79, 80], "recov": [0, 66, 79], "recoveri": [66, 73, 81], "recurs": [63, 65], "red": 75, "reduc": 62, "ref": 75, "ref_val": 74, "refer": [1, 7, 8, 11, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 67, 68, 69, 71, 73, 74, 75, 79, 80], "reflect": [68, 80], "regist": [68, 76, 81], "regular": [37, 67, 70, 81], "reinforc": [1, 66, 67, 70, 71], "relat": [1, 73, 77], "relationship": 58, "relax": 78, "releas": 65, "relev": [16, 70, 72, 76], "reli": [67, 69, 74], "reliabl": [74, 75], "remain": [65, 79], "rememb": 81, "remot": 67, "remov": 80, "reparameter": [74, 75, 81], "repeat": [67, 74, 79, 80], "replac": [71, 79], "report": [1, 75], "repres": [1, 5, 6, 16, 42, 67, 68, 69, 71, 73, 74, 76, 80], "requier": [71, 79], "requir": [4, 27, 30, 32, 33, 34, 42, 68, 69, 73, 74, 79, 80, 81], "rescorla": [67, 70, 75], "research": [1, 73], "resembl": 73, "resolut": 1, "respect": [11, 67, 68, 72, 81], "respir": 77, "respond": 81, "respons": [2, 3, 4, 5, 6, 65, 66, 70, 72, 74, 75, 77, 80, 81, 82], "response_funct": [2, 3, 4, 6, 65, 70, 72, 73, 74, 75, 77, 80, 81], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 65, 73, 74, 75, 81], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 65, 70, 73, 74, 75], "rest": 1, "restrict": [68, 72], "result": [1, 2, 65, 68, 70, 71, 72, 73, 74, 77, 79, 80, 81], "retriev": [68, 72, 77, 81], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "revert": [42, 67], "review": [67, 80], "reward": [66, 73, 81, 82], "rf": [69, 74], "rhat": [74, 75], "rho": [67, 76], "rho_1": 67, "rho_2": 76, "rho_3": 76, "rho_a": [42, 76], "rhoa": 80, "right": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 79], "rise": 72, "rl": 1, "robert": 82, "robust": [70, 72, 73, 74, 75, 77, 79, 81], "rocket": 74, "role": [0, 1, 72], "root": [0, 59, 63, 67, 68, 80], "row": 28, "rr": 77, "rr_": 77, "rule": [81, 82], "run": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "runtimewarn": 81, "rust": 65, "rw": 81, "rw_idata": 81, "rw_model": 81, "rw_updat": 81, "s11222": 82, "s_0": 73, "s_1": 73, "sa": [65, 81], "sake": 73, "salient": 72, "same": [1, 2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "sampl": [1, 2, 54, 55, 62, 66, 67, 68, 69, 73, 75, 77, 78, 79, 80], "sampler": [70, 72, 73, 74, 75, 77, 79, 81], "samuel": 82, "sandra": [1, 82], "satellit": 82, "save": [43, 69, 74, 75, 81], "scalar": 69, "scale": [67, 69, 78, 80, 81], "scall": 67, "scan": [17, 59, 79, 81], "scan_fn": 17, "scat": 69, "scat2": 69, "scatter": [68, 69, 73, 75, 79, 81], "scatterplot": 75, "scheme": [1, 68], "schrader": 65, "sch\u00f6bi": 65, "scienc": [1, 13], "scipi": [69, 78], "scope": 67, "scratch": 65, "sd": [2, 73, 81], "se": [74, 81], "seaborn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "seagreen": 79, "seamless": 65, "search": 63, "second": [0, 1, 2, 5, 6, 10, 16, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "section": [66, 67, 70, 71, 72, 74, 80, 81], "see": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "seed": [67, 68, 69, 73, 74, 75, 76, 78, 79, 80], "seen": [67, 80, 81], "select": [73, 79, 80], "self": [71, 79, 81], "send": [67, 68, 72], "sens": [1, 67, 71, 73], "sensori": [1, 65, 67, 80, 81, 82], "sensory_precis": 54, "separ": [69, 74, 75, 81], "septemb": 72, "sequenc": [17, 59, 62, 65, 67, 69, 71, 73, 74, 79, 81], "sequenti": [70, 71, 72, 73, 74, 75, 77, 79, 81], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 57, 64, 65, 67, 68, 69, 70, 71, 72, 74, 77, 80, 81, 82], "serotonin": 1, "session": 66, "set": [16, 24, 28, 29, 58, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "set_minor_loc": 69, "set_offset": 69, "set_palett": 74, "set_titl": [69, 71, 75], "set_xdata": 69, "set_xlabel": [69, 75, 78], "set_ydata": 69, "set_ylabel": [69, 71, 75, 78, 79], "sever": [1, 72, 81], "sfreq": 77, "shad": 28, "shape": [0, 1, 3, 68, 69, 71, 74, 75, 76, 79, 80], "share": [68, 70], "sharei": 79, "sharex": [67, 71, 79], "she": 73, "shoot": 72, "shortwav": 80, "should": [0, 2, 4, 5, 28, 29, 35, 42, 43, 47, 54, 57, 58, 68, 69, 71, 73, 74, 79, 81], "show": [28, 29, 68, 72, 81], "show_heart_r": 77, "show_posterior": [28, 29, 76], "show_surpris": [28, 29, 76], "show_total_surpris": [29, 70, 72], "shown": [67, 69, 76], "side": [68, 73, 74], "sidecar": 81, "sigma": [54, 67, 68, 74, 80], "sigma_1": [67, 80], "sigma_2": [67, 80], "sigma_mu_g0": 55, "sigma_pi_g0": 55, "sigma_temperatur": 74, "sigma_volatil": 74, "sigmoid": [67, 74, 75, 79, 81], "sigmoid_hgf": 73, "sigmoid_hgf_idata": 73, "sigmoid_inverse_temperatur": 75, "signal": [0, 66, 76], "sim": [2, 67, 74, 76, 80], "similar": [38, 39, 70, 72, 77, 79, 81], "similarli": [68, 72], "simpl": [2, 67, 68, 69, 73, 75, 79, 80, 81, 82], "simpler": [67, 68, 81], "simplest": [67, 73], "simplex": 1, "simpli": [0, 68, 69, 74, 75, 80, 81], "simplifi": [76, 80], "simpul": 67, "simul": [1, 54, 55, 67, 68, 69, 73, 76, 80, 81, 82], "simultan": 74, "sin": [68, 69, 76], "sinc": [67, 76], "singl": [6, 68, 79, 81], "sinusoid": [68, 76], "sinusoid_linear_hgf": 76, "sinusoid_nonlinear_hgf": 76, "situat": [1, 67, 68, 71, 73, 74, 79], "size": [1, 5, 67, 68, 70, 72, 74, 75, 78, 80], "skew": 71, "slightli": [72, 73, 81], "slope": [67, 76], "slow": [79, 81], "smaller": [74, 75], "smooth": 66, "smoother": 69, "sn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "snoma": 80, "snow": 80, "so": [68, 70, 72, 73, 76, 80, 81], "sofmax": [30, 31], "softmax": [5, 6, 65, 73, 79], "softwar": 65, "solar": 80, "sole": 79, "solid": 81, "solut": 69, "some": [37, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80], "someth": [67, 68, 73, 76, 78, 81], "sometim": [68, 72, 73, 80, 81], "sort": 69, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "space": [62, 72, 74, 76], "sparsiti": 73, "special": 79, "specif": [1, 42, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79], "specifi": [2, 58, 67, 71, 76, 77, 79], "spike": 72, "spiral": 69, "split": [68, 73], "springer": [57, 82], "sqrt": [13, 28, 69, 78], "squar": 74, "stabil": 1, "stabl": 72, "stable_conting": 79, "stack": 69, "staffel": [80, 82], "standard": [0, 28, 29, 36, 38, 51, 54, 55, 62, 66, 67, 68, 70, 71, 72, 73, 74, 78, 80, 81], "start": [2, 3, 4, 59, 62, 67, 69, 71, 73, 74, 79, 80, 81], "stat": [69, 78], "state": [0, 1, 6, 18, 19, 20, 22, 32, 38, 39, 40, 42, 43, 46, 47, 49, 50, 55, 58, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 74, 79, 80, 81], "static": [44, 52, 56], "statist": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 74, 75, 78, 82], "statproofbook": 11, "std": [76, 78], "steep": 76, "steeper": 76, "stefan": 82, "step": [1, 5, 6, 17, 36, 37, 38, 39, 43, 59, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81], "stephan": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "still": [71, 79], "stim_1": 81, "stim_2": 81, "stimuli": [73, 74, 81], "stimulu": [73, 74, 81], "stochast": [67, 69, 71, 76, 80], "storag": 80, "store": [43, 48, 65, 68, 73, 74], "str": [2, 3, 4, 16, 28, 44, 52, 53, 56, 57, 59, 62], "straight": 67, "straightforward": [67, 69, 79], "straigthforwar": 80, "strenght": 23, "strength": [16, 35, 38, 39, 41, 42, 43, 47, 48, 58, 67, 70, 76], "string": 68, "structur": [0, 16, 17, 28, 29, 35, 41, 47, 48, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81], "student": 69, "studi": [1, 66, 72, 74], "sub": [0, 68, 70], "subject": [1, 81], "subplot": [67, 69, 71, 75, 76, 78, 79, 81], "subtl": 81, "success": 75, "suffici": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 78, 82], "sufficient_statist": 69, "sufficient_stats_fn": 57, "suggest": [69, 81], "suitabl": 79, "sum": [5, 29, 34, 42, 43, 65, 70, 71, 72, 73, 74, 77, 79, 80, 81], "sum_": [11, 38, 39, 43, 71, 73], "summari": [2, 70, 72, 73, 75, 77, 81], "summer": 80, "support": [5, 65, 67, 68], "suppos": 76, "sure": [71, 73, 79, 81], "surfac": 80, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 64, 65, 68, 71, 77, 79, 80, 81], "surprise_fn": 71, "suspect": 72, "swgdn": 80, "swiss": 72, "switch": [69, 70, 81], "swtdn": 80, "sy": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "systol": 77, "t": [1, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81], "t2m": 80, "tailor": [70, 71], "take": [0, 1, 67, 70, 73, 74, 80, 81], "tapa": 65, "target": [59, 65, 69, 80], "target_accept": [74, 75, 81], "task": [65, 66, 68, 70, 73, 74, 77, 81], "techniqu": 75, "tediou": 72, "tem": 80, "temp": 74, "temperatur": [5, 6, 31, 65, 73, 74, 75, 79, 80], "temporari": 53, "ten": 82, "tensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "term": [1, 43, 67, 68, 73, 76, 82], "terminologi": [71, 74], "test": [74, 75], "text": [9, 73, 76], "th": 74, "than": [16, 37, 67, 69, 71, 72, 74, 75, 76], "thank": [74, 81], "thecomput": 66, "thei": [0, 65, 68, 69, 70, 71, 72, 73, 74, 75, 81], "them": [67, 73, 79, 80], "theoret": [66, 80], "theori": [1, 67, 81], "therefor": [32, 67, 68, 69, 71, 72, 73, 74, 76, 79, 80, 81], "thestrup": [1, 82], "theta": [68, 69, 76], "theta_": 68, "theta_1": [68, 76], "theta_2": 76, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 38, 39, 43, 53, 57, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": [71, 74, 80], "think": [67, 73], "third": [1, 5, 6, 68, 70, 72], "those": [65, 68, 69, 70, 73, 74], "three": [0, 5, 6, 16, 28, 29, 67, 68, 71, 78, 79], "three_level_hgf": [72, 77], "three_level_hgf_idata": [70, 72], "three_level_trajectori": 81, "three_levels_binary_hgf": [70, 81], "three_levels_continuous_hgf": 72, "three_levels_continuous_hgf_bi": 72, "three_levels_hgf": [29, 70], "three_levels_idata": 81, "threshold": 76, "through": [0, 65, 66, 67, 68, 73, 74, 76, 80, 81], "thu": [1, 80], "ticker": 69, "tight": 72, "tight_layout": [69, 72], "tile": [67, 79, 80], "tim": 82, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 38, 39, 40, 42, 43, 57, 59, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82], "time_step": [2, 3, 4, 5, 6, 39, 40, 73, 79], "timeseri": [2, 28, 29, 72, 80], "timestep": 76, "titl": [1, 67, 69, 71, 74, 76, 78, 81], "tmp": 72, "to_numpi": [80, 81], "to_panda": [69, 70, 72, 73], "toa": 80, "togeth": [29, 70, 72, 73, 81], "tolist": 75, "tomkin": 77, "tonaic_volatil": 69, "tonic": [2, 5, 6, 16, 42, 43, 67, 72, 74, 75, 76, 78, 79, 80, 81], "tonic_drift": [16, 28, 29, 70, 76, 77], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tonic_volatility_1": [5, 6, 72, 77], "tonic_volatility_2": [2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 81], "tonic_volatility_3": [5, 6, 70, 72], "too": 79, "took": [70, 72, 73, 74, 75, 77, 79, 81], "tool": 74, "toolbox": [65, 67, 72, 73], "top": [0, 28, 29, 65, 67, 70, 72, 73, 78, 80], "total": [42, 43, 67, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "total_gaussian_surpris": [2, 77], "total_surpris": 73, "toussaint": 65, "toward": [79, 81], "trace": 76, "track": [67, 68, 69, 70, 73, 78, 80, 81], "tradition": 73, "trajectori": [0, 6, 26, 28, 29, 64, 65, 69, 73, 74, 75, 77, 78, 79, 80], "trajectories_df": 64, "transform": [23, 67, 68, 70, 73, 74, 76, 81], "transit": [60, 66, 69], "translat": 65, "transmiss": 80, "transpar": 68, "treat": 74, "tree": 68, "tree_util": [71, 79], "tri": [68, 70, 73, 81], "trial": [1, 67, 72, 73, 79, 81], "trigger": [0, 65, 67, 80], "tristan": 76, "trivial": 73, "true": [9, 14, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81], "try": [72, 73, 76, 78, 79, 80, 81], "tune": [2, 70, 72, 73, 74, 75, 77, 79, 81], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 68, 69, 73, 76, 79], "turn": [66, 67, 80], "tutori": [65, 67, 70, 73, 74, 75, 76, 79, 80, 81], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 59, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80], "two_armed_bandit_hgf": 79, "two_armed_bandit_missing_inputs_hgf": 79, "two_bandits_logp": 79, "two_level_hgf": 72, "two_level_hgf_idata": [70, 72, 74, 75, 81], "two_level_trajectori": 81, "two_levels_binary_hgf": [70, 74, 75, 81], "two_levels_continuous_hgf": [72, 80], "two_levels_hgf": [70, 81], "two_levels_idata": 81, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 55, 56, 57, 58, 61, 62, 68, 69, 71, 73, 74, 79, 81], "typic": 68, "u": [29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "u1": 76, "u2": 76, "u_0": 68, "u_0_prob": 68, "u_1": [67, 68, 76], "u_1_prob": 68, "u_2": [67, 76], "u_loss_arm1": 79, "u_loss_arm2": 79, "u_win_arm1": 79, "u_win_arm2": 79, "ucl": 11, "uk": 11, "uncertain": [1, 68], "uncertainti": [1, 28, 29, 65, 66, 67, 79, 80, 81, 82], "under": [1, 6, 9, 10, 14, 30, 31, 37, 51, 53, 55, 65, 67, 69, 70, 72, 73, 74, 81, 82], "undergo": [73, 74], "underli": [10, 68, 70, 71, 72, 73, 75, 76], "underpin": [67, 69], "understand": [1, 67, 76, 81], "underw": 73, "unexpect": [69, 70, 72], "uniform": [70, 75, 81], "union": [30, 31, 55, 58], "uniqu": [67, 68, 81], "unit": [2, 3, 4, 59, 74], "univari": [8, 57], "univariate_hgf": 69, "univers": [11, 76, 82], "unlik": [67, 72], "unobserv": 79, "until": [71, 76], "up": [28, 29, 65, 67, 72, 80], "updat": [1, 13, 17, 25, 59, 60, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "update_binary_input_par": 41, "update_continuous_input_par": 41, "update_fn": 68, "update_fn1": 68, "update_fn2": 68, "update_sequ": [17, 59, 62, 68, 69, 79], "update_typ": 62, "upon": 67, "upper": [67, 68, 75, 79], "upper_bound": 15, "url": [1, 11, 82], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 38, 39, 42, 43, 55, 65, 67, 68, 74, 75, 76, 77, 78, 79, 80, 81, 82], "usd": [28, 29], "user": [67, 73], "userwarn": 72, "usual": [0, 59, 67, 68, 75, 78], "util": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "v": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "valid": [4, 13, 32, 68, 70, 72, 74, 81, 82], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81], "valuat": 72, "value_children": [18, 20, 22, 23, 24, 65, 68, 69, 72, 76, 78, 79, 80, 81], "value_coupling_children": [16, 41, 48], "value_coupling_par": [16, 41, 48], "value_par": [18, 20, 23, 24, 68], "vape": 67, "var_nam": [2, 70, 73, 74, 75, 81], "vari": [66, 67, 69, 73, 74, 76], "variabl": [1, 13, 42, 59, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "varianc": [5, 6, 16, 65, 66, 67, 68, 72, 80], "variat": [0, 1, 68, 69], "varieti": 68, "variou": [1, 68, 80], "vartheta": 69, "vector": [2, 3, 4, 5, 16, 55, 69, 71, 73, 74, 75, 79, 81], "vectorized_logp": 5, "vehtari": [74, 82], "verbelen": 82, "veri": [1, 67, 72, 74, 77, 80], "versatil": 80, "version": [1, 17, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "via": [67, 68], "view": 79, "visibl": 72, "visual": [0, 27, 28, 29, 65, 69, 78, 80, 81], "vizualis": 69, "vjp": [71, 79], "vjp_custom_op": [71, 79], "vjp_custom_op_jax": [71, 79], "vjp_fn": [71, 79], "vjpcustomop": [71, 79], "vol": 65, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 56, 57, 58, 61, 62, 65, 66, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "volatile_conting": 79, "volatility_children": [18, 20, 23, 24, 68, 69, 72, 78, 80], "volatility_coupl": [16, 28, 29, 35, 47, 70, 77], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 41, 48], "volatility_coupling_par": [16, 41, 48], "volatility_par": [18, 20, 23, 24, 68], "volum": 1, "vopa": 43, "vope": 67, "vstack": 71, "w": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "w_a": 79, "w_b": 79, "wa": [38, 39, 62, 65, 68, 70, 71, 72, 73, 76, 79, 81], "waad": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "wagenmak": [74, 82], "wagner": [67, 70, 75], "wai": [1, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "waic": 82, "walk": [1, 5, 6, 16, 42, 76, 79], "want": [1, 2, 68, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "warmup": 2, "warn": [70, 71, 72, 73, 74, 75, 77, 79, 81], "watermark": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "wave": [68, 76], "we": [0, 1, 2, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "wed": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "weigh": [69, 80], "weight": [1, 55, 65, 67, 68, 69, 81], "weigth": 55, "well": [1, 59, 68, 75, 80, 81], "were": [67, 70, 73, 74, 75, 79, 81], "what": [68, 71, 72, 73, 76, 79, 80, 81], "when": [2, 4, 5, 6, 32, 42, 53, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 38, 39, 42, 43, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80], "wherea": 77, "whether": 28, "which": [1, 5, 6, 13, 42, 62, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "while": [67, 68, 69, 73, 74, 76, 77, 79, 80, 81], "whole": [67, 69, 79], "wide": [16, 70], "width": [28, 29], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [75, 82], "win": 79, "win_arm1": 79, "win_arm2": 79, "wind": 82, "wine": 79, "wishart": 11, "within": 1, "without": [1, 42, 61, 66, 68, 69, 73, 74, 76], "won": 70, "word": [68, 70, 72, 81], "work": [27, 66, 71, 73, 74, 79, 81], "workflow": [74, 81], "workshop": 80, "world": [67, 69, 73, 81], "worri": [70, 72], "worth": 74, "would": [70, 72, 74, 76, 79, 80], "wpenni": 11, "wrap": [0, 70, 71, 72, 79], "write": [71, 73, 76, 80, 81], "written": 69, "www": [1, 11, 82], "x": [9, 12, 13, 14, 15, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80], "x1": [67, 76], "x2": [67, 76], "x3": 76, "x64": 81, "x_": [67, 70, 80], "x_0": [6, 72], "x_0_expected_mean": 73, "x_0_expected_precis": 73, "x_0_mean": 73, "x_0_precis": 73, "x_0_surpris": [70, 72, 73], "x_0_xis_0": 69, "x_1": [6, 67, 69, 76, 80], "x_1_1": 67, "x_1_2": 67, "x_1_3": 67, "x_1_expected_mean": 73, "x_1_expected_precis": 73, "x_1_mean": 73, "x_1_precis": 73, "x_1_surpris": [70, 72, 73], "x_2": [6, 67, 69, 76, 80], "x_2_1": 67, "x_2_2": 67, "x_2_3": 67, "x_2_surpris": [70, 72], "x_3": [6, 76], "x_b": 42, "x_i": 69, "xaxi": 69, "xflr6": 27, "xi": [13, 57, 68, 69, 71], "xi_": [13, 68, 69], "xi_1": 68, "xi_k": 68, "xi_x": [13, 69], "xlabel": [67, 69, 71, 73, 76, 80, 81], "xlim": 69, "y": [13, 65, 69, 73, 75, 79, 81], "y1": 71, "y2": 71, "yaxi": 69, "ye": 76, "year": [1, 80, 82], "yet": 79, "ylabel": [67, 69, 71, 76, 80, 81], "ylim": 69, "you": [1, 65, 66, 68, 71, 73, 76, 79, 80, 81], "your": [1, 80, 81], "z": [69, 74], "z_": 74, "zero": 76, "zip": [67, 69, 75, 78, 79, 81], "zoom": 76, "zorder": [68, 71, 75], "zurich": 66, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [77, 80], "2": [78, 80], "3": [79, 80], "4": 80, "5": 80, "7": 81, "8": 81, "A": [65, 79], "The": [65, 66, 67, 68, 70, 71, 72, 80, 81], "acknowledg": 65, "activ": 76, "ad": 67, "adapt": 69, "add": [70, 72], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 58, "add_ef_st": 22, "api": 0, "applic": 81, "arm": [75, 79], "ascend": 68, "assign": 68, "attribut": 68, "autoregress": 67, "bandit": [75, 79], "bayesian": [69, 74, 77, 79], "behavior": 73, "behaviour": [75, 81], "belief": [67, 79, 81], "beliefs_propag": 59, "between": [76, 80], "bias": 81, "binari": [0, 40, 45, 46, 68, 70, 73, 81], "binary_finite_state_node_prediction_error": 45, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 40, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 69, "cardiac": 77, "case": [66, 68], "categor": [0, 35, 47, 71], "categorical_state_prediction_error": 47, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 51, "code": 65, "collect": 69, "comparison": [74, 81], "comput": [74, 75], "configur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "content": 0, "continu": [0, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 68, 72, 76], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 41, "continuous_node_prediction_error": 48, "continuous_node_value_prediction_error": 49, "continuous_node_volatility_prediction_error": 50, "correl": 72, "coupl": [67, 68, 76, 80], "cpc": [80, 81], "creat": [68, 70, 71, 72, 73], "create_clust": 52, "custom": [68, 73], "data": [70, 72], "dataset": [71, 74, 79], "decis": [73, 79], "deriv": 77, "descend": 68, "detail": 68, "differ": 81, "dirichlet": [0, 44, 51, 52, 53, 54, 55, 56], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 44, "dirichlet_node_prediction_error": 53, "distribut": [0, 2, 3, 4, 5, 6, 69, 74, 78], "doe": 65, "drift": 67, "dynam": [67, 68, 69], "edg": 68, "error": [0, 67], "estim": 78, "exampl": [77, 78, 79], "exercis": [66, 80, 81], "exponenti": 57, "fill_categorical_state_nod": 60, "filter": [65, 66, 67, 69, 70, 71, 72, 77, 80], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [65, 70, 71, 72, 81], "fix": [69, 70, 72], "forward": 71, "frequenc": 76, "from": [69, 73, 75, 79], "function": [0, 68, 73, 76], "gaussian": [65, 66, 67, 69, 70, 71, 72, 78, 80], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [65, 67, 80], "generalis": [67, 69, 80], "get": 65, "get_candid": 54, "get_coupl": 23, "get_input_idx": 61, "get_update_sequ": 62, "glossari": [67, 73], "go": 81, "graph": 74, "group": 74, "heart": 77, "hgf": [16, 70, 72, 73, 81], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [65, 66, 67, 69, 70, 71, 72, 74, 80], "how": [1, 65], "i": 80, "ii": 81, "implement": 68, "import": 70, "independ": 79, "infer": [71, 74, 75, 79], "input": 68, "insert_nod": 24, "instal": 65, "instantan": 77, "introduct": [67, 80], "invers": 80, "known": 78, "kown": 78, "learn": [66, 69, 70, 72, 81], "level": [70, 72, 74, 81], "librari": 65, "likely_cluster_propos": 55, "linear": 76, "list_branch": 63, "load": 77, "logp": 6, "manipul": 68, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [70, 71, 72], "mean": 78, "miss": 68, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 65, 67, 70, 71, 72, 73, 74, 77, 80, 81], "modifi": 68, "multi": 79, "multivari": 68, "multivariatenorm": 7, "network": [17, 65, 67, 68, 71, 74], "neural": [65, 74], "new": 73, "next": 81, "node": [0, 67, 68, 71, 76, 80], "non": [69, 76], "normal": [8, 69], "nu": 69, "observ": [73, 75], "one": 75, "optim": 81, "paramet": [70, 72, 73, 75, 79, 81], "particip": 79, "physiolog": 77, "plot": [0, 26, 27, 28, 29, 70, 72, 74, 77], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 74, 81], "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 80, "precis": 78, "predict": [0, 40, 41, 42, 43, 44, 65, 67, 76, 81], "predict_mean": 42, "predict_precis": 43, "prediction_error": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "prediction_error_update_exponential_famili": 57, "preprocess": 77, "probabilist": [68, 71, 74, 80], "process": [0, 67], "propag": 67, "punish": 79, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "random": [67, 80, 81], "rate": 77, "real": 79, "record": 77, "recov": [73, 75], "recoveri": [75, 79], "rectifi": 76, "refer": [65, 82], "reinforc": [69, 81], "relu": 76, "rescorla": 81, "respons": [0, 30, 31, 32, 33, 34, 73, 79], "reward": 79, "rl": 81, "rule": [73, 79], "sampl": [70, 71, 72, 74, 81], "sequenc": 68, "sigmoid": 15, "signal": 77, "simul": [71, 74, 75, 79], "solut": [80, 81], "start": 65, "state": [71, 76], "static": 68, "stationari": 69, "statist": 69, "step": 0, "structur": 79, "suffici": 69, "surpris": [70, 72, 73], "system": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tabl": 0, "task": [75, 79], "theori": [66, 68], "three": [70, 72, 81], "through": 69, "time": [68, 78, 79], "to_panda": 64, "total_gaussian_surpris": 34, "track": 76, "trajectori": [70, 72, 81], "transit": 71, "tutori": 66, "two": [70, 72, 81], "unit": 76, "univari": 69, "unknown": 78, "unkown": 78, "unobserv": 68, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 67, 68, 79], "update_clust": 56, "update_paramet": 25, "us": [66, 69, 70, 71, 72, 73], "util": [0, 58, 59, 60, 61, 62, 63, 64], "valu": [67, 68, 76, 80], "vari": [68, 78], "visual": [68, 70, 72, 74, 75], "volatil": [67, 68, 77, 80], "wagner": 81, "walk": [67, 80], "weather": 80, "where": 81, "work": [65, 68], "world": 80, "zurich": [80, 81]}}) \ No newline at end of file